17.10.2018

Automata and Formal Languages — Exercise Sheet 1

Exercise 1.1

Give a regular expression and a NFA for the language of all words over $\Sigma = \{a, b\} \dots$

- 1. ... beginning and ending with different letters.
- 2. ... with the third letter from the right being an a.
- 3. ... with no occurrences of the subword aa.
- 4. ... containing at most one occurrence of *aa*.
- 5. ... that can be obtained from bbaba by deleting letters.

Exercise 1.2

- 1. Let A and B be two languages. Prove $A \subseteq B \Rightarrow A^* \subseteq B^*$.
- 2. Prove that the languages of the regular expressions $((a + ab)^* + b^*)^*$ and Σ^* are equal, where $\Sigma = \{a, b\}$ and we write Σ^* for $(a + b)^*$.

Exercise 1.3

Consider the language $L \subseteq \{a, b\}^*$ given by the regular expression $a^*b^*a^*a$.

- 1. Give an NFA- ε that accepts L.
- 2. Give an NFA that accepts L.
- 3. Give a DFA that accepts L.

Exercise 1.4

The *reverse* of a word $w \in \Sigma^*$ is defined as

$$w^{R} = \begin{cases} \varepsilon & \text{if } w = \varepsilon, \\ a_{n}a_{n-1}\cdots a_{1} & \text{if } w = a_{1}a_{2}\cdots a_{n} \text{ where each } a_{i} \in \Sigma. \end{cases}$$

The *reverse* of a language $L \subseteq \Sigma^*$ is defined as $L^R = \{w^R \mid w \in L\}$.

- (a) Give a regular expression for the reverse of $((a+ba)^*ba(a+b))^*ba$.
- (b) Give an algorithm that takes as input a regular expression r and returns a regular expression r^R such that $\mathcal{L}(r^R) = (\mathcal{L}(r))^R$.
- (c) Let A be an NFA. Describe an NFA B such that $L(B) = L(A)^R$.
- (d) Does your construction in (c) work for DFAs as well? More precisely, does it preserve determinism?

Solution 1.1

We write Σ^* for $(a+b)^*$.

- 1. $a\Sigma^*b + b\Sigma^*a$
- 2. $\Sigma^* a \Sigma \Sigma$
- 3. $(b+ab)^*(\varepsilon+a)$
- 4. $(b+ab)^* (aa+\varepsilon) (\varepsilon+b(b+ab)^*(\varepsilon+a))$
- 5. $(b+\varepsilon)(b+\varepsilon)(a+\varepsilon)(b+\varepsilon)(a+\varepsilon)$

Solution 1.2

- 1. Let $w \in A^*$. If $w = \varepsilon$ then it is trivially in B^* . Otherwise, there exists an index n > 0 and words $v_1, \ldots, v_n \in A$ such that $w = v_1 \ldots v_n$. Since $A \subseteq B$, we know that for every $1 \le i \le n$, v_i is also in B and so $w = v_1 \ldots v_n \in B^*$.
- 2. The language Σ^* contains all the words written over alphabet Σ so in particular the language of regular expression $((a + ab)^* + b^*)^*$. Now for the other direction, we use the result of 1. with A = L(a + b) and $B = L((a + ab)^* + b^*)$. It is easy to see that the two words of $A = \{a, b\}$ are in language B.

Solution 1.3

Solution 1.4

- (a) $ab((a+b)ab(a+ab)^*)^*$
- (b) We define r^R inductively, which immediately yields a recursive algorithm.
 - If $r = \emptyset$, $r = \varepsilon$, or r = a for some letter a, then $r^R = r$.
 - If $r = r_1 + r_2$, then $r^R = r_1^R + r_2^R$.
 - If $r = r_1 r_2$ then $r^R = r_2^R r_1^R$.
 - If $r = r_1^*$, then $r^R = (r_1^R)^*$.

The proof of $L(r^R) = (L(r))^R$ is an easy induction.

- (c) We reverse the transitions of A and swap its initial and final states. More formally, let $A = (Q, \Sigma, \delta, Q_0, F)$. We define B as $B = (Q, \Sigma, \delta', F, Q_0)$ where $\delta'(p, a) = \{q \in Q \mid p \in \delta(q, a)\}$.
- (d) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied to the DFA of #1.2(a) for M_2 does not yield a DFA.