
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 28.11.2019

Automata and Formal Languages — Exercise Sheet 8

Exercise 8.1

Let L1 = {abb, bba, bbb} and L2 = {aba, bbb}.

(a) Give an algorithm for the following operation:

Input: A fixed-length language L ⊆ Σk described explicitly as a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L1 and L2.

(c) Compute the state of the master automaton representing L1 ∪ L2.

(d) Identify the kernels 〈L1〉, 〈L2〉, and 〈L1 ∪ L2〉.

Exercise 8.2

(a) Give an recursive algorithm for the following operation:

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

Observe that the languages L(p) and L(q) can have different lengths. Try to reduce the problem for p, q
to the problem for pa, q.

(b) Give an recursive algorithm for the following operation:

Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R

where R is the reverse operator.

(c) Give an recursive algorithm for the following operation:

Input: A DFA A over alphabet Σ, and k ∈ N.
Output: State q of the master automaton over Σ such that L(q) = L(A) ∩ Σk.

Apply your algorithm on the following DFA with k = 3:

q0 q1 q2

a
b a

b

a

b

Exercise 8.3

Let k ∈ N>0. Let flip : {0, 1}k → {0, 1}k be the function that inverts the bits of its input, e.g. flip(010) = 101.
Let val : {0, 1}k → N be such that val(w) is the number represented by w in the least significant bit first
encoding.

(a) Describe the minimal transducer that accepts

Lk =
{

[x, y] ∈ ({0, 1} × {0, 1})k | val(y) = val(flip(x)) + 1 mod 2k
}
.

(b) Build the state r of the master transducer for L3, and the state q of the master automaton for {010, 110}.

(c) Adapt the algorithm pre seen in class to compute post and compute using this algorithm post(r, q).

Solution 8.1

(a)

Input: A fixed-length language L ⊆ Σk described explicitely by a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

1 add-lang(L):
2 if L = ∅ then
3 return q∅
4 else if L = {ε} then
5 return qε
6 else
7 for ai ∈ Σ do
8 Lai ← {u | au ∈ L}
9 si ← add-lang(Lai)

10 return make(s1, s2, ..., sn)

(b) Executing add-lang(L1) yields the following computation tree:

add-lang({abb, bba, bbb})

make(add-lang({bb}), add-lang({bb}))

make(add-lang(∅), add-lang({b})) make(add-lang(∅), add-lang({a, b}))

make(add-lang(∅), add-lang({ε})) make(add-lang({ε}), add-lang({ε}))q∅

q∅ qε

q∅

qε qε

2

3

4

5

6

The table obtained after the execution is as follows:

Ident. a-succ b-succ
2 q∅ qε
3 q∅ 2
4 qε qε
5 q∅ 4
6 3 5

Calling add-lang(L2) adds the following rows to the table and returns 9:

Ident. a-succ b-succ
7 qε q∅
8 q∅ 7
9 8 3

The resulting master automaton fragment is:

qε q∅

7 24

35

86

9

L1

L2

a, b

a, b

a

b

a

b

a, b

b

a

b

a

a
b

a
b

a

b

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) ∪ L(q).

1 union(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ and q = q∅ then
5 return q∅
6 else if p = qε or q = qε then
7 return qε
8 else
9 for ai ∈ Σ do

10 si ← union(pai , qai)
11 G(p, q)← make(s1, s2, . . . , sn)
12 return G(p, q)

Executing union(6, 9) yields the following computation tree:

union(6, 9)

make(union(3, 8), union(5, 3))

make(union(q∅, q∅), union(2, 7)) make(union(q∅, q∅), union(4, 2))

make(union(q∅, qε), union(qε, q∅)) make(union(qε, q∅), union(qε, qε))q∅

qε qε

q∅

qε qε

4

5

4

5

10

Calling union(6, 9) adds the following row to the table and returns 10:

Ident. a-succ b-succ
10 5 5

The new fragment of the master automaton is:

qε q∅

7 24

35

86

9

10

L1

L2

L1 ∪ L2

a, b

a, b

a

b

a

b

a, b

b

a

b

a

a
b

a
b

a

b

a, b

F Note that union could be slightly improved by returning q whenever p = q, and by updating G(q, p)
at the same time as G(p, q).

(d) The kernels are:

〈L1〉 = L1,

〈L2〉 = L2,

〈L1 ∪ L2〉 = {ba, bb}.

Solution 8.2

(a) Let L and L′ be fixed-length languages. The following holds:

L · L′ =

∅ if L = ∅,
L′ if L = {ε},⋃
a∈Σ

{a} · La · L′ otherwise.

These identities give rise to the following algorithm:

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

1 concat(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ then
5 return q∅
6 else if p = qε then
7 return q
8 else
9 for ai ∈ Σ do

10 si ← concat(pai , q)
11 G(p, q)← make(s1, s2, . . . , sn)
12 return G(p, q)

(b) Let L be a fixed-length language. The following holds:

LR =

∅ if L = ∅,
{ε} if L = {ε},⋃
a∈Σ

(La)R · {a} otherwise.

These identities give rise to the following algorithm:

F Note that Lines 11 and 12 are introduced in order to represent the language {ai} in Line 13 as a state
make(s1, s2, . . . , sn) of the master automaton. This can be avoided by using the algorithm from Exercise
8.1, namely the state that represents {ai} is add-lang({ai}). Thus, Lines 11-13 can be replaced just by
r ← concat(reverse(qai), add-lang({ai}))

(c) Let A be a DFA and let k ∈ N. The following holds:

L(A) ∩ Σk =

∅ if k = 0 and ε 6∈ L(A),

{ε} if k = 0 and ε ∈ L(A),⋃
a∈Σ

{a} · (L(A)a ∩ Σk−1) otherwise.

These identities give rise to the following algorithm:

Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R.

1 reverse(q):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε
8 else
9 p← q∅

10 for ai ∈ Σ do
11 si ← qε
12 sj ← q∅ for every i 6= j
13 r ← concat(reverse(qai), make(s1, s2, . . . , sn))
14 p← union(p, r)

15 G(q)← p
16 return G(q)

Input: A DFA A over alphabet Σ, and k ∈ N.
Output: State q of the master automaton over Σ such that L(q) = L(A) ∩ Σk.

1 finitize(A, k):
2 (Q, q0,Σ, δ, F)← A
3 return finitize’(q0, k)

4

5 finitize’(q, k):
6 if G(q, k) is not empty then
7 return G(q, k)
8 else if k = 0 and q 6∈ F then
9 return q∅

10 else if k = 0 and q ∈ F then
11 return qε
12 else
13 for ai ∈ Σ do
14 si ← finitize’(δ(q, ai), k − 1)
15 G(q, k)← make(s1, s2, . . . , sn)
16 return G(q, k)

Executing finitize(A, 3) calls finitize’(q0, 3) which yields the following computation tree:

finitize’(q0, 3)

make(finitize’(q0, 2), finitize’(q1, 2))

make(finitize’(q0, 1), finitize’(q1, 1))

make(finitize’(q0, 0), finitize’(q1, 0)) make(finitize’(q2, 0), finitize’(q0, 0))

make(finitize’(q2, 1), finitize’(q0, 1))

make(finitize’(q2, 0), finitize’(q1, 0)) G(q0, 1)

q∅ qε q∅ q∅ q∅ qε

2 q∅

3

2 2

4

5

State 5 of the following master automaton fragment accepts L(A) ∩ {a, b}3 = {aab, bab, bbb}:

5

3 4

2

qε q∅

a, b

a, b

b a

a

b

a, b

a b

Solution 8.3

(a) Let [x, y] ∈ Lk. We may flip the bits of x at the same time as adding 1. If x1 = 1, then ¬x1 = 0, and
hence adding 1 to val(flip(x)) results in y1 = 1. Thus, for every 1 < i ≤ k, we have yi = ¬xi. If x1 = 0,
then ¬x1 = 1. Adding 1 yields y1 = 0 with a carry. This carry is propagated as long as ¬xi = 1, and thus
as long as xi = 0. If some position j with xj = 1 is encountered, the carry is “consumed”, and we flip the
remaining bits of x. These observations give rise to the following minimal transducer for Lk:

q0 q1 q2 qk−1

p1 p2 pk−1 pk

[
0
0

] [
0
0

]

[
0
0

]
,

[
1
1

]

[
0
1

]
,

[
1
0

] [
0
1

]
,

[
1
0

]

[
1
1

] [
1
1

]

[
0
0

]

[
0
1

]
,

[
1
0

]

[
1
1

]

(b) The minimal transducer accepting L3 is

r6 r4 r2

r5 r3 rε

r∅[
0
0

] [
0
0

]

[
0
0

]
,

[
1
1

]

[
0
1

]
,

[
1
0

] [
0
1

]
,

[
1
0

]

[
1
1

] [
1
1

]

State 4 of the following master automaton fragment accepts {010, 110}:

qε q∅

2 3

4

0, 1

0, 1

0
1

0

1

0, 1

(c) We can establish the following identities similar to those obtained for pre:

postR(L) =

∅ if R = ∅ or L = ∅,

{ε} if R = {[ε, ε]} and L = {ε},⋃
a,b∈Σ

b · postR[a,b](La) otherwise.

To see that these identities hold, let b ∈ Σ and v ∈ Σk for some k ∈ N. We have,

bv ∈ postR(L) ⇐⇒ ∃a ∈ Σ, u ∈ Σk s.t. au ∈ L and [au, bv] ∈ R

⇐⇒ ∃a ∈ Σ, u ∈ La s.t. [au, bv] ∈ R

⇐⇒ ∃a ∈ Σ, u ∈ La s.t. [u, v] ∈ R[a,b]

⇐⇒ ∃a ∈ Σ s.t. v ∈ PostR[a,b](La)

⇐⇒ v ∈
⋃
a∈Σ

PostR[a,b](La)

⇐⇒ bv ∈
⋃
a∈Σ

b · PostR[a,b](La).

We obtain the following algorithm:

Input: A state r of the master transducer and a state q of the master automaton.
Output: State p of the master automaton such that L(p) = PostR(L) where R = L(r) and L = L(q).

1 post(r, q):
2 if G(r, q) is not empty then
3 return G(r, q)
4 else if r = r∅ or q = q∅ then
5 return q∅
6 else if r = rε and q = qε then
7 return qε
8 else
9 for bi ∈ Σ do

10 p← q∅
11 for a ∈ Σ do
12 p← union(p, post(r[a,bi], qa))
13 si ← p

14 G(q, r)← make(s1, s2, . . . , sn)
15 return G(q, r)

Note that the transducer for L3 has some “strong” deterministic property. Indeed, for every state r and
b ∈ {0, 1}, if r[a,b] 6= r∅ then r[¬a,b] = r∅. Hence, for a fixed b ∈ {0, 1}, at most one term of the form
“post(r[a,b], qa)” can differ from q∅ at line 12 of the algorithm. Thus, unions made by the algorithm on
this transducer are trivial, and executing post(6, 4) yields the following computation tree:

post(r6, 4)

make(post(r4, 3), post(r5, 3))

make(post(r2, q∅), post(r3, 2)) make(post(r3, 2), post(r3, q∅))

make(post(rε, q∅), post(rε, qε))
q∅q∅

q∅ qε

G(r3, 2)

5

6

5

7

8

Calling post(6, 4) adds the following rows to the master automaton table and returns 8:

Ident. 0-succ 1-succ
5 q∅ qε
6 q∅ 5
7 5 q∅
8 6 7

The resulting master automaton fragment:

qε q∅

2 3

4

5

6

78Post(L3, {010, 110})

0, 1

0, 1

0
1

0

1

0, 1 0

1
0

1

1

0

0

1

