
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 24.10.2019

Automata and Formal Languages — Exercise Sheet 2

Exercise 2.1

Consider the regular expression r = (a+ ab)
∗
.

(a) Convert r into an equivalent NFA-ε A.

(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAεtoNFA)

(c) Convert B into an equivalent DFA C.

(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).

(e) Convert D into an equivalent regular expression r′.

(f) Prove formally that L(r) = L(r′).

Exercise 2.2

Convert the following NFA-ε to an NFA

(a) using the näıve method (with saturation, ε-check, ε-transition elimination and normalization).

(b) using the algorithm NFAεtoNFA from the lecture notes (see Sect. 2.3, p. 35). You may verify your answer
with the Python program nfa-eps2nfa.

p q r
ε

ε
a

a

Exercise 2.3

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting.
This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all
runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal
accepting condition. Notice that a DFA accepts the same language with both the existential and the universal
accepting conditions.

Intuitively, we can visualize an automaton with universal accepting condition as executing all runs in parallel.
After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and
accepts if all those states are accepting.

Consider the family Ln of languages over the alphabet {0, 1} given by Ln = {ww ∈ Σ2n | w ∈ Σn}.

1. Give an automaton of size O(n) with universal accepting condition that recognizes Ln.

2. Prove that every NFA (and so in particular every DFA) recognizing Ln has at least 2n states.



3. Give an algorithm that transforms an automaton with universal accepting condition into a DFA recognizing
the same language. This shows that automata with universal accepting condition recognize the regular
languages.

Exercise 2.4

Prove or disprove:

1. A subset of a regular language is regular.

2. A superset of a regular language is regular.

3. If L1 and L1L2 are regular and L1, L2 6= ∅, then L2 is regular.

4. If L2 and L1L2 are regular and L1, L2 6= ∅, then L1 is regular.

Exercise 2.5

F The existential and universal accepting conditions can be combined, yielding alternating automata. The
states of an alternating automaton are partitioned into existential and universal states. An existential state
q accepts a word w (i.e., w ∈ L(q)) if w = ε and q ∈ F or w = aw′ and there exists a transition (q, a, q′)
such that q′ accepts w′. A universal state q accepts a word w if w = ε and q ∈ F or w = aw′ and for every
transition (q, a, q′) the state q′ accepts w′. The language recognized by an alternating automaton is the set of
words accepted by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recognizing the same language.



Solution 2.1

(a)

Iter. Automaton obtained Rule applied

1 p q
(a+ ab)∗

Initial automaton from reg. expr.

2
p q r

ε

a+ ab

ε

p q

 
p q

r∗

ε ε

r

3 p q r
ε

a

ab

ε

p q

 

p q

r1 + r2

r1

r2

4

p q r

s

ε

a

a b

ε
p q

 

p q

r1 r2

r1 r1



(b)

Iter. Automaton obtained Rule applied

1
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

 

σ ε

σ ε

σ

 

ε σ

ε σ

σ

where σ ∈ Σ ∪ {ε}

2
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

Initial states that can reach a final state
through ε-transitions are made final.

3
p q r

s

a

a

a b

a

a b

a

Remove ε-transitions.
Remove states non reachable from ini-
tial state.



(c)

p q, r, s q, ra

a

b

a

(d) States {p} and {q, r} have the exact same behaviours, so we can merge them. Indeed, both states are
final and δ({p}, σ) = δ({q, r}), σ) for every σ ∈ {a, b}. We obtain:

a

b

a

(e)

Iter. Automaton obtained Rule applied

1

i p q f

a

b

a
ε ε

ε

Add single initial and final states.

2

i q f

a

ba

a ε

b

ε

p

i q

q f 

i q

i f

q q

q f

ε

b

a

ε

a

ε

ba

b

3 i q f

a+ ba

a ε+ b

ε

p q

 

p q

r1

r2

r1 + r2



4

i f
a(a+ ba)∗(ε+ b)

ε

qi f

 
i f

a

a+ ba

ε+ b

a(a+ ba)∗(ε+ b)

5 i f
ε+ a(a+ ba)∗(ε+ b)

p q
 

p q

r1

r2

r1 + r2

6 ε+ a(a+ ba)
∗
(ε+ b)

Extract regular expression from
the unique transition.

(f) Let us first show that a(a + ba)i = (a + ab)ia for every i ∈ N. We proceed by induction on i. If i = 0,
then the claim trivially holds. Let i > 0. Assume the claims holds at i− 1. We have

a(a+ ba)i = a(a+ ba)i−1(a+ ba)

= (a+ ab)i−1a(a+ ba) (by induction hypothesis)

= (a+ ab)i−1(aa+ aba) (by distributivity)

= (a+ ab)i−1(a+ ab)a (by distributivity)

= (a+ ab)ia.

This implies that
a(a+ ba)∗ = (a+ ab)∗a. (1)

We may now prove the equivalence of the two regular expressions:

ε+ a(a+ ba)∗(ε+ b) = ε+ (a+ ab)∗a(ε+ b) (by (1))

= ε+ (a+ ab)∗(a+ ab) (by distributivity)

= ε+ (a+ ab)+

= (a+ ab)∗.

Solution 2.2

(a) The resulting NFA is:



p q r

a

a

a

a

a a a

(b) The resulting NFA is the same. And it corresponds to the output of nfa-eps2nfa (a python script with
the algorithm NFAεtoNFA from class and an example input corresponding to the automaton of this exercise).

Solution 2.3

1. We use that v ∈ Ln iff for every 1 ≤ i ≤ n the i-th and i+n-th letters of v coincide. This is a conjunction of
conditions. We construct a universal automaton that has a run on v for each of these conditions, and the run
accepts iff the condition holds.

The automaton has a spine of states q0, q1, . . . , qn−1, with transitions qi
0,1−−→ qi+1 for every 0 ≤ i ≤ n − 2.

At every state qi the automaton can leave the spine remembering the (i + 1)-th letter by means of transitions

qi
0−→ 01 and qi

1−→ 11. The automaton then reads the next n − 1 letters by transitions 0i
0,1−−→ 0i+1 and

1i
0,1−−→ 1i+1 for every 1 ≤ i ≤ n − 1, and checks whether the (i + n)-th letter matches the (i + 1)-th letter by

transitions 0n
0−→ qf and 1n

1−→ qf , where qf is the unique final state.

Below is the automaton for n = 2.

q0 q1 qf

01 02

11 12

0, 1

0
0 0

0, 1

1
1 1

0, 1

0, 1

2. Let A be an NFA recognizing Ln. Then, for every ww ∈ Σ2n, the automaton A has at least one accepting
run on ww. Let qw be the state reached by this run (if there are several accepting runs pick anyone). We claim
that for any two different words w,w′ of length n the states qw, qw′ are also different. Assume qw = qw′ . Then,
A has an accepting run on ww′, obtained by concatenating the first half of the accepting run on ww and the
second half of the accepting run on ww′. But ww′ /∈ Ln, contradicting the assumption that A recognizes Ln,
and the claim is proved. So A has a different state qw for each word w of length n, and so it has at least 2n

states.

3. It suffices to replace line 6 of NFAtoDFA by : if Q′ ⊆ F then add Q′ to F .

Solution 2.4

All statements are false. Since ∅ and Σ∗ are both regular, any of the first two statements would imply that
every language is regular, which is certainly not the case. For the third statement, take L1 = a∗ and take for



L2 any non-regular language over {a} (for instance, L2 = {an2 | n ≥ 0}). Then L1L2 = a∗, which is regular.

For the fourth statement, take L1 = {an2 | n ≥ 0} and L2 = a∗.

Solution 2.5

Let Q = {q1, . . . , qn} be the set of states of the alternating automaton. In an NFA, after reading a word the
automaton is in one of the states reached by the runs labelled by w. Imagine these states are {q1, q2, q3}. Then
we say that the automaton is currently at (q1∨ q2∨ q3). If the automaton has the universal accepting condition,
then intuitively it is simultaneously in all thre states, and we write (q1 ∧ q2 ∧ q3).

An alternating automaton can also be at q1∨(q2∧q3). For instance, this occurs for the word ab if the initial state
q0 and q1 are both existential states with transitions (q0, a, q1), (q0, a, q4), and (q1, b, q1), and q4 is a universal
state with transitions (q4, b, q2) and (q4, b, q3).

This suggest to define the states of the DFA as the positive boolean formulas with Q as set of variables. However,
since there are infinitely many such formulas, we define the states as the equivalence classes of formulas (where,
as usual, two formulas are equivalent if they are true for the same valuations of the variables).

The initial state if the (equivalence class of) the formula q0. The final states are the formulas that are true
when all final states are set to true, and all non-final states to false. Given a formula f , the unique formula f ′

such that (f, a, f ′) belongs to the transition relation is defined as follows. For each state q:

• If q is existential and (q, a, q1), . . . , (q, a, qn) are the output transitions of q, then replace every occurrence
of q in f by (q1 ∨ · · · ∨ qn). If n = 0, then replace it by false.

• If q is universal and (q, a, q1), . . . , (q, a, qn) are the output transitions of q, then replace every occurrence
of q in f by (q1 ∧ · · · ∧ qn). If n = 0, then replace it by true.


