Automata and Formal Languages - Exercise Sheet 8

Exercise 8.1

Let $L_{1}=\{a b b, b b a, b b b\}$ and $L_{2}=\{a b a, b b b\}$.
(a) Give an algorithm for the following operation:

Input: A fixed-length language $L \subseteq \Sigma^{k}$ described explicitly as a set of words.
Output: \quad State q of the master automaton over Σ such that $L(q)=L$.
(b) Use the previous algorithm to build the states of the master automaton for L_{1} and L_{2}.
(c) Compute the state of the master automaton representing $L_{1} \cup L_{2}$.
(d) Identify the kernels $\left\langle L_{1}\right\rangle,\left\langle L_{2}\right\rangle$, and $\left\langle L_{1} \cup L_{2}\right\rangle$.

Exercise 8.2

(a) Give an recursive algorithm for the following operation:

Input: \quad States p and q of the master automaton.
Output: State r of the master automaton such that $L(r)=L(p) \cdot L(q)$.
Observe that the languages $L(p)$ and $L(q)$ can have different lengths. Try to reduce the problem for p, q to the problem for p^{a}, q.
(b) Give an recursive algorithm for the following operation:

Input: A state q of the master automaton.
Output: State r of the master automaton such that $L(r)=L(q)^{R}$
where R is the reverse operator.
(c) Give an recursive algorithm for the following operation:

Input: A DFA A over alphabet Σ, and $k \in \mathbb{N}$.
Output: State q of the master automaton over Σ such that $L(q)=L(A) \cap \Sigma^{k}$.
Apply your algorithm on the following DFA with $k=3$:

Exercise 8.3

Let $k \in \mathbb{N}_{>0}$. Let flip : $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ be the function that inverts the bits of its input, e.g. flip $(010)=101$. Let val : $\{0,1\}^{k} \rightarrow \mathbb{N}$ be such that $\operatorname{val}(w)$ is the number represented by w in the least significant bit first encoding.
(a) Describe the minimal transducer that accepts

$$
L_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{k} \mid \operatorname{val}(y)=\operatorname{val}(f \operatorname{lip}(x))+1 \bmod 2^{k}\right\}
$$

(b) Build the state r of the master transducer for L_{3}, and the state q of the master automaton for $\{010,110\}$.
(c) Adapt the algorithm pre seen in class to compute post and compute using this algorithm post (r, q).

Solution 8.1

(a)

```
Input: A fixed-length language \(L \subseteq \Sigma^{k}\) described explicitely by a set of words.
Output: State \(q\) of the master automaton over \(\Sigma\) such that \(L(q)=L\).
add-lang ( \(L\) ) :
        if \(L=\emptyset\) then
            return \(q_{\emptyset}\)
        else if \(L=\{\varepsilon\}\) then
            return \(q_{\varepsilon}\)
        else
            for \(a_{i} \in \Sigma\) do
            \(L^{a_{i}} \leftarrow\{u \mid a u \in L\}\)
            \(s_{i} \leftarrow \operatorname{add}-\operatorname{lang}\left(L^{a_{i}}\right)\)
            return make \(\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
```

(b) Executing add-lang $\left(L_{1}\right)$ yields the following computation tree:

The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
2	q_{\emptyset}	q_{ε}
3	q_{\emptyset}	2
4	q_{ε}	q_{ε}
5	q_{\emptyset}	4
6	3	5

Calling add-lang $\left(L_{2}\right)$ adds the following rows to the table and returns 9:

Ident.	a-succ	b-succ
7	q_{ε}	q_{\emptyset}
8	q_{\emptyset}	7
9	8	3

The resulting master automaton fragment is:

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

```
Input: States \(p\) and \(q\) of same length of the master automaton.
Output: State \(r\) of the master automaton such that \(L(r)=L(p) \cup L(q)\).
union \((p, q)\) :
    if \(G(p, q)\) is not empty then
        return \(G(p, q)\)
    else if \(p=q_{\emptyset}\) and \(q=q_{\emptyset}\) then
        return \(q_{\emptyset}\)
    else if \(p=q_{\varepsilon}\) or \(q=q_{\varepsilon}\) then
        return \(q_{\varepsilon}\)
    else
        for \(a_{i} \in \Sigma\) do
            \(s_{i} \leftarrow \operatorname{union}\left(p^{a_{i}}, q^{a_{i}}\right)\)
        \(G(p, q) \leftarrow \operatorname{make}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
        return \(G(p, q)\)
```

Executing union $(6,9)$ yields the following computation tree:

Calling union $(6,9)$ adds the following row to the table and returns 10 :

$$
\begin{array}{c|cc}
\text { Ident. } & a \text {-succ } & b \text {-succ } \\
\hline 10 & 5 & 5
\end{array}
$$

The new fragment of the master automaton is:

Note that union could be slightly improved by returning q whenever $p=q$, and by updating $G(q, p)$ at the same time as $G(p, q)$.
(d) The kernels are:

$$
\begin{aligned}
\left\langle L_{1}\right\rangle & =L_{1}, \\
\left\langle L_{2}\right\rangle & =L_{2}, \\
\left\langle L_{1} \cup L_{2}\right\rangle & =\{b a, b b\} .
\end{aligned}
$$

Solution 8.2

(a) Let L and L^{\prime} be fixed-length languages. The following holds:

$$
L \cdot L^{\prime}= \begin{cases}\emptyset & \text { if } L=\emptyset, \\ L^{\prime} & \text { if } L=\{\varepsilon\}, \\ \bigcup_{a \in \Sigma}\{a\} \cdot L^{a} \cdot L^{\prime} & \text { otherwise } .\end{cases}
$$

These identities give rise to the following algorithm:

```
Input: States \(p\) and \(q\) of the master automaton.
Output: State \(r\) of the master automaton such that \(L(r)=L(p) \cdot L(q)\).
concat \((p, q)\) :
    if \(G(p, q)\) is not empty then
            return \(G(p, q)\)
        else if \(p=q_{\emptyset}\) then
            return \(q_{\emptyset}\)
        else if \(p=q_{\varepsilon}\) then
            return \(q\)
        else
            for \(a_{i} \in \Sigma\) do
            \(s_{i} \leftarrow \operatorname{concat}\left(p^{a_{i}}, q\right)\)
            \(G(p, q) \leftarrow \operatorname{make}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
            return \(G(p, q)\)
```

(b) Let L be a fixed-length language. The following holds:

$$
L^{R}= \begin{cases}\emptyset & \text { if } L=\emptyset \\ \{\varepsilon\} & \text { if } L=\{\varepsilon\} \\ \bigcup_{a \in \Sigma}\left(L^{a}\right)^{R} \cdot\{a\} & \text { otherwise }\end{cases}
$$

These identities give rise to the following algorithm:
\star Note that Lines 11 and 12 are introduced in order to represent the language $\left\{a_{i}\right\}$ in Line 13 as a state make $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of the master automaton. This can be avoided by using the algorithm from Exercise 8.1, namely the state that represents $\left\{a_{i}\right\}$ is add-lang $\left(\left\{a_{i}\right\}\right)$. Thus, Lines 11-13 can be replaced just by $r \leftarrow \operatorname{concat}\left(\operatorname{reverse}\left(q^{a_{i}}\right)\right.$, add-lang $\left.\left(\left\{a_{i}\right\}\right)\right)$
(c) Let A be a DFA and let $k \in \mathbb{N}$. The following holds:

$$
L(A) \cap \Sigma^{k}= \begin{cases}\emptyset & \text { if } k=0 \text { and } \varepsilon \notin L(A), \\ \{\varepsilon\} & \text { if } k=0 \text { and } \varepsilon \in L(A), \\ \bigcup_{a \in \Sigma}\{a\} \cdot\left(L(A)^{a} \cap \Sigma^{k-1}\right) & \text { otherwise. }\end{cases}
$$

These identities give rise to the following algorithm:

```
Input: A state \(q\) of the master automaton.
Output: State \(r\) of the master automaton such that \(L(r)=L(q)^{R}\).
reverse (q) :
        if \(G(q)\) is not empty then
            return \(G(q)\)
        else if \(q=q_{\emptyset}\) then
            return \(q_{\emptyset}\)
        else if \(q=q_{\varepsilon}\) then
            return \(q_{\varepsilon}\)
        else
            \(p \leftarrow q_{\emptyset}\)
            for \(a_{i} \in \Sigma\) do
                    \(s_{i} \leftarrow q_{\varepsilon}\)
                    \(s_{j} \leftarrow q_{\emptyset}\) for every \(i \neq j\)
                    \(r \leftarrow \operatorname{concat}\left(\operatorname{reverse}\left(q^{a_{i}}\right)\right.\), make \(\left.\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)\)
                    \(p \leftarrow\) union \((p, r)\)
            \(G(q) \leftarrow p\)
            return \(G(q)\)
```

```
Input: A DFA \(A\) over alphabet \(\Sigma\), and \(k \in \mathbb{N}\).
Output: State \(q\) of the master automaton over \(\Sigma\) such that \(L(q)=L(A) \cap \Sigma^{k}\).
finitize \((A, k)\) :
    \(\left(Q, q_{0}, \Sigma, \delta, F\right) \leftarrow A\)
        return finitize' \(\left(q_{0}, k\right)\)
finitize' \((q, k)\) :
    if \(G(q, k)\) is not empty then
        return \(G(q, k)\)
    else if \(k=0\) and \(q \notin F\) then
        return \(q_{\emptyset}\)
        else if \(k=0\) and \(q \in F\) then
        return \(q_{\varepsilon}\)
    else
        for \(a_{i} \in \Sigma\) do
            \(s_{i} \leftarrow\) finitize' \(\left(\delta\left(q, a_{i}\right), k-1\right)\)
        \(G(q, k) \leftarrow \operatorname{make}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
        return \(G(q, k)\)
```


Executing finitize $(A, 3)$ calls finitize' $\left(q_{0}, 3\right)$ which yields the following computation tree:

State 5 of the following master automaton fragment accepts $L(A) \cap\{a, b\}^{3}=\{a a b, b a b, b b b\}$:

Solution 8.3

(a) Let $[x, y] \in L_{k}$. We may flip the bits of x at the same time as adding 1 . If $x_{1}=1$, then $\neg x_{1}=0$, and hence adding 1 to $\operatorname{val}(\operatorname{flip}(x))$ results in $y_{1}=1$. Thus, for every $1<i \leq k$, we have $y_{i}=\neg x_{i}$. If $x_{1}=0$, then $\neg x_{1}=1$. Adding 1 yields $y_{1}=0$ with a carry. This carry is propagated as long as $\neg x_{i}=1$, and thus as long as $x_{i}=0$. If some position j with $x_{j}=1$ is encountered, the carry is "consumed", and we flip the remaining bits of x. These observations give rise to the following minimal transducer for L_{k} :

(b) The minimal transducer accepting L_{3} is

State 4 of the following master automaton fragment accepts $\{010,110\}$:

(c) We can establish the following identities similar to those obtained for pre:

$$
\operatorname{post}_{R}(L)= \begin{cases}\emptyset & \text { if } R=\emptyset \text { or } L=\emptyset \\ \{\varepsilon\} & \text { if } R=\{[\varepsilon, \varepsilon]\} \text { and } L=\{\varepsilon\} \\ \bigcup_{a, b \in \Sigma} b \cdot \operatorname{post}_{R^{[a, b]}}\left(L^{a}\right) & \text { otherwise }\end{cases}
$$

To see that these identities hold, let $b \in \Sigma$ and $v \in \Sigma^{k}$ for some $k \in \mathbb{N}$. We have,

$$
\begin{aligned}
b v \in \operatorname{post}_{R}(L) & \Longleftrightarrow \exists a \in \Sigma, u \in \Sigma^{k} \text { s.t. } a u \in L \text { and }[a u, b v] \in R \\
& \Longleftrightarrow \exists a \in \Sigma, u \in L^{a} \text { s.t. }[a u, b v] \in R \\
& \Longleftrightarrow \exists a \in \Sigma, u \in L^{a} \text { s.t. }[u, v] \in R^{[a, b]} \\
& \Longleftrightarrow \exists a \in \Sigma \text { s.t. } v \in \operatorname{Post}_{R[a, b]}\left(L^{a}\right) \\
& \Longleftrightarrow v \in \bigcup_{a \in \Sigma} \operatorname{Post}_{R^{[a, b]}}\left(L^{a}\right) \\
& \Longleftrightarrow b v \in \bigcup_{a \in \Sigma} b \cdot \operatorname{Post}_{R^{[a, b]}}\left(L^{a}\right) .
\end{aligned}
$$

We obtain the following algorithm:

```
Input: A state \(r\) of the master transducer and a state \(q\) of the master automaton.
Output: State \(p\) of the master automaton such that \(L(p)=\operatorname{Post}_{R}(L)\) where \(R=L(r)\) and \(L=L(q)\).
post \((r, q)\) :
    if \(G(r, q)\) is not empty then
        return \(G(r, q)\)
    else if \(r=r_{\emptyset}\) or \(q=q_{\emptyset}\) then
            return \(q_{\emptyset}\)
        else if \(r=r_{\varepsilon}\) and \(q=q_{\varepsilon}\) then
            return \(q_{\varepsilon}\)
    else
        for \(b_{i} \in \Sigma\) do
            \(p \leftarrow q_{\emptyset}\)
            for \(a \in \Sigma\) do
                    \(p \leftarrow \operatorname{union}\left(p, \operatorname{post}\left(r^{\left[a, b_{i}\right]}, q^{a}\right)\right)\)
            \(s_{i} \leftarrow p\)
        \(G(q, r) \leftarrow \operatorname{make}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
        return \(G(q, r)\)
```

Note that the transducer for L_{3} has some "strong" deterministic property. Indeed, for every state r and $b \in\{0,1\}$, if $r^{[a, b]} \neq r_{\emptyset}$ then $r^{[\neg a, b]}=r_{\emptyset}$. Hence, for a fixed $b \in\{0,1\}$, at most one term of the form "post $\left(r^{[a, b]}, q^{a}\right)$ " can differ from q_{\emptyset} at line 12 of the algorithm. Thus, unions made by the algorithm on this transducer are trivial, and executing post $(6,4)$ yields the following computation tree:

Calling post $(6,4)$ adds the following rows to the master automaton table and returns 8 :

Ident.	0-succ	1 -succ
5	q_{\emptyset}	q_{ε}
6	q_{\emptyset}	5
7	5	q_{\emptyset}
8	6	7

The resulting master automaton fragment:

