
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 17.10.2018

Automata and Formal Languages — Exercise Sheet 1

Exercise 1.1

Give a regular expression and a NFA for the language of all words over Σ = {a, b} . . .

1. . . . beginning and ending with different letters.

2. . . . with the third letter from the right being an a.

3. . . . with no occurrences of the subword aa.

4. . . . containing at most one occurrence of aa.

5. . . . that can be obtained from bbaba by deleting letters.

Exercise 1.2

1. Let A and B be two languages. Prove A ⊆ B ⇒ A∗ ⊆ B∗.

2. Prove that the languages of the regular expressions ((a+ ab)∗ + b∗)∗ and Σ∗ are equal, where Σ = {a, b}
and we write Σ∗ for (a+ b)∗.

Exercise 1.3

Consider the language L ⊆ {a, b}∗ given by the regular expression a∗b∗a∗a.

1. Give an NFA-ε that accepts L.

2. Give an NFA that accepts L.

3. Give a DFA that accepts L.

Exercise 1.4

The reverse of a word w ∈ Σ∗ is defined as

wR =

{
ε if w = ε,

anan−1 · · · a1 if w = a1a2 · · · an where each ai ∈ Σ.

The reverse of a language L ⊆ Σ∗ is defined as LR = {wR | w ∈ L}.

(a) Give a regular expression for the reverse of
(
(a+ ba)∗ba(a+ b)

)∗
ba.

(b) Give an algorithm that takes as input a regular expression r and returns a regular expression rR such that

L(rR) =
(
L(r)

)R
.

(c) Let A be an NFA. Describe an NFA B such that L(B) = L(A)R.

(d) Does your construction in (c) work for DFAs as well? More precisely, does it preserve determinism?

Solution 1.1

We write Σ∗ for (a+ b)∗.

1. aΣ∗b+ bΣ∗a

2. Σ∗aΣΣ

3. (b+ ab)∗(ε+ a)

4. (b+ ab)∗
(
aa+ ε

) (
ε+ b(b+ ab)∗(ε+ a)

)
5. (b+ ε)(b+ ε)(a+ ε)(b+ ε)(a+ ε)

Solution 1.2

1. Let w ∈ A∗. If w = ε then it is trivially in B∗. Otherwise, there exists an index n > 0 and words
v1, . . . , vn ∈ A such that w = v1 . . . vn. Since A ⊆ B, we know that for every 1 ≤ i ≤ n, vi is also in B
and so w = v1 . . . vn ∈ B∗.

2. The language Σ∗ contains all the words written over alphabet Σ so in particular the language of regular
expression ((a + ab)∗ + b∗)∗. Now for the other direction, we use the result of 1. with A = L(a + b) and
B = L((a+ ab)∗ + b∗). It is easy to see that the two words of A = {a, b} are in language B.

Solution 1.3

1. NFA-ε accepting L:

a

ε

b

a

a

2. NFA accepting L:

a

b

b

a

a

a

3. DFA accepting L:
a

b

a

b

b

a

a

b

a, b

Solution 1.4

(a) ab
(
(a+ b)ab(a+ ab)∗)∗

(b) We define rR inductively, which immediately yields a recursive algorithm.

• If r = ∅, r = ε, or r = a for some letter a, then rR = r.

• If r = r1 + r2, then rR = rR1 + rR2 .

• If r = r1r2 then rR = rR2 r
R
1 .

• If r = r∗1 , then rR = (rR1)∗.

The proof of L(rR) =
(
L(r)

)R
is an easy induction.

(c) We reverse the transitions of A and swap its initial and final states. More formally, let A = (Q,Σ, δ, Q0, F).
We define B as B = (Q,Σ, δ′, F,Q0) where δ′(p, a) = {q ∈ Q | p ∈ δ(q, a)}.

(d) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied
to the DFA of #1.2(a) for M2 does not yield a DFA.

