Automata and Formal Languages - Exercise Sheet 10

Exercise 10.1

Construct a finite automaton for the Presburger formula $\exists y . x=3 y$ using the algorithms of the chapter.

Exercise 10.2

Let $\Sigma=\{a, b\}$. Give formulations in plain English of the languages described by the following formulas of $\mathrm{FO}(\Sigma)$, and give a corresponding regular expression:
(a) $\exists x \cdot \operatorname{first}(x)$
(b) $\forall x$. false
(c) $\neg \exists x . \exists y .\left(x<y \wedge Q_{a}(x) \wedge Q_{b}(y)\right) \wedge \forall x .\left(Q_{b}(x) \rightarrow \exists y . x<y \wedge Q_{a}(y)\right) \wedge \exists x . \neg \exists y . x<y$

Exercise 10.3

Give a $\operatorname{MSO}(\Sigma)$ formula Odd _Card (X) expressing that the cardinality of the set of positions X is odd.

Exercise 10.4

Let Σ be a finite alphabet. A language $L \subseteq \Sigma^{*}$ is star-free if it can be expressed by a star-free regular expression, i.e. a regular expression where the Kleene star operation is forbidden, but complementation is allowed. For example, Σ^{*} is star-free since $\Sigma^{*}=\bar{\emptyset}$, but $(a a)^{*}$ is not.
(a) Give star-free regular expressions and $\mathrm{FO}(\Sigma)$ sentences for the following star-free languages:
(i) Σ^{+}.
(ii) $\Sigma^{*} A \Sigma^{*}$ for some $A \subseteq \Sigma$.
(iii) A^{*} for some $A \subseteq \Sigma$.
(iv) $(a b)^{*}$.
(v) $\left\{w \in \Sigma^{*} \mid w\right.$ does not contain $\left.a a\right\}$.
(b) Show that finite and cofinite languages are star-free.
(c) Show that for every sentence $\varphi \in \operatorname{FO}(\Sigma)$, there exists a formula $\varphi^{+}(x, y)$, with two free variables x and y, such that for every $w \in \Sigma^{+}$and for every $1 \leq i \leq j \leq w$,

$$
w \models \varphi^{+}(i, j) \quad \text { iff } \quad w_{i} w_{i+1} \cdots w_{j} \models \varphi .
$$

(d) Give a polynomial time algorithm that decides whether the empty word satisfies a given sentence of $\mathrm{FO}(\Sigma)$.
(e) Show that every star-free language can be expressed by an $\mathrm{FO}(\Sigma)$ sentence.

Solution 10.1

We can rewrite the formula as $\exists y . x-3 y=0$. We first use EqtoDFA to obtain an automaton for $x-3 y=0$:

It remains to project the automaton on x, i.e. on the first component of the letters. We obtain:

Solution 10.2

(a) All nonempty words. The regular expression is $(a+b)(a+b)^{*}$
(b) The empty word. The regular expression is ϵ.
(c) The first conjunct expresses that no a precedes a b. The corresponding regular expression is $b^{*} a^{*}$. The second conjunct states that every b is followed (not necessarily immediately) by an a; this excludes the words of b^{*}. Finally, the third conjunct expresses that the last letter exists (and, by the second conjunct, must be an a), which excludes the empty word. So the regular expression is $b^{*} a a^{*}$

Solution 10.3

We first give formulas $\operatorname{First}(x, X)$ and Last (x, X) expressing that x is the first/last position among those in X. We also give a formula $\operatorname{Next}(x, y, X)$ expressing that y is the succesor of x in X. It is then easy to give a formula $\operatorname{Odd}(Y, X)$ expressing that Y is the set of odd positions of X (more precisely, Y contains the first position among those in X, the third, the fifth, etc.). Finally, the formula Odd_card (X) expresses that the last position of X belongs to the set of odd positions of X.

$$
\begin{aligned}
\operatorname{First}(x, X) & :=x \in X \wedge \forall y y<x \rightarrow y \notin X \\
\operatorname{Last}(x, X) & :=x \in X \wedge \forall y y>x \rightarrow y \notin X \\
\operatorname{Next}(x, y, X) & :=x \in X \wedge y \in X \wedge x<y \wedge \neg \exists z x<z \wedge z<y \wedge z \in X \\
\operatorname{Odd}(Y, X) & :=\forall x(x \in Y \leftrightarrow(\operatorname{First}(x, X) \vee \exists z \exists u z \in Y \wedge \operatorname{Next}(z, u, X) \wedge \operatorname{Next}(u, x, X)) \\
\operatorname{Odd_ card}(X) & =\exists Y(\operatorname{Odd}(Y, X) \wedge \forall x \operatorname{Last}(x, X) \rightarrow x \in Y)
\end{aligned}
$$

Solution 10.4

(a) (i) $\bar{\emptyset} \cdot \Sigma$ and $\exists x \operatorname{first}(x)$.
(ii) $\bar{\emptyset} \cdot A \cdot \bar{\emptyset}$ and $\exists x \bigvee_{a \in A} Q_{a}(x)$.
(iii) $\overline{\Sigma^{*} \bar{A} \Sigma^{*}}$ and $\forall x \bigvee_{a \in A} Q_{a}(x)$.
(iv) $\overline{b \Sigma^{*}+\Sigma^{*} a+\Sigma^{*} a a \Sigma^{*}+\Sigma^{*} b b \Sigma^{*}}$ and

$$
(\neg \exists x \operatorname{first}(x)) \vee
$$

$$
\left(\left(\exists x \text { first }(x) \wedge Q_{a}(x)\right) \wedge\left(\exists y \operatorname{last}(y) \wedge Q_{b}(y)\right) \wedge\right.
$$

$$
\left.\left(\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow Q_{b}(y)\right) \wedge\left(\forall x \forall y\left(Q_{b}(x) \wedge y=x+1\right) \rightarrow Q_{a}(y)\right)\right)
$$

(v) $\overline{\Sigma^{*} a a \Sigma^{*}}$ and $\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow \neg Q_{a}(y)$.
(b) Every finite language $L=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ can be expressed as $w_{1}+w_{2}+\cdots+w_{m}$. For every cofinite language L, there exists a finite language A such that $L=\bar{A}$. Since star-free regular expressions allow for complementation, cofinite languages are also star-free.
(c) We build φ^{+}using the following inductive rules:

$$
\begin{aligned}
(x<y)^{+}(i, j) & =x<y \\
Q_{a}(x)^{+}(i, j) & =Q_{a}(x) \\
(\neg \psi)^{+}(i, j) & =\neg \psi^{+}(i, j) \\
\left(\psi_{1} \vee \psi_{2}\right)^{+}(i, j) & =\psi_{1}^{+}(i, j) \vee \psi_{2}^{+}(i, j) \\
(\exists x \psi)^{+}(i, j) & =\exists x(i \leq x \wedge x \leq j) \wedge \psi^{+}(i, j) .
\end{aligned}
$$

(d)

```
Input: sentence \(\varphi \in \mathrm{FO}(\Sigma)\).
Output: \(\varepsilon \vDash \varphi\) ?
has-empty \((\varphi)\) :
    if \(\varphi=\neg \psi\) then
        return \(\neg\) has-empty \((\psi)\)
    else if \(\varphi=\psi_{1} \vee \psi_{2}\) then
            return has-empty \(\left(\psi_{1}\right) \vee\) has-empty \(\left(\psi_{2}\right)\)
    else if \(\varphi=\exists \psi\) then
        return false
```

(e)

```
Input: star-free regular expression \(r\).
Output: sentence \(\varphi \in \operatorname{FO}(\Sigma)\) s.t. \(L(\varphi)=L(r)\).
formula \((r)\) :
    if \(r=\varepsilon\) then
        return \(\forall x\) false
    else if \(r=a\) for some \(a \in \Sigma\) then
            return \((\exists x\) true \() \wedge\left(\forall x \operatorname{first}(x) \wedge Q_{a}(x)\right)\)
        else if \(r=\bar{s}\) then
            return \(\neg\) formula \((s)\)
        else if \(r=s_{1}+s_{2}\) then
            return formula \(\left(s_{1}\right) \vee\) formula \(\left(s_{2}\right)\)
        else if \(r=s_{1} \cdot s_{2}\) then
            return \(\left(\forall x\right.\) false \(\left.\wedge\left(\varepsilon \in L\left(s_{1}\right)\right) \wedge\left(\varepsilon \in L\left(s_{2}\right)\right)\right) \vee\)
                \(\left(\right.\) formula \(\left.\left(s_{1}\right) \wedge\left(\varepsilon \in L\left(s_{2}\right)\right)\right) \vee\)
                \(\left(\left(\varepsilon \in L\left(s_{1}\right)\right) \wedge\right.\) formula \(\left.\left(s_{2}\right)\right) \vee\)
                \(\left(\exists x, y, y^{\prime}, z \operatorname{first}(x) \wedge y^{\prime}=y+1 \wedge \operatorname{last}(z) \wedge\right.\) formula \(\left(s_{1}\right)^{+}(x, y) \wedge\) formula \(\left.\left(s_{2}\right)^{+}\left(y^{\prime}, z\right)\right)\)
```

