Automata and Formal Languages - Exercise Sheet 1

Exercise 1.1

Give a regular expression and a NFA for the language of all words over $\Sigma=\{a, b\} \ldots$

1. ... beginning and ending with different letters.
2. ... with the third letter from the right being an a.
3. ... with no occurrences of the subword $a a$.
4. ... containing at most one occurrence of $a a$.
5. ... that can be obtained from bbaba by deleting letters.

Exercise 1.2

1. Let A and B be two languages. Prove $A \subseteq B \Rightarrow A^{*} \subseteq B^{*}$.
2. Prove that the languages of the regular expressions $\left((a+a b)^{*}+b^{*}\right)^{*}$ and Σ^{*} are equal, where $\Sigma=\{a, b\}$ and we write Σ^{*} for $(a+b)^{*}$.

Exercise 1.3

Consider the language $L \subseteq\{a, b\}^{*}$ given by the regular expression $a^{*} b^{*} a^{*} a$.

1. Give an NFA- ε that accepts L.
2. Give an NFA that accepts L.
3. Give a DFA that accepts L.

Exercise 1.4

The reverse of a word $w \in \Sigma^{*}$ is defined as

$$
w^{R}= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a_{n} a_{n-1} \cdots a_{1} & \text { if } w=a_{1} a_{2} \cdots a_{n} \text { where each } a_{i} \in \Sigma\end{cases}
$$

The reverse of a language $L \subseteq \Sigma^{*}$ is defined as $L^{R}=\left\{w^{R} \mid w \in L\right\}$.
(a) Give a regular expression for the reverse of $\left((a+b a)^{*} b a(a+b)\right)^{*} b a$.
(b) Give an algorithm that takes as input a regular expression r and returns a regular expression r^{R} such that $\mathcal{L}\left(r^{R}\right)=(\mathcal{L}(r))^{R}$.
(c) Let A be an NFA. Describe an NFA B such that $L(B)=L(A)^{R}$.
(d) Does your construction in (c) work for DFAs as well? More precisely, does it preserve determinism?

Solution 1.1

We write Σ^{*} for $(a+b)^{*}$.

1. $a \Sigma^{*} b+b \Sigma^{*} a$
2. $\Sigma^{*} a \Sigma \Sigma$
3. $(b+a b)^{*}(\varepsilon+a)$
4. $(b+a b)^{*}(a a+\varepsilon)\left(\varepsilon+b(b+a b)^{*}(\varepsilon+a)\right)$
5. $(b+\varepsilon)(b+\varepsilon)(a+\varepsilon)(b+\varepsilon)(a+\varepsilon)$

Solution 1.2

1. Let $w \in A^{*}$. If $w=\varepsilon$ then it is trivially in B^{*}. Otherwise, there exists an index $n>0$ and words $v_{1}, \ldots, v_{n} \in A$ such that $w=v_{1} \ldots v_{n}$. Since $A \subseteq B$, we know that for every $1 \leq i \leq n, v_{i}$ is also in B and so $w=v_{1} \ldots v_{n} \in B^{*}$.
2. The language Σ^{*} contains all the words written over alphabet Σ so in particular the language of regular expression $\left((a+a b)^{*}+b^{*}\right)^{*}$. Now for the other direction, we use the result of 1 . with $A=L(a+b)$ and $B=L\left((a+a b)^{*}+b^{*}\right)$. It is easy to see that the two words of $A=\{a, b\}$ are in language B.

Solution 1.3

1. NFA- ε accepting L :

2. NFA accepting L :

3. DFA accepting L :

Solution 1.4

(a) $a b\left((a+b) a b(a+a b)^{*}\right)^{*}$
(b) We define r^{R} inductively, which immediately yields a recursive algorithm.

- If $r=\emptyset, r=\varepsilon$, or $r=a$ for some letter a, then $r^{R}=r$.
- If $r=r_{1}+r_{2}$, then $r^{R}=r_{1}^{R}+r_{2}^{R}$.
- If $r=r_{1} r_{2}$ then $r^{R}=r_{2}^{R} r_{1}^{R}$.
- If $r=r_{1}^{*}$, then $r^{R}=\left(r_{1}^{R}\right)^{*}$.

The proof of $L\left(r^{R}\right)=(L(r))^{R}$ is an easy induction.
(c) We reverse the transitions of A and swap its initial and final states. More formally, let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$. We define B as $B=\left(Q, \Sigma, \delta^{\prime}, F, Q_{0}\right)$ where $\delta^{\prime}(p, a)=\{q \in Q \mid p \in \delta(q, a)\}$.
(d) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied to the DFA of $\# 1.2(\mathrm{a})$ for M_{2} does not yield a DFA.

