
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 7.11.2019

Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1

Consider the following NFAs A and B:

p0

p1

q0

q1 q2

q3

a

a b

a

b
b

b

a

a

a, b

a

b

(a) Use algorithm UnivNFA to determine whether L(B) = {a, b}∗.

(b) Use algorithm InclNFA to determine whether L(A) ⊆ L(B).

Exercise 5.2

(a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm
InclNFA twice. Give an alternative algorithm, based on pairings, for testing equality.

(b) Give two NFAs A and B for which exploring only the minimal states of [NFAtoDFA(A),NFAtoDFA(B)]
is not sufficient to determine whether L(A) = L(B).

(c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACE-
hard.

Exercise 5.3

For every n ∈ N, let Ln ⊆ {a, b}∗ be the language described by the regular expression (a+ b)∗a(a+ b)nb(a+ b)∗.

(a) Give an NFA An with n+ 3 states that accepts Ln.

(b) If you swap the final and non final states of An = (Q,Σ, δ, F), you will obtain NFA A′n = (Q,Σ, δ, Q \F).
Does A′n accept Ln? Justify your answer.

(c) Show that A′n with universal accepting condition does recognize the complement of An.

Exercise 5.4

Let Σ be an alphabet, and define the shuffle operator ‖ : Σ∗ × Σ∗ → 2Σ∗
as follows, where a, b ∈ Σ and

w, v ∈ Σ∗:
w ‖ ε = {w}
ε ‖ w = {w}
aw ‖ bv = {a} (w ‖ bv) ∪ {b} (aw ‖ v) ∪ {bw | w ∈ au||v}

For example we have:

b||d = {bd, db}, ab||d = {abd, adb, dab}, ab||cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1, L2 ⊆ Σ∗ construct an NFA recognizing their shuffle

L1 ‖ L2 :=
⋃

u∈L1,v∈L2

u ‖ v .

Exercise 5.5

F The perfect shuffle of two languages L,L′ ∈ Σ∗ is defined as:

L �̃ L′ = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ s.t. a1 · · · an ∈ L and
b1 · · · bn ∈ L′ and
w = a1b1 · · · anbn } .

Give an algorithm that takes two DFAs A and B in input, and that returns a DFA accepting L(A) �̃ L(B).

Solution 5.1

(a) The trace of the execution is as follows:

Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q1, q2}}

2 {{q0}, {q1, q2}} {{q2, q3}}

3 {{q0}, {q1, q2}, {q2, q3}} {q3}

4 {{q0}, {q1, q2}, {q2, q3}, {q3}} ∅

At the fourth iteration, the algorithm tests state {q3} which is minimal and non final, and hence it returns
false. Therefore, L(B) 6= {a, b}∗.

(b) The trace of the algorithm is as follows:

Iter. Q W

0 ∅ {[p0, {q0}]}

1 {[p0, {q0}]} {[p1, {q0}]}

2 {[p0, {q0}], [p1, {q0}]} {[p0, {q1, q2}]}

3 {[p0, {q0}], [p1, {q0}], [p0, {q1, q2}]} ∅

At the third iteration, W becomes empty and hence the algorithm returns true. Therefore L(A) ⊆ L(B).

Solution 5.2

(a) We construct the pairing [NFAtoDFA(A),NFAtoDFA(B)] on the fly. The algorithm returns false if it
encounters a state [P, P ′] such that only one of P and P ′ contains a final state. If no such state is
encountered, the algorithm returns true.

Input: NFAs A = (Q,Σ, δ, Q0, F) and A′ = (Q′,Σ, δ′, Q′0, F
′).

Output: L(A) = L(A′)?
1 Q← ∅
2 W ← {[Q0, Q

′
0]}

3 while W 6= ∅ do
4 pick [P, P ′] from W
5 if (P ∩ F = ∅) 6= (P ′ ∩ F ′ = ∅) then
6 return false
7 for a ∈ Σ do
8 q ← [δ(P, a), δ′(P ′, a)]
9 if q 6∈ Q ∧ q 6∈W then

10 add q to W

11 return true

(b) Let A and B be the following NFAs:

p q r

a, b a, b

a

a, b

The pairing of A and B is as follows:

{p}, {q} {p}, {q, r}

b

a

a, b

State [{p}, {q}] does not allow us to conclude anything since both p and q are non final. However, state
[{p}, {q, r}], which is not minimal, allows us to conclude that L(A) 6= L(B) since r is final.

(c) To show PSPACE-hardness, it suffices to give a reduction from NFA universality. Let A be an NFA. Let
B the one state DFA that accepts Σ∗. The following holds:

L(A) = Σ∗ ⇐⇒ L(A) = L(B).

Therefore, 〈A〉 7→ 〈A,B〉 is a reduction from NFA universality to NFA/DFA equality.

Solution 5.3

(a)

p q r1 r2 rn s

a, b

a a, b a, b b

a, b

a, b

For example, the automaton A2 is as follows:

p q r1 r2 s

a, b

a a, b a, b b

a, b

(b) No, it would accept {a, b}∗ since every word could be accepted in state p.

(c) Observe that An and A′n have exactly the same runs on a given word w. We have

An accepts w
iff some run of An on w leads to a state of F
iff it is not the case that all runs of A′n lead to a state of Q \ F
iff A′n does not accept w

Solution 5.4

Let Ai = (Qi,Σ, δi, q
(i)
0 , Fi) be a DFA with Li = L(Ai) (for i = 1, 2). We use a variation of the pairing

construction, i.e., we construct an automaton with states Q1 ×Q2. While in the standard pairing construction
both automata move when a symbol is read, we now choose nondeterministically one of the two automata,
which is to move accordingly to the symbol read, while the other one does not change its state, i.e.,

δ((q, q′), a) := {(δ1(q, a), q′), (q, δ2(q′, a))}.

It is left to the reader to show that this automaton indeed accepts exactly L1 ‖ L2.

Solution 5.5

Let A = (Q,Σ, δ, q0, F) and B = (Q′,Σ, δ′, q′0, F
′). Intuitively, we build a DFA C that alternates between

reading a letter in A and reading a letter in B. To do so, we build two copies of the product of A and B.
Reading a letter a in the first copy simulates reading a in A and then goes to the bottom copy, and vice versa.
A word is accepted if it ends up in a state (p, q) of the top copy such that p ∈ F and q ∈ F ′.

Formally, C = (Q′′,Σ, δ′′, q′′0 , F
′′) where

• Q′′ = Q×Q′ × {>,⊥},

• δ(p, a) =

{
(δ(q, a), q′,⊥) if p = (q, q′, r) and r = >,
(q, δ′(q′, a),>) if p = (q, q′, r) and r = ⊥,

• F ′′ = {(q, q′,>) : q ∈ F and q′ ∈ F ′}.

As for most constructions, some states of C may be non reachable from the initial state. We give an algorithm
that avoids this:

Input: DFAs A = (Q,Σ, δ, q0, F) and B = (Q′,Σ, δ′, q′0, F
′).

Output: A DFA C = (Q′′,Σ, δ′′, q′′0 , F
′′) such that L(C) = L(A) �̃ L(B).

1 Q′′ ← ∅
2 δ′′ ← ∅
3 F ′′ ← ∅
4 W ← {(q0, q

′
0,>)}

5 while W 6= ∅ do
6 pick p = (q, q′, r) from W
7 add p to Q′′

8 if q ∈ F , q′ ∈ F ′ and r = > then
9 add p to F ′′

10 for a ∈ Σ do
11 if r = > then
12 p′ ← (δ(q, a), q′,⊥)
13 else if r = ⊥ then
14 p′ ← (q, δ(q′, a),>)
15 add (p, a, p′) to δ′′

16 if p′ 6∈ Q′′ then add p′ to W

17 return (Q′′,Σ, δ′′, (q0, q
′
0,>), F ′′)

