Automata and Formal Languages - Exercise Sheet 6

Exercise 6.1

1. Build the automata B_{p} and C_{p} for the word pattern $p=$ mammamia.
2. How many transitions are taken when reading $t=m a m i$ in B_{p} and C_{p} ?
3. Let $n>0$. Find a text $t \in\{a, b\}^{*}$ and a word pattern $p \in\{a, b\}^{n}$ such that testing whether p occurs in t takes n transitions in B_{p} and $2 n-1$ transitions in C_{p}.

Exercise 6.2

In order to make pattern-matching robust to typos we want to include also "similar" words in our results. For this we consider words with a small Levenshtein-distance (edit-distance) "similar".

We transform a word w to a new word w^{\prime} using the following operations (with $a_{i}, b \in \Sigma$):

- replace (R): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} b a_{i+1} \ldots a_{l}$
- delete (D): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} \varepsilon a_{i+1} \ldots a_{l}$
- insert (I): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} a_{i} b a_{i+1} \ldots a_{l}$

The Levenshtein-distance (denoted $\Delta\left(w, w^{\prime}\right)$) of w and w^{\prime} is the minimal number of operations ($\mathrm{R}, \mathrm{D}, \mathrm{I}$) needed to transform w into w^{\prime}. We denote with $\Delta_{L, i}=\left\{w \in \Sigma^{*} \mid \exists w^{\prime} \in L . \Delta\left(w^{\prime}, w\right) \leq i\right\}$ the language of all words with edit-distance at most i to some word of L.
(a) Compute $\Delta(a b c d e, a c c d)$.
(b) Prove the following statement: If L is a regular language, then $\Delta_{L, n}$ is a regular language.
(c) Let p be the pattern $A B B A$. Construct an NFA- ϵ locating the pattern or variations of it with editdistance 1 .

Exercise 6.3

(a) Let $n \in \mathbb{N}$ be such that $n \geq 2$. Show that $L_{n}=\left\{w \in\{a, b\}^{*}| | w \mid \equiv 0(\bmod n)\right\}$ has exactly n residuals, without constructing any automaton for L_{n}.
(b) Consider the following "proof" showing that L_{2} is non regular:

Let $i, j \in \mathbb{N}$ be such that i is even and j is odd. By definition of L_{2}, we have $\varepsilon \in\left(L_{2}\right)^{a^{i}}$ and $\varepsilon \notin\left(L_{2}\right)^{a^{j}}$. Therefore, the a^{i}-residual and a^{j}-residual of L_{2} are distinct. Since there are infinitely many even numbers i and odd numbers j, this implies that L_{2} has infinitely many residuals, and hence that L_{2} is not regular.

Language L_{2} is regular, so this "proof" must be incorrect. Explain what is wrong with the "proof".

Solution 6.1

1. A_{p} :

B_{p} :

C_{p} :

2. Four transitions taken in $B_{p}:\{0\} \xrightarrow{m}\{0,1\} \xrightarrow{a}\{0,2\} \xrightarrow{m}\{0,1,3\} \xrightarrow{i}\{0\}$.

Six transitions taken in $C_{p}: 0 \xrightarrow{m} 1 \xrightarrow{a} 2 \xrightarrow{m} 3 \xrightarrow{i} 1 \xrightarrow{i} 0 \xrightarrow{i} 0$.
3. $t=a^{n-1} b$ and $p=a^{n}$. The automata B_{p} and C_{p} are as follows:
B_{p} :

C_{p} :

The runs over t on B_{p} and C_{p} are respectively:

$$
\{0\} \xrightarrow{a}\{0,1\} \xrightarrow{a}\{0,1,2\} \xrightarrow{a} \cdots \xrightarrow{a}\{0,1, \ldots, n-1\} \xrightarrow{b}\{0\},
$$

and

$$
0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} \cdots \xrightarrow{a}(n-1) \xrightarrow{b}(n-2) \xrightarrow{b}(n-3) \xrightarrow{b} \cdots \xrightarrow{b} 0 .
$$

Solution 6.2

(a) $\Delta(a b c d e, a c c d)=2$.
(b) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA for L. We obtain an NFA- ϵN for $\Delta_{L, n}$ by adding n "error-levels". Formally:

$$
N=\left(Q \times[0, n], \Sigma, \delta^{\prime},\left(q_{0}, 0\right), F \times[0, n]\right)
$$

with

$$
\begin{aligned}
\delta^{\prime} & =\{((q, i), a,(p, i)) \mid q, p \in Q \wedge i \leq n \wedge a \in \Sigma \wedge \delta(q, a)=p\} & & \text { no change } \\
& \cup\{((q, i), \varepsilon,(p, i+1)) \mid q, p \in Q \wedge i<n \wedge(\exists a \in \Sigma . \delta(q, a)=p)\} & & \text { delete } \\
& \cup\{((q, i), a,(q, i+1)) \mid q \in Q \wedge i<n \wedge a \in \Sigma\} & & \text { insert } \\
& \cup\{((q, i), b,(p, i+1)) \mid q, p \in Q \wedge i<n \wedge(\exists a \in \Sigma \backslash\{b\} . \delta(q, a)=p)\} & & \text { replace }
\end{aligned}
$$

Let us prove that $\Delta_{L, n}=L(N)$.
$\Delta_{L, n} \subseteq L(N)$. If $w \in \Delta_{L, n}$, it means that there is $w^{\prime} \in L$ such that $\Delta\left(w^{\prime}, w\right)=k \leq n$, or in other words, starting from the word w^{\prime}, we can obtain w by applying k "mistakes" (delete, insert, replace). As $w^{\prime} \in L$ (accepted by M) and as the 0 -level of N is a copy of M, note that w^{\prime} has a run in N that reaches a final state $\left(q_{f}, 0\right)$. By construction of the automaton N, there is a run of the word w that follows the run of w^{\prime} where each "mistake" can be seen as moving to the next error-level, using the corresponding transition from δ^{\prime} (delete, insert, replace) depending on a mistake. It is easy to see that if the word w^{\prime} reaches a final state $\left(q_{f}, 0\right)$ in N, then w can reach $\left(q_{f}, k\right)$, and thus $w \in L(N)$.
$L(N) \subseteq \Delta_{L, n}$. If $w \in L(N)$, this means there is a run of w in N that reaches a final state $\left(q_{f}, k\right) \in$ $F \times[0, n]$. Intuitively, for each transition of that run that changes the level, we modify w so that it "stays in the same level". Formally, we check the nature of the transition that changes the level and modify w as follows:
(i) If $(p, i) \xrightarrow{a}(p, i+1)$ is an insert edge, this occurrence of the letter a will be removed from w.
(ii) If $(p, i) \xrightarrow{a}(q, i+1)$ is a replace edge, and there exists a $(p, i) \xrightarrow{b}(q, i)$ edge, for some letter b, then we replace this occurrence of a in w with b.
(iii) If $(p, i) \xrightarrow{\epsilon}(q, i+1)$ is a delete edge, and there exists a $(p, i) \xrightarrow{a}(q, i)$ edge, for some letter a, then we add the letter a at this place in w.

Denote the obtained word by w^{\prime}. It is easy to see that w^{\prime} is obtained from w by applying mistakes (delete, insert, replace) k times, as in the run of w there are exactly k transitions that change the level. Therefore, $\Delta\left(w^{\prime}, w\right) \leq k \leq n$. Moreover, it is easy to see that if w reaches $\left(q_{f}, k\right)$, then w^{\prime} reaches $\left(q_{f}, 0\right)$. As the 0 -level is a copy of M, then $w^{\prime} \in L$. To summarize, there exists $w^{\prime} \in L$ such that $\Delta\left(w^{\prime}, w\right) \leq n$, that is, $w \in \Delta_{L, n}$.
(c) We use the same construction as in (b) with the automaton A_{p} for pattern $p=A B B A$.

Solution 6.3

(a) We claim that the residuals of L_{n} are

$$
\begin{equation*}
\left(L_{n}\right)^{a^{0}},\left(L_{n}\right)^{a^{1}}, \ldots,\left(L_{n}\right)^{a^{n-1}} \tag{1}
\end{equation*}
$$

Let us first show that for every word w we have $\left(L_{n}\right)^{w}=\left(L_{n}\right)^{a^{|w| \bmod n}}$. Let $w \in\{a, b\}^{*}$. For every $u \in\{a, b\}^{*}$, we have

$$
\begin{aligned}
u \in\left(L_{n}\right)^{w} & \Longleftrightarrow w u \in L_{n} \\
& \Longleftrightarrow|w u| \equiv 0(\bmod n) \\
& \Longleftrightarrow|w|+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow(|w| \bmod n)+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow\left|a^{|w| \bmod n}\right|+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow\left|a^{|w| \bmod n} u\right| \equiv 0(\bmod n) \\
& \Longleftrightarrow a^{|w| \bmod n} u \in L_{n} \\
& \Longleftrightarrow u \in\left(L_{n}\right)^{a^{|w|} \bmod n}
\end{aligned}
$$

It remains to show that the residuals of (1) are distinct. Let $0 \leq i, j<n$ be such that $i \neq j$. We have $a^{n-i} \in\left(L_{n}\right)^{a^{i}}$, and $a^{n-i} \notin\left(L_{n}\right)^{a^{j}}$ since $\left|a^{j} a^{n-i}\right| \bmod n=j-i \neq 0$. Therefore, $\left(L_{n}\right)^{a^{i}} \neq\left(L_{n}\right)^{a^{j}}$.
(b) The part of the "proof" showing that $\left(L_{2}\right)^{a^{i}} \neq\left(L_{2}\right)^{a^{j}}$, for every even i and odd j, is correct. However, this only shows that L_{2} has at least two residuals. Indeed, even if there are infinitely many even and odd numbers, the following is not ruled out:

$$
\begin{aligned}
& \left(L_{2}\right)^{a^{0}}=\left(L_{2}\right)^{a^{2}}=\left(L_{2}\right)^{a^{4}}=\cdots, \\
& \left(L_{2}\right)^{a^{1}}=\left(L_{2}\right)^{a^{3}}=\left(L_{2}\right)^{a^{5}}=\cdots
\end{aligned}
$$

In order to show that a language has infinitely many residuals, one must exhibit an infinite subset of residuals that are pairwise distinct.

