
Automata theory
An algorithmic approach

0

Lecture Notes

Javier Esparza

September 24, 2019

2

3

Please read this!

Many years ago — I don’t want to say how many, it’s depressing — I taught a course on the
automata-theoretic approach to model checking at the Technical University of Munich, basing it
on lectures notes for another course on the same topic that Moshe Vardi had recently taught in
Israel. Between my lectures I extended and polished the notes, and sent them to Moshe. At that
time he and Orna Kupferman were thinking of writing a book, and the idea came up of doing it
together. We made some progress, but life and other work got in the way, and the project has been
postponed so many times that it I don’t dare to predict a completion date.

Some of the work that got in the way was the standard course on automata theory in Munich,
which I have been teaching for a number of years. The syllabus of the course both automata on
finite and infinite words, and for the latter I used our notes. Each time I had to teach the course
again, I took the opportunity to add some new material about automata on finite words, which also
required to reshape the chapters on infinite words, and the notes kept growing and evolving. Now
they’ve reached the point where they are in sufficiently good shape to be shown not only to my
students, but to a larger audience. So, after getting Orna and Moshe’s very kind permission, I’ve
decided to make them available here.

Despite several attempts I haven’t yet convinced Orna and Moshe to appear as co-authors of the
notes. But I don’t give up: apart from the material we wrote together, their influence on the rest is
much larger than they think. Actually, my secret hope is that after they see this material in my home
page we’ll finally manage to gather some morsels of time here and there and finish our joint project.
If you think we should do so, tell us! Send an email to: vardi@cs.rice.edu, orna@cs.huji.ac.il, and
esparza@in.tum.de.

Sources

I haven’t yet compiled a careful list of the sources I’ve used, but I’m listing here the main ones. I
apologize in advance for any omissions.

• The chapter on automata for fixed-length languages (“Finite Universes’)’ was very influ-
enced by Henrik Reif Andersen’s beautiful introduction to Binary Decision Diagrams, avail-
able at www.itu.dk/courses/AVA/E2005/bdd-eap.pdf.

• The short chapter on pattern matching is influenced by David Eppstein’s lecture notes for his
course on Design and Analysis of Algorithms, see http://www.ics.uci.edu/ eppstein/teach.html.

• As mentioned above, the chapters on operations for Büchi automata and applications to
verification are heavily based on notes by Orna Kupferman and Moshe Vardi.

• The chapter on the emptiness problem for Büchi automata is based on several research pa-
pers:

4

– Jean-Michel Couvreur: On-the-Fly Verification of Linear Temporal Logic. World
Congress on Formal Methods 1999: 253-271

– Jean-Michel Couvreur, Alexandre Duret-Lutz, Denis Poitrenaud: On-the-Fly Empti-
ness Checks for Generalized Büchi Automata. SPIN 2005: 169-184.

– Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, Zijiang Yang: Is There a Best
Symbolic Cycle-Detection Algorithm? TACAS 2001:420-434

– Jaco Geldenhuys, Antti Valmari: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theor. Comput. Sci. (TCS) 345(1):60-82 (2005)

– Stefan Schwoon, Javier Esparza: A Note on On-the-Fly Verification Algorithms. TACAS
2005:174-190.

• The chapter on Linear Arithmetic is heavily based on the work of Bernard Boigelot, Pierre
Wolper, and their co-authors, in particular the paper “An effective decision procedure for
linear arithmetic over the integers and reals”, published in ACM. Trans. Comput. Logic 6(3)
in 2005.

Acknowledgments

I thank Orna Kupferman and Moshe Vardi for all the reasons explained above (if you haven’t
read the section “Please read this” yet, please do it now!). Many thanks to Michael Blondin, Jörg
Kreiker, Jan Kretinsky, and Michael Luttenberger for many discussions on the topic of this notes,
and for their contributions to several chapters. All four of them helped me to teach the automata
course of different ocassions. In particular, Jan contributed a lot to the chapter on pattern matching.
Breno Faria helped to draw many figures. He was funded by a program of the Computer Science
Department Technical University of Munich. Thanks also to Joe Bedard, Fabio Bove, Birgit En-
gelmann, Moritz Fuchs, Stefan Krusche, Philipp Müller, Martin Perzl, Marcel Ruegenberg, Franz
Saller, Hayk Shoukourian, and Daniel Weißauer, who provided very helpful comments.

Contents

1 Introduction and Outline 13

I Automata on Finite Words 17

2 Automata Classes and Conversions 19
2.1 Regular expressions: a language to describe languages 19
2.2 Automata classes . 20

2.2.1 Deterministic finite automata . 20
2.2.2 Non-deterministic finite automata . 25
2.2.3 Non-deterministic finite automata with ε-transitions 26
2.2.4 Non-deterministic finite automata with regular expressions 27
2.2.5 A normal form for automata . 28

2.3 Conversion Algorithms between Finite Automata 28
2.3.1 From NFA to DFA. 29
2.3.2 From NFA-ε to NFA. 32

2.4 Conversion algorithms between regular expressions and automata 36
2.4.1 From regular expressions to NFA-ε . 36
2.4.2 From NFA-ε to regular expressions . 38

2.5 A Tour of Conversions . 42

3 Minimization and Reduction 55
3.1 Minimal DFAs . 56
3.2 Minimizing DFAs . 61

3.2.1 Computing the language partition . 61
3.2.2 Quotienting . 64
3.2.3 Hopcroft’s algorithm . 66

3.3 Reducing NFAs . 68
3.3.1 The reduction algorithm . 69

3.4 A Characterization of the Regular Languages . 71

5

6 CONTENTS

4 Operations on Sets: Implementations 81
4.1 Implementation on DFAs . 82

4.1.1 Membership. 82
4.1.2 Complement. 82
4.1.3 Binary Boolean Operations . 83
4.1.4 Emptiness. 86
4.1.5 Universality. 86
4.1.6 Inclusion. 87
4.1.7 Equality. 87

4.2 Implementation on NFAs . 88
4.2.1 Membership. 88
4.2.2 Complement. 89
4.2.3 Union and intersection. 90
4.2.4 Emptiness and Universality. 92
4.2.5 Inclusion and Equality. 96

5 Applications I: Pattern matching 105
5.1 The general case . 105
5.2 The word case . 107

5.2.1 Lazy DFAs . 110

6 Operations on Relations: Implementations 115
6.1 Encodings . 116
6.2 Transducers and Regular Relations . 117
6.3 Implementing Operations on Relations . 119

6.3.1 Projection . 119
6.3.2 Join, Post, and Pre . 121

6.4 Relations of Higher Arity . 125

7 Finite Universes 133
7.1 Fixed-length Languages and the Master Automaton 133
7.2 A Data Structure for Fixed-length Languages . 135
7.3 Operations on fixed-length languages . 137
7.4 Determinization and Minimization . 143
7.5 Operations on Fixed-length Relations . 144
7.6 Decision Diagrams . 149

7.6.1 Decision Diagrams and Kernels . 151
7.6.2 Operations on Kernels . 153

CONTENTS 7

8 Applications II: Verification 163
8.1 The Automata-Theoretic Approach to Verification 163
8.2 Programs as Networks of Automata . 165

8.2.1 Parallel Composition . 169
8.2.2 Asynchonous Product . 170
8.2.3 State- and event-based properties. 171

8.3 Concurrent Programs . 172
8.3.1 Expressing and Checking Properties . 173

8.4 Coping with the State-Explosion Problem . 174
8.4.1 On-the-fly verification. 176
8.4.2 Compositional Verification . 177
8.4.3 Symbolic State-space Exploration . 180

8.5 Safety and Liveness Properties . 185

9 Automata and Logic 193
9.1 First-Order Logic on Words . 193

9.1.1 Expressive power of FO(Σ) . 196
9.2 Monadic Second-Order Logic on Words . 197

9.2.1 Expressive power of MSO(Σ) . 198

10 Applications III: Presburger Arithmetic 215
10.1 Syntax and Semantics . 215
10.2 An NFA for the Solutions over the Naturals. 217

10.2.1 Equations . 221
10.3 An NFA for the Solutions over the Integers. 222

10.3.1 Equations . 225
10.3.2 Algorithms . 226

II Automata on Infinite Words 229

11 Classes of ω-Automata and Conversions 231
11.1 ω-languages and ω-regular expressions . 231
11.2 Büchi automata . 232

11.2.1 From ω-regular expressions to NBAs and back 234
11.2.2 Non-equivalence of NBAs and DBAs . 237

11.3 Generalized Büchi automata . 237
11.4 Other classes of ω-automata . 239

11.4.1 Co-Büchi Automata . 239
11.4.2 Muller automata . 243
11.4.3 Rabin automata . 246

8 CONTENTS

11.4.4 Streett automata . 247
11.4.5 Parity automata . 248
11.4.6 Conclusion . 249

12 Boolean operations: Implementations 253
12.1 Union and intersection . 253
12.2 Complement . 256

12.2.1 The problems of complement . 256
12.2.2 Rankings and level rankings . 258
12.2.3 A (possibly infinite) complement automaton 259
12.2.4 The size of A . 264

13 Emptiness check: Implementations 269
13.1 Algorithms based on depth-first search . 269

13.1.1 The nested-DFS algorithm . 272
13.1.2 The two-stack algorithm . 278

13.2 Algorithms based on breadth-first search . 291
13.2.1 Emerson-Lei’s algorithm . 292
13.2.2 A Modified Emerson-Lei’s algorithm . 294
13.2.3 Comparing the algorithms . 296

14 Applications I: Verification and Temporal Logic 299
14.1 Automata-Based Verification of Liveness Properties 299

14.1.1 Checking Liveness Properties . 300
14.2 Linear Temporal Logic . 303
14.3 From LTL formulas to generalized Büchi automata 306

14.3.1 Satisfaction sequences and Hintikka sequences 306
14.3.2 Constructing the NGA for an LTL formula 310
14.3.3 Size of the NGA . 312

14.4 Automatic Verification of LTL Formulas . 313

15 Applications II: Monadic Second-Order Logic and Linear Arithmetic 321
15.1 Monadic Second-Order Logic on ω-Words . 321

15.1.1 Expressive power of MSO(Σ) on ω-words 322
15.2 Linear Arithmetic . 323

15.2.1 Encoding Real Numbers . 323
15.3 Constructing an NBA for the Real Solutions . 324

15.3.1 A NBA for the Solutions of a · xF ≤ β . 326

III Solutions to exercises 331

Why this book?

There are excellent textbooks on automata theory, ranging from course books for undergraduates
to research monographies for specialists. Why another one?

During the late 1960s and early 1970s the main application of automata theory was the de-
velopment of lexicographic analyzers, parsers, and compilers. Analyzers and parsers determine
whether an input string conforms to a given syntax, while compilers transform strings conforming
to a syntax into equivalent strings conforming to another. With these applications in mind, it is nat-
ural to look at automata as abstract machines that accept, reject, or transform input strings, and this
view deply influenced the textbook presentation of automata theory. Results about the expressive
power of machines, equivalences between models, and closure properties, received much attention,
while constructions on automata, like the powerset or product construction, often played a subor-
dinate rôle as proof tools. To give a simple example, in many textbooks of the time—and in later
textbooks written in the same style—the product construction is not introduced as an algorithm
that, given two NFAs recognizing languages L1 and L2, constructs a third NFA recognizing their
intersection L1 ∩ L2. Instead, the text contains a theorem stating that regular languages are closed
under intersection, and the product construction is hidden in its proof. Moreover, it is not presented
as an algorithm, but as the mathematical, static definition of the sets of states, transition relation,
etc. of the product automaton. Sometimes, the simple but computationally important fact that only
states reachable from the initial state need be constructed is not even mentioned.

I claim that this presentation style, summarized by the slogan automata as abstract machines,
is no longer adequate. In the second half of the 1980s and in the 1990s program verification
emerged as a new and exciting application of automata theory. Automata were used to describe the
behaviour—or intended behaviour—of hardware and software systems, not their syntax, and this
shift from syntax to semantics had important consequences. While automata for lexical or syntac-
tical analysis typically have at most some thousands of states, automata for semantic descriptions
can easily have tens of millions. In order to handle automata of this size it became imperative to
pay special attention to efficient constructions and algorithmic issues, and research in this direction
made great progress. Moreover, automata on infinite words, a class of automata models originally
introduced in the 60s to solve abstract problems in logic, became necessary to specify and verify
liveness properties of software. These automata run over words of infinite length, and so they can
hardly be seen as machines accepting or rejecting an input: they could only do so after infinite
time!

9

10 CONTENTS

This book intends to reflect the evolution of automata theory. Modern automata theory puts
more emphasis on algorithmic questions, and less on expressivity. This change of focus is captured
by the new slogan automata as data structures. Just as hash tables and Fibonacci heaps are both
adequate data structures for representing sets depending when the operations one needs are those of
a dictionary or a priority queue, automata are the right data structure for represent sets and relations
when the required operations are union, intersection, complement, projections and joins. In this
view the algorithmic implementation of the operations gets the limelight, and, as a consequence,
they constitute the spine of this book.

The shape of the book is also very influenced by two further design decisions. First, experience
tells that automata-theoretic constructions are best explained by means of examples, and that exam-
ples are best presented with the help of pictures. Automata on words are blessed with a graphical
representation of instantaneous appeal. We have invested much effort into finding illustrative, non-
trivial examples whose graphical representation stillfits in one page. Second, for students learning
directly from a book, solved exercises are a blessing, an easy way to evaluate progress. Moreover,
thay can also be used to introduce topics that, for expository reasons, cannot be presented in the
main text. The book contains a large number of solved exercises ranging from simple applications
of algorithms to relatively involved proofs.

Chapter 1

Introduction and Outline

Courses on data structures show how to represent sets of objects in a computer so that operations
like insertion, deletion, lookup, and many others can be efficiently implemented. Typical represen-
tations are hash tables, search trees, or heaps.

These lecture notes also deal with the problem of representing and manipulating sets, but with
respect to a different set of operations: the boolean operations of set theory (union, intersection,
and complement with respect to some universe set), some tests that check basic properties (if
a set is empty, if it contains all elements of the universe, or if it is contained in another one), and
operations on relations. Table 1.1 formally defines the operations to be supported, where U denotes
some universe of objects, X,Y are subsets of U, x is an element of U, and R, S ⊆ U ×U are binary
relations on U:
Observe that many other operations, for example set difference, can be reduced to the ones above.
Similarly, operations on n-ary relations for n ≥ 3 can be reduced to operations on binary relations.

An important point is that we are not only interested on finite sets, we wish to have a data
structure able to deal with infinite sets over some infinite universe. However, a simple cardinality
argument shows that no data structure can provide finite representations of all infinite sets: an
infinite universe has uncountably many subsets, but every data structure mapping sets to finite
representations only has countably many instances. (Loosely speaking, there are more sets to be
represented than representations available.) Because of this limitation every good data structure
for infinite sets must find a reasonable compromise between expressibility (how large is the set of
representable sets) and manipulability (which operations can be carried out, and at which cost).
These notes present the compromise offered by word automata, which, as shown by 50 years of
research on the theory of formal languages, is the best one available for most purposes. Word
automata, or just automata, represent and manipulate sets whose elements are encoded as words,
i.e., as sequences of letters over an alphabet1.

Any kind of object can be represented by a word, at least in principle. Natural numbers, for

1There are generalizations of word automata in which objects are encoded as trees. The theory of tree automata is
also very well developed, but not the subject of these notes. So we shorten word automaton to just automaton.

11

12 CHAPTER 1. INTRODUCTION AND OUTLINE

Operations on sets
Complement(X) : returns U \ X.
Intersection(X, Y) : returns X ∩ Y .
Union(X, Y) : returns X ∪ Y .
Tests on sets
Member(x, X) : returns true if x ∈ X, false otherwise.
Empty(X) : returns true if X = ∅, false otherwise.
Universal(X) : returns true if X = U, false otherwise.
Included(X,Y) : returns true if X ⊆ Y , false otherwise.
Equal(X,Y) : returns true if X = Y , false otherwise.
Operations on relations
Projection 1(R) : returns the set π1(R) = {x | ∃y (x, y) ∈ R}.
Projection 2(R) : returns the set π2(R) = {y | ∃x (x, y) ∈ R}.
Join(R, S) : returns the relation R ◦ S = {(x, z) | ∃y ∈ X (x, y) ∈ R ∧ (y, z) ∈ S }
Post(X, R) : returns the set postR(X) = {y ∈ U | ∃x ∈ X (x, y) ∈ R}.
Pre(X, R) : returns the set preR(X) = {y ∈ U | ∃x ∈ X (y, x) ∈ R}.

Table 1.1: Operations and tests for manipulation of sets and relations

instance, are represented in computer science as sequences of digits, i.e., as words over the al-
phabet of digits. Vectors and lists can also be represented as words by concatenating the word
representations of their elements. As a matter of fact, whenever a computer stores an object in a
file, the computer is representing it as a word over some alphabet, like ASCII or Unicode. So word
automata are a very general data structure. However, while any object can be represented by a
word, not every object can be represented by a finite word, that is, a word of finite length. Typical
examples are real numbers and non-terminating executions of a program. When objects cannot be
represented by finite words, computers usually only represent some approximation: a float instead
of a real number, or a finite prefix instead of a non-terminating computation. In the second part of
the notes we show how to represent sets of infinite objects exactly using automata on infinite words.
While the theory of automata on finite words is often considered a “gold standard” of theoretical
computer science—a powerful and beautiful theory with lots of important applications in many
fields—automata on infinite words are harder, and their theory does not achieve the same degree of
“perfection”. This gives us a structure for Part II of the notes: we follow the steps of Part I, always
comparing the solutions for infinite words with the “gold standard”.

Outline

Part I presents data structures and algorithms for the well-known class of regular languages.

Chapter 2 introduces the classical data structures for the representation of regular languages: reg-
ular expressions, deterministic finite automata (DFA), nondeterministic finite automata (NFA), and

13

nondeterministic automata with ε-transitions. We refer to all of them as automata. The chapter
presents some examples showing how to use automata to finitely represent sets of words, num-
bers or program states, and describes conversions algorithms between the representations. All
algorithms are well known (and can also be found in other textbooks) with the exception of the
algorithm for the elimination of ε-transitions.
Chapter 3 address the issue of finding small representations for a given set. It shows that there is a
unique minimal representation of a language as a DFA, and introduces the classical minimization
algorithms. It then shows how to the algorithms can be extended to reduce the size of NFAs.
Chapter 4 describes algorithms implementing boolean set operations and tests on DFAs and NFAs.
It includes a recent, simple improvement in algorithms for universality and inclusion.
Chapter 5 presents a first, classical application of the techniques and results of Chapter 4: Pattern
Matching. Even this well-known problem gets a new twist when examined from the automata-as-
data-structures point of view. The chapter presents the Knuth-Morris-Pratt algorithm as the design
of a new data structure, lazy DFAs, for which the membership operation can be performed very
efficiently.
Chapter 6 shows how to implement operations on relations. It discusses the notion of encoding
(which requires more care for operations on relatrions than for operations on sets), and introduces
transducers as data structure.
Chapter 7 presents automata data structures for the important special case in which the universe
U of objects is finite. In this case all objects can be encoded by words of the same length, and the
set and relation operations can be optimized. In particular, one can then use minimal DFAs as data
structure, and directly implement the algorithms without using any minimization algorithm. In the
second part of the chapter, we show that (ordered) Binary Decision Diagrams (BDDs) are just a
further optimization of minimal DFAs as data structure. We introduce a slightly more general class
of deterministic automata, and show that the minimal automaton in this more general class (which
is also unique) has at most as many states as the minimal DFA. We then show how to implement
the set and relation operations for this new representation.
Chapter 8 applies nearly all the constructions and algorithms of previous chapters to the problem
of verifying safety properties of sequential and concurrent programs with bounded-range variables.
In particular, the chapter shows how to model concurrent programs as networks of automata, how
to express safety properties using automata or regular expressions, and how to automatically check
the properties using thealgorithmic constructions of previous chapters.
Chapter 9 introduces first-order logic (FOL) and monadic-second order logic (MSOL) on words as
representation allowing us to described a regular language as the set of words satisfying a property.
The chapter shows that FOL cannot describe all regular languages, and that MSOL does.
Chapter 10 introduces Presburger arithmetic, and an algorithm to computes an automaton en-
coding all the solutions of a given formula. In particular, it presents an algorithm to compute an
automaton for the solutions of a linear inequality over the naturals or over the integers.

Part II presents data structures and algorithms for ω-regular languages.

14 CHAPTER 1. INTRODUCTION AND OUTLINE

Chapter 11 introduces ω-regular expressions and several different classes of ω-automata: de-
terministic and nondterministic Büchi, generalized Büchi, co-Büchi, Muller, Rabin, and Street
automata. It explains the advantages and disadvantages of each class, in particular whether the
automata in the class can be determinized, and presents conversion algorithms between the classes.
Chapter 12 presents implementations of the set operations (union, intersection and complementa-
tion) for Büchi and generalized Büchi automata. In particular, it presents in detail a complementa-
tion algorithm for Büchi automata.
Chapter 13 presents different implementations of the emptiness test for Büchi and generalized
Büchi automata. The first part of the chapter presents two linear-time implementations based on
depth-first-search (DFS): the nested-DFS algorithm and the two-stack algorithm, a modification
of Tarjan’s algorithm for the computation of strongly connected components. The second part
presents further implemntations based on breadth-first-search.
Chapter 14 applies the algorithms of previous chapters to the problem of verifying liveness prop-
erties of programs. After an introductory example, the chapter presents Linear Temporal Logic
as property specification formalism, and shows how to algorithmically translate a formula into an
equivalent Büchi automaton, that is, a Büchi automaton recognizing the language of all words sat-
isfying the formula. The verification algorithm can then be reduced to a combination of the boolean
operations and emptiness check.
Chapter 15 extends the logic approach to regular languages studied in Chapters 9 and 10 to ω-
words. The first part of the chapter introduces monadic second-order logic on ω-words, and shows
how to construct a Büchi automaton recognizing the set of words satisfying a given formula. The
second part introduces linear arithmetic, the first-order theory of thereal numbers with addition,
and shows how to construct a Büchi automaton recognizing the encodings of all the real numbers
satisfying a given formula.

Part I

Automata on Finite Words

15

Chapter 2

Automata Classes and Conversions

In Section 2.1 we introduce basic definitions about words and languages, and then introduce reg-
ular expressions, a textual notation for defining languages of finite words. Like any other formal
notation, it cannot be used to define each possible language. However, the next chapter shows that
they are an adequate notation when dealing with automata, since they define exactly the languages
that can be represented by automata on words.

2.1 Regular expressions: a language to describe languages

An alphabet is a finite, nonempty set. The elements of an alphabet are called letters. A finite,
possibly empty sequence of letters is a word. A word a1a2 . . . an has length n. The empty word is
the only word of length 0 and it is written ε. The concatenation of two words w1 = a1 . . . an and
w2 = b1 . . . bm is the word w1w2 = a1 . . . anb1 . . . bm, sometimes also denoted by w1 · w2. Notice
that ε · w = w = w · ε = w. For every word w, we define w0 = ε and wk+1 = wkw.

Given an alphabet Σ, we denote by Σ∗ the set of all words over Σ. A set L ⊆ Σ∗ of words is a
language over Σ.

The complement of a language L is the language Σ∗ \ L, which we often denote by L (notice
that this notation implicitly assumes the alphabet Σ is fixed). The concatenation of two languages
L1 and L2 is L1 · L2 = {w1w2 ∈ Σ∗ | w1 ∈ L1,w2 ∈ L2}. The iteration of a language L ⊆ Σ∗ is the
language L∗ =

⋃
i≥0 Li, where L0 = {ε} and Li+1 = Li · L for every i ≥ 0.

In this book we use automata to represent sets of objects encoded as languages. Languages can
be mathematically described using the standard notation of set theory, but this is often cumbersome.
For a concise description of simple languages, regular expressions are often the most suitable
notation.

Definition 2.1 Regular expressions r over an alphabet Σ are defined by the following grammar,
where a ∈ Σ

r ::= ∅ | ε | a | r1r2 | r1 + r2 | r∗

17

18 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

The set of all regular expressions over Σ is written RE(Σ). The language L (r) ⊆ Σ∗ of a regular
expression r ∈ RE(Σ) is defined inductively by

L (∅) = ∅ L (r1r2) = L (r1) · L (r2) L (r∗) = L (r)∗

L (ε) = {ε} L (r1 + r2) = L (r1) ∪ L (r2)
L (a) = {a}

A language L is regular if there is a regular expression r such that L = L (r).

We often abuse language, and identify a regular expression and its language. For instance, when
there is no risk of confusion we write “the language r” instead of “the language L (r).”

Example 2.2 Let Σ = {0, 1}. Some examples of languages expressible by regular expressions are:

• The set of all words: (0 + 1)∗. We often use Σ as an abbreviation of (0 + 1), and so Σ∗ as an
abreviation of (0 + 1)∗.

• The set of all words of length at most 4: (0 + 1 + ε)4.

• The set of all words that begin and end with 0: 0Σ∗0.

• The set of all words containing at least one pair of 0s exactly 5 letters apart. Σ∗0Σ40Σ∗.

• The set of all words containing an even number of 0s:
(
1∗01∗01∗

)∗.
• The set of all words containing an even number of 0s and an even number of 1s:

(
00 + 11 +

(01 + 10)(00 + 11)∗(01 + 10)
)∗.

2.2 Automata classes

We briefly recapitulate the definitions of deterministic and nondeterministic finite automata, as well
as nondeterministic automata with ε-transitions and regular expressions.

2.2.1 Deterministic finite automata

From an operational point of view, a deterministic automaton can be seen as the control unit of a
machine that reads input from a tape divided into cells by means of a reading head (see Figure
2.1). Initially, the automaton is in the initial state, the tape contains the word to be read, and the
reading head is positioned on the first cell of the tape, see Figure 2.1. At each step, the machine
reads the content of the cell occupied by the reading head, updates the current state according to
the transition function, and advances the head one cell to the right. The machine accepts a word if
the state reached after reading it completely is final.

2.2. AUTOMATA CLASSES 19

...b a n a n a n o n a

q7

Figure 2.1: Tape with reading head.

Definition 2.3 A deterministic automaton (DA) is a tuple A = (Q,Σ, δ, q0, F), where

• Q is a nonempty set of states,

• Σ is an alphabet,

• δ : Q × Σ→ Q is a transition function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

A run of A on input a0a1 . . . an−1 is a sequence q0
a0
−−−→ q1

a1
−−−→ q2 . . .

an−1
−−−−→ qn, such that qi ∈ Q for

0 ≤ i ≤ n, and δ(qi, ai) = qi+1 for 0 ≤ i < n − 1. A run is accepting if qn ∈ F. The automaton A
accepts a word w ∈ Σ∗ if it has an accepting run on input w. The language recognized by A is the
set L (A) = {w ∈ Σ∗ | w is accepted by A}.

A deterministic finite automaton (DFA) is a DA with a finite set of states.

Notice that a DA has exactly one run on a given word. Given a DA, we often say “the word w
leads from q0 to q”, meaning that the unique run of the DA on the word w ends at the state q.

Graphically, non-final states of a DFA are represented by circles, and final states by double
circles (see the example below). The transition function is represented by labeled directed edges:
if δ(q, a) = q′ then we draw an edge from q to q′ labeled by a. We also draw an edge into the initial
state.

Example 2.4 Figure 2.2 shows the graphical representation of the DFA A = (Q,Σ, δ, q0, F), where
Q = {q0, q1, q2, q3}, Σ = {a, b}, F = {q0}, and δ is given by the following table

δ(q0, a) = q1 δ(q1, a) = q0 δ(q2, a) = q3 δ(q3, a) = q2
δ(q0, b) = q3 δ(q1, b) = q2 δ(q2, b) = q1 δ(q3, b) = q0

The runs of A on aabb and abbb are

q0
a
−−→ q1

a
−−→ q0

b
−−→ q3

b
−−→ q0

q0
a
−−→ q1

b
−−→ q2

b
−−→ q1

b
−−→ q2

20 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

The first one is accepting, but the second one is not. The DFA recognizes the language of all words
over the alphabet {a, b} that contain an even number of a’s and an even number of b’s. The DFA is
in the states on the left, respectively on the right, if it has read an even, respectively an odd, number
of a’s. Similarly, it is in the states at the top, respectively at the bottom, if it has read an even,
respectively an odd, number of b’s.

a

a

b b

a

bb

a

q0 q1

q3 q2

Figure 2.2: A DFA

Trap states. Consider the DFA of Figure 2.3 over the alphabet {a, b, c}. The automaton recog-
nizes the language {ab, ba}. The pink state on the right is often called a trap state or a garbage
collector: if a run reaches this state, it gets trapped in it, and so the run cannot be accepting. DFAs
often have a trap state with many ingoing transitions, and this makes difficult to find a nice graph-
ical representation. So when drawing DFAs we often omit the trap state. For instance, we only
draw the black part of the automaton in Figure 2.3. Notice that no information is lost: if a state q
has no outgoing transition labeled by a, then we know that δ(q, a) = qt, where qt is the trap state.

a, b, c

c

a, c

ba

ab

b, c

a, b, c

Figure 2.3: A DFA with a trap state

2.2. AUTOMATA CLASSES 21

Using DFAs as data structures

In this book we look at DFAs as a data structure. A DFA is a finite representation of a possibly
infinite language. In applications, a suitable encoding is used to represent objects (numbers, pro-
grams, relations, tuples . . .) as words, and so a DFA actually represents a possibly infinite set of
objects. Here are four examples of DFAs representing interesting sets.

Example 2.5 The DFA of Figure 2.4 (drawn without the trap state!) recognizes the strings over the
alphabet {−, · , 0, 1, . . . , 9} that encode real numbers with a finite decimal part. We wish to exclude
002, −0, or 3.10000000, but accept 37, 10.503, or −0.234 as correct encodings. A description of
the strings in English is rather long: a string encoding a number consists of an integer part, followed
by a possibly empty fractional part; the integer part consists of an optional minus sign, followed by
a nonempty sequence of digits; if the first digit of this sequence is 0, then the sequence itself is 0;
if the fractional part is nonempty, then it starts with ., followed by a nonempty sequence of digits
that does not end with 0; if the integer part is −0, then the fractional part is nonempty.

0

·

− ·

1, . . . , 9

1, . . . , 9

· 0
0, . . . , 9

1, . . . , 9

0

0

1, . . . , 9

Figure 2.4: A DFA for decimal numbers

Example 2.6 The DFA of Figure 2.5 recognizes the binary encodings of all the multiples of 3. For
instance, it recognizes 11, 110, 1001, and 1100, which are the binary encodings of 3, 6, 9, and 12,
respectively, but not, say, 10 or 111.

Example 2.7 The DFA of Figure 2.6 recognizes all the nonnegative integer solutions of the in-
equation 2x − y ≤ 2, using the following encoding. The alphabet of the DFA has four letters,
namely [

0
0

]
,

[
0
1

]
,

[
1
0

]
, and

[
1
1

]
.

22 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

0 1

1 0

1 0

Figure 2.5: A DFA for the multiples of 3 in binary

A word like [
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
encodes a pair of numbers, given by the top and bottom rows, 101100 and 010011. The binary
encodings start with the least significant bit, that is

101100 encodes 20 + 22 + 23 = 13, and
010011 encodes 21 + 24 + 25 = 50

We see this as an encoding of the valuation (x, y) := (13, 50). This valuation satisfies the inequation,
and indeed the word is accepted by the DFA.

[
1
0

]
,

[
1
1

]

[
1
0

] [
1
1

]

[
0
1

]
[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
1
0

]

[
0
0

] [
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

] [
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

] [
0
1

]

Figure 2.6: A DFA for the solutions of 2x − y ≤ 2.

Example 2.8 Consider the following program with two boolean variables x, y:

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

2.2. AUTOMATA CLASSES 23

A configuration of the program is a triple [`, nx, ny], where ` ∈ {1, 2, 3, 4, 5} is the current value of
the program counter, and nx, ny ∈ {0, 1} are the current values of x and y. The initial configurations
are [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], i.e., all configurations in which control is at line 1. The DFA
of Figure 2.7 recognizes all reachable configurations of the program. For instance, the DFA accepts
[5, 0, 1], indicating that it is possible to reach the last line of the program with values x = 0, y = 1.

1

0

2

5

4

3

1

1

0

0, 1

1

0, 1
1

0

Figure 2.7: A DFA for the reachable configurations of the program of Example 2.8

2.2.2 Non-deterministic finite automata

In a deterministic automaton the next state is completely determined by the current state and the
letter read by the head. In particular, this implies that the automaton has exactly one run for each
word. Nondeterministic automata have the possibility to choose the state out of a set of candidates
(which may also be empty), and so they may have zero, one, or many runs on the same word. The
automaton is said to accept a word if at least one of these runs is accepting.

Definition 2.9 A non-deterministic automaton (NA) is a tuple A = (Q,Σ, δ,Q0, F), where Q, Σ,
and F are as for DAs, Q0 is a nonempty set of initial states and

• δ : Q × Σ→ P(Q) is a transition relation.

A run of A on input a0a1 . . . an is a sequence p0
a0
−−−→ p1

a1
−−−→ p2 . . .

an−1
−−−−→ pn, such that pi ∈ Q for

0 ≤ i ≤ n, p0 ∈ Q0, and pi+1 ∈ δ(pi, ai) for 0 ≤ i < n − 1. A run is accepting if pn ∈ F.
A word w ∈ Σ∗ is accepted by A if at least one run of A on w is accepting. The language

recognized by A is the set w ∈ Σ∗L (A) = {w ∈ Σ∗ | w is accepted by A}.
A nondeterministic finite automaton (NFA) is a NA with a finite set of states.

We often identify the transition function δ of a DA with the set of triples (q, a, q′) such that q′ =

δ(q, a), and the transition relation δ of a NFA with the set of triples (q, a, q′) such that q′ ∈ δ(q, a);
so we often write (q, a, q′) ∈ δ, meaning q′ = δ(q, a) for a DA, or q′ ∈ δ(q, a) for a NA.

24 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

If a NA has several initial states, then its language is the union of the sets of words accepted by
runs starting at each initial state.

Example 2.10 Figure 2.8 shows a NFA A = (Q,Σ, δ,Q0, F) where Q = {q0, q1, q2, q3}, Σ = {a, b},
Q0 = {q0}, F = {q3}, and the transition relation δ is given by the following table

δ(q0, a) = {q1} δ(q1, a) = {q1} δ(q2, a) = ∅ δ(q3, a) = {q3}

δ(q0, b) = ∅ δ(q1, b) = {q1, q2} δ(q2, b) = {q3} δ(q3, b) = {q3}

A has no run for any word starting with a b. It has exactly one run for abb, and four runs for abbb,
namely

q0
a
−−→ q1

b
−−→ q1

b
−−→ q1

b
−−→ q1 q0

a
−−→ q1

b
−−→ q1

b
−−→ q1

b
−−→ q2

q0
a
−−→ q1

b
−−→ q1

b
−−→ q2

b
−−→ q3 q0

a
−−→ q1

b
−−→ q2

b
−−→ q3

b
−−→ q3

Two of these runs are accepting, the other two are not. L (A) is the set of words that start with a
and contain two consecutive bs.

a b b

a, b

q0 q1 q2 q3

a, b

Figure 2.8: A NFA.

After a DA reads a word, we know if it belongs to the language or not. This is no longer
the case for NAs: if the run on the word is not accepting, we do not know anything; there might
be a different run leading to a final state. So NAs are not very useful as language acceptors.
However, they are very important. From the operational point of view, it is often easier to find a
NFA for a given language than to find a DFA, and, as we will see later in this chapter, NFAs can
be automatically transformed into DFAs. From a data structure point of view, there are two further
reasons to study NAs. First, many sets can be represented far more compactly as NFAs than as
DFAs. So using NFAs may save memory. Second, and more importantly, when we describe DFA-
and NFA-implementations of operations on sets and relations in Chapters 4 and Chapter 6 , we
will see that one of them takes as input a DFA and returns a NFA. Therefore, NFAs are not only
convenient, but also necessary to obtain a data structure implementing all operations.

2.2.3 Non-deterministic finite automata with ε-transitions

The state of an NA can only change by reading a letter. NAs with ε-transitions can also change
their state “spontaneously”, by executing an “internal” transition without reading any input. To
emphasize this we label these transitions with the empty word ε (see Figure 2.9).

2.2. AUTOMATA CLASSES 25

ε ε

0 1 2

Figure 2.9: A NFA-ε.

Definition 2.11 A non-deterministic automaton with ε-transitions (NA-ε) is a tuple A = (Q,Σ, δ,Q0, F),
where Q, Σ, Q0, and F are as for NAs and

• δ : Q × (Σ ∪ {ε})→ P(Q) is a transition relation.

The runs and accepting runs of NA-ε are defined as for NAs. A accepts a word a1 . . . an ∈ Σ∗ if
there exist numbers k0, k1, . . . , kn ≥ 0 such that A has an accepting run on the word

εk0a1ε
k1 . . . εkn−1anε

kn ∈ (Σ ∪ {ε})∗ .

A nondeterministic finite automaton with ε-transitions (NFA-ε) is a NA-ε with a finite set of
states.

Notice that the number of runs of a NA-ε on a word may be infinite. This is the case when some
cycle of the NA-ε only contains ε-transitions, and some final state is reachable from the cycle.

NA-ε are useful as intermediate representation. In particular, later in this chapter we automati-
cally transform a regular expresion into a NFA in two steps; first we translate the expression into a
NFA-ε, and then we translate the NFA-ε into a NFA.

2.2.4 Non-deterministic finite automata with regular expressions

We generalize NA-ε even further. Botzh letters and ε are instances of regular expressions. Now we
allow arbitraryregular expressions as transition labels (see Figure 2.10).

c

ε ε d

b∗a∗

Figure 2.10: A NFA with transitions labeled by regular expressions.

A run leading to a final state accepts all the words of the regular expression obtained by con-
catenating all the labels of the transitions of the run into one single regular expression. We call these

26 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

automata NA-reg. They are very useful to formulate conversion algorithms between automata and
regular expressions, because they generalize both. Indeed, a regular expression can be seen as an
automaton with only one transition leading from the initial state to a final state, and labeled by the
regular expression.

Definition 2.12 A non-deterministic automaton with regular expression transitions (NA-reg) is a
tuple A = (Q,Σ, δ,Q0, F), where Q, Σ, Q0, and F are as for NAs, and where

• δ : Q × RE(Σ) → P(Q) is a relation such that δ(q, r) = ∅ for all but a finite number of pairs
(q, r) ∈ Q × RE(Σ).

Accepting runs are defined as for NAs. A accepts a word w ∈ Σ∗ if A has an accepting run on
r1 . . . rk such that w = L (r1) · . . . · L (rk).

A nondeterministic finite automaton with regular expression transitions (NFA-reg) is a NA-reg
with a finite set of states.

2.2.5 A normal form for automata

For any of the automata classes we have introduced, if a state is not reachable from any initial
state, then removing it does not change the language accepted by the automaton. We say that an
automaton is in normal form if every state is reachable from initial ones.

Definition 2.13 Let A = (Q,Σ, δ,Q0, F) be an automaton. A state q ∈ Q is reachable from q′ ∈ Q
if q = q′ or if there exists a run q′

a1
−−−→ . . .

an
−−−→ q on some input a1 . . . an ∈ Σ∗. A is in normal form

if every state is reachable from some initial state.

Obviously, for every automaton there is an equivalent automaton of the same kind in normal form.
In this book we follow this convention:

Convention: Unless otherwise stated, we assume that automata are in normal form.
In particular, we assume that if an automaton is an input to an algorithm, then the
automaton is in normal form. If the output of an algorithm is an automaton, then the
algorithm is expected to produce an automaton in normal form. This condition is a
proof obligation when showing that the algorithm is correct.

2.3 Conversion Algorithms between Finite Automata

We show that all our data structures can represent exactly the same languages. Since DFAs are a
special case of NFA, which are a special case of NFA-ε, it suffices to show that every language
recognized by an NFA-ε can also be recognized by an NFA, and every language recognized by an
NFA can also be recognized by a DFA.

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 27

2.3.1 From NFA to DFA.

The powerset construction transforms an NFA A into a DFA B recognizing the same language. We
first give an informal idea of the construction. Recall that a NFA may have many different runs on
a word w, possibly leading to different states, while a DFA has exactly one run on w. Denote by
Qw the set of states q such that some run of A on w leads from some initial state to q. Intuitively, B
“keeps track” of the set Qw: its states are sets of states of A, with Q0 as initial state (A starts at some
initial state), and its transition function is defined to ensure that the run of B on w leads from Q0 to
Qw (see below). It is then easy to ensure that A and B recognize the same language: it suffices to
choose the final states of B as the sets of states of A containing at least one final state, because for
every word w:

B accepts w
iff Qw is a final state of B
iff Qw contains at least a final state of A
iff some run of A on w leads to a final state of A
iff A accepts w.

Let us now define the transition function of B, say ∆. “Keeping track of the set Qw” amounts to
satisfying ∆(Qw, a) = Qwa for every word w. But we have Qwa =

⋃
q∈Qw δ(q, a), and so we define

∆(Q′, a) =
⋃
q∈Q′

δ(q, a)

for every Q′ ⊆ Q. Notice that we may have Q′ = ∅; in this case, ∅ is a state of B, and, since
∆(∅, a) = ∅ for every a ∈ ∆, a “trap” state.

Summarizing, given A = (Q,Σ, δ,Q0, F) we define the DFA B = (Q,Σ,∆, q0,F) as follows:

• Q = P(Q);

• ∆(Q′, a) =
⋃
q∈Q′

δ(q, a) for every Q′ ⊆ Q and every a ∈ Σ;

• q0 = Q0; and

• F = {Q′ ∈ Q | Q′ ∩ F , ∅}.

Notice, however, that B may not be in normal form: it may have many states non-reachable
from Q0. For instance, assume A happens to be a DFA with states {q0, . . . , qn−1}. Then B has 2n

states, but only the singletons {q0}, . . . , {qn−1} are reachable. The following conversion algorithm
constructs only the reachable states.

28 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

NFAtoDFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: DFA B = (Q,Σ,∆, q0,F) with L (B) = L (A)

1 Q,∆,F ← ∅; q0 ← Q0

2 W = {Q0}

3 while W , ∅ do
4 pick Q′ from W

5 add Q′ to Q

6 if Q′ ∩ F , ∅ then add Q′ to F

7 for all a ∈ Σ do
8 Q′′ ←

⋃
q∈Q′

δ(q, a)

9 if Q′′ < Q then add Q′′ to W

10 add (Q′, a,Q′′) to ∆

The algorithm is written in pseudocode, with abstract sets as data structure. Like nearly all the
algorithms presented in the next chapters, it is a workset algorithm. Workset algorithms maintain
a set of objects, the workset, waiting to be processed. Like in mathematical sets, the elements of
the workset are not ordered, and the workset contains at most one copy of an element (i.e., if an
element already in the workset is added to it again, the workset does not change). For most of the
algorithms in this book, the workset can be implemented as a hash table.

In NFAtoDFA() the workset is called W, in other algorithms just W (we use a calligraphic font
to emphasize that in this case the objects of the workset are sets). Workset algorithms repeatedly
pick an object from the workset (instruction pick Q from W), and process it. Picking an object
removes it from the workset. Processing an object may generate new objects that are added to the
workset. The algorithm terminates when the workset is empty. Since objects removed from the
list may generate new objects, workset algorithms may potentially fail to terminate. Even if the set
of all objects is finite, the algorithm may not terminate because an object is added to and removed
from the workset infinitely many times. Termination is guaranteed by making sure that no object
that has been removed from the workset once is ever added to it again. For this, objects picked from
the workset are stored (in NFAtoDFA() they are stored in Q), and objects are added to the workset
only if they have not been stored yet.

Figure 2.11 shows an NFA at the top, and some snapshots of the run of NFAtoDFA() on it. The
states of the DFA are labelled with the corresponding sets of states of the NFA. The algorithm picks
states from the workset in order {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 4}. Snapshots (a)-(d) are taken right
after it picks the states {1, 2}, {1, 3}, {1, 4}, and {1, 2, 4}, respectively. Snapshot (e) is taken at the
end. Notice that out of the 24 = 16 subsets of states of the NFA only 5 are constructed, because the
rest are not reachable from {1}.

Complexity. If A has n states, then the output of NFAtoDFA(A) can have up to 2n states. To show
that this bound is essentially reachable, consider the family {Ln}n≥1 of languages over Σ = {a, b}

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 29

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
ba

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
ba

ba

a

1 1, 2
b

b

1, 3

a

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
a

ba

a

b

b

a

1 1, 2
b

b

1 2 3 4
b a

a, b

a, b

(b)(a)

(c) (d)

(e)

Figure 2.11: Conversion of a NFA into a DFA.

30 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

given by Ln = (a + b)∗a(a + b)(n−1). That is, Ln contains the words of length at least n whose n-th
letter starting from the end is an a. The language Ln is accepted by the NFA with n+1 states shown
in Figure 2.12(a): intuitively, the automaton chooses one of the a’s in the input word, and checks
that it is followed by exactly n − 1 letters before the word ends. Applying the subset construction,
however, yields a DFA with 2n states. The DFA for L3 is shown on the left of Figure 2.12(b). The
states of the DFA have a natural interpretation: they “store” the last n letters read by the automaton.
If the DFA is in the state storing a1a2 . . . an and it reads the letter an+1, then it moves to the state
storing a2 . . . an+1. States are final if the first letter they store is an a. The interpreted version of the
DFA is shown on right of Figure 2.12(b).

We can also easily prove that any DFA recognizing Ln must have at least 2n states. Assume
there is a DFA An = (Q,Σ, δ, q0, F) such that |Q| < 2n and L (An) = Ln. We can extend δ to
a mapping δ̂ : Q × {a, b}∗ → Q, where δ̂(q, ε) = q and δ̂(q,wσ) = δ(δ̂(q,w), σ) for all w ∈ Σ∗

and for all σ ∈ Σ. Since |Q| < 2n, there must be two words u a v1 and u b v2 of length n for
which δ̂(q0, u a v1) = δ̂(q0, u b v2). But then we would have that δ̂(q0, u a v1 u) = δ̂(q0, u b v2 u);
that is, either both u a v1 u and u b v2 u are accepted by An or neither do. Since, however, |a v1 u| =
|b v2 u| = n, this contradicts the assumption that An consists of exactly the words with an a at the
n-th position from the end.

2.3.2 From NFA-ε to NFA.

Let A be a NFA-ε over an alphabet Σ. In this section we use a to denote an element of Σ, and α, β
to denote elements of Σ ∪ {ε}.

Loosely speaking, the conversion first adds to A new transitions that make all ε-transitions
redundant, without changing the recognized language: every word accepted by A before adding the
new transitions is accepted after adding them by a run without ε-transitions. The conversion then
removes all ε-transitions, delivering an NFA that recognizes the same language as A.

The new transitions are shortcuts: If A has transitions (q, α, q′) and (q′, β, q′′) such that α = ε

or β = ε, then the shortcut (q, αβ, q′′) is added. (Notice that either αβ = a for some a ∈ Σ, or
αβ = ε.) Shortcuts may generate further shortcuts: for instance, if αβ = a and A has a further
transition (q′′, ε, q′′′), then a new shortcut (q, a, q′′′) is added. We call the process of adding all
possible shortcuts saturation. Obviously, saturation does not change the language of A. If A has a
run accepting a nonempty word before saturation, for example

q0
ε
−−→ q1

ε
−−→ q2

a
−−→ q3

ε
−−→ q4

b
−−→ q5

ε
−−→ q6

then after saturation it has a run accepting the same word, and visiting no ε-transitions, namely

q0
a
−−→ q4

b
−−→ q6 .

However, removing ε-transitions immediately after saturation may not preserve the language.
The NFA-ε of Figure 2.13(a) accepts ε. After saturation we get the NFA-ε of Figure 2.13(b).
Removing all ε-transitions yields an NFA that no longer accepts ε. To solve this problem, if A

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 31

...1 2 n + 1

a, b

a a, b
n

a, ba, b

(a) NFA for Ln.

bbb

babbba

baa

a

a

aab

a

a a

a

b

b

b b

aba

aaa

a

b

b

abb1

1, 31, 2

1, 2, 3

a

a

1, 3, 4

a

a a

a

b

b

b b

1, 2, 4

1, 2, 3, 4

a

b

b

1, 4

b b

a

b b

a

(b) DFA for L3 and interpretation.

Figure 2.12: NFA for Ln, and DFA for L3.

32 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

ε ε

0 1 2

(a) NFA-ε accepting L (0∗1∗2∗)

ε ε

0 1 2

1, 20, 1

0, 1, 2

(b) After saturation

0 1 2

0, 1 1, 2

0, 1, 2

(c) After marking the initial state and final and removing all ε-transitions.

Figure 2.13: Conversion of an NFA-ε into an NFA by shortcutting ε-transitions.

accepts ε from some initial state, then we mark that state as final, which clearly does not change
the language. To decide whether A accepts ε, we check if some state reachable from some initial
state by a sequence of ε-transitions is final. Figure 2.13(c) shows the final result. Notice that,
in general, after removing ε-transitions the automaton may not be in normal form, because some
states may no longer be reachable. So the naı̈ve procedure runs in four phases: saturation, ε-check,
removal of all ε-transitions, and normalization.

We show that it is possible to carry all four steps in a single pass. We present a workset
algorithm NFAεtoNFA that carries the ε-check while saturating, and generates only the reachable
states. Furthermore, the algorithm avoids constructing some redundant shortcuts. For instance, for
the NFA-ε of Figure 2.13(a) the algorithm does not construct the transition labeled by 2 leading
from the state in the middle to the state on the right. the pseudocode for the algorithm is as follows,
where α, β ∈ Σ ∪ {ε}, and a ∈ Σ.

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 33

NFAεtoNFA(A)
Input: NFA-ε A = (Q,Σ, δ,Q0, F)
Output: NFA B = (Q′,Σ, δ′,Q′0, F

′) with L (B) = L (A)
1 Q′0 ← Q0

2 Q′ ← Q0; δ′ ← ∅; F′ ← F ∩ Q0

3 δ′′ ← ∅; W ← {(q, α, q′) ∈ δ | q ∈ Q0}

4 while W , ∅ do
5 pick (q1, α, q2) from W
6 if α , ε then
7 add q2 to Q′; add (q1, α, q2) to δ′; if q2 ∈ F then add q2 to F′

8 for all q3 ∈ δ(q2, ε) do
9 if (q1, α, q3) < δ′ then add (q1, α, q3) to W

10 for all a ∈ Σ, q3 ∈ δ(q2, a) do
11 if (q2, a, q3) < δ′ then add (q2, a, q3) to W
12 else / ∗ α = ε ∗ /

13 add (q1, α, q2) to δ′′; if q2 ∈ F then add q1 to F′

14 for all β ∈ Σ ∪ {ε}, q3 ∈ δ(q2, β) do
15 if (q1, β, q3) < δ′ ∪ δ′′ then add (q1, β, q3) to W

The correctness proof is conceptually easy, but the different cases require some care, and so we
devote a proposition to it.

Proposition 2.14 Let A be a NFA-ε, and let B = NFAεtoNFA(A). Then B is a NFA and L (A) =

L (B).

Proof: To show that the algorithm terminates, observe that every transition that leaves W is never
added to W again: when a transition (q1, α, q2) leaves W it is added to either δ′ or δ′′, and a
transition enters W only if it does not belong to either δ′ or δ′′. Since every execution of the while
loop removes a transition from the workset, the algorithm eventually exits the loop.

To show that B is a NFA we have to prove that it only has non-ε transitions, and that it is in
normal form, i.e., that every state of Q′ is reachable from some state of Q′0 = Q0 in B. For the
first part, observe that transitions are only added to δ′ in line 7, and none of them is an ε-transition
because of the guard in line 6. For the second part, we need the following invariant, which can be
easily proved by inspection: for every transition (q1, α, q2) added to W, if α = ε then q1 ∈ Q0, and
if α , ε, then q2 is reachable in B (after termination). Since new states are added to Q′ only at line
7, applying the invariant we get that every state of Q′ is reachable in B from some state in Q0.

It remains to prove L (A) = L (B). The inclusion L (A) ⊇ L (B) follows from the fact that every
transition added to δ′ is a shortcut, which is shown by inspection. For the inclusion L (A) ⊆ L (B),
we first claim that ε ∈ L (A) implies ε ∈ L (B). Let q0

ε
−−→ q1 . . . qn−1

ε
−−→ qn be a run of A such that

qn ∈ F. If n = 0 (i.e., qn = q0), then we are done. If n > 0, then we prove by induction on n that a

34 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

transition (q0, ε, qn) is eventually added to W (and so eventually picked from it), which implies that
q0 is eventually added to F′ at line 13. If n = 1, then (q0, ε, qn) is added to W at line 3. If n > 1,
then by hypothesis (q0, ε, qn−1) is eventually added to W, picked from it at some later point, and so
(q0, ε, qn) is added to W at line 15, ad teh claim is proved. We now show that for every w ∈ Σ+ , if
w ∈ L (A) then w ∈ L (B). Let w = a1a2 . . . an with n ≥ 1. Then A has a run

q0
ε
−−→ . . .

ε
−−→ qm1

a1
−−−→ qm1+1

ε
−−→ . . .

ε
−−→ qmn

an
−−−→ qmn+1

ε
−−→ . . .

ε
−−→ qm

such that qm ∈ F. We have just proved that a transition (q0, ε, qm1) is eventually added to W. So
(q0, a1, qm1+1) is eventually added at line 15, (q0, a1, qm+2), . . . , (q0, a1, qm2) are eventually added at
line 9, and (qm2 , a2, qm2+1) is eventually added at line 11. Iterating this argument, we obtain that

q0
a1
−−−→ qm2

a2
−−−→ qm3 . . . qmn

an
−−−→ qm

is a run of B. Moreover, qm is added to F′ at line 7, and so w ∈ L (B).

Complexity. Observe that the algorithm processes pairs of transitions (q1, α, q2), (q2, β, q3),
where (q1, α, q2) comes from W and (q2, β, q3) from δ (lines 8, 10, 14). Since every transition
is removed from W at most once, the algorithm processes at most |Q| · |Σ| · |δ| pairs (because for
a fixed transition (q2, β, q3) ∈ δ there are |Q| possibilities for q1 and |Σ| possibilities for α). The
runtime is dominated by the processing of the pairs, and so it is O(|Q| · |Σ| · |δ|).

2.4 Conversion algorithms between regular expressions and automata

To convert regular expressions to automata and vice versa we use NFA-regs as introduced in Def-
inition 2.12. Both NFA-ε’s and regular expressions can be seen as subclasses of NFA-regs: an
NFA-ε is an NFA-reg whose transitions are labeled by letters or by ε, and a regular expression r
“is” the NFA-reg Ar having two states, the one initial and the other final, and a single transition
labeled r leading from the initial to the final state.

We present algorithms that, given an NFA-reg belonging to one of this subclasses, produces a
sequence of NFA-regs, each one recognizing the same language as its predecessor in the sequence,
and ending in an NFA-reg of the other subclass.

2.4.1 From regular expressions to NFA-ε

Given a regular expression s over alphabet Σ, it is convenient to do some preprocessing by exhaus-
tively applying the following rewrite rules:

∅ · r { ∅ r · ∅ { ∅

r + ∅ { r ∅ + r { r
∅∗ { ε

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA35

Since the left- and right-hand-sides of each rule denote the same language, the regular expressions
before and after preprocessing denote the same language. Moreover, if r is the resulting regular
expression, then either r = ∅, or r does not contain any occurrence of the ∅ symbol. In the first case,
we can directly produce an NFA-ε. In the second, we transform the NFA-reg Ar into an equivalent
NFA-ε by exhaustively applying the transformation rules of Figure 2.14.

a

Automaton for a ∈ Σ ∪ {ε}

{
r1r2 r1 r2

Rule for concatenation

r1

r2

r1 + r2 {

Rule for choice
r

r∗
{

εε

Rule for Kleene iteration

Figure 2.14: Rules converting a regular expression given as NFA-reg into an NFA-ε.

It is easy to see that each rule preserves the recognized language (i.e., the NFA-regs before and
after the application of the rule recognize the same language). Moreover, since each rule splits a
regular expression into its constituents, we eventually reach an NFA-reg to which no rule can be
applied. Furthermore, since the initial regular expression does not contain any occurrence of the ∅
symbol, this NFA-reg is necessarily an NFA-ε.

The two ε-transitions of the rule for Kleen iteration guarantee that the automata before and after
applying the rule are equivalent, even if the source and target states of the transition labeled by r?

have other incoming or outgoing transitions. If the source state has no other outgoing transitions,
then we can omit the first ε-transition. If the target state has no other incoming transitions, then we
can omit the second.

Example 2.15 Consider the regular expression (a∗b∗ + c)∗d. The result of applying the transfor-

36 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

mation rules is shown in Figure 2.15 on page 39.

Complexity. It follows immediately from the rules that the final NFA-ε has the two states of Ar

plus one state for each occurrence of the concatenation or the Kleene iteration operators in r. The
number of transitions is linear in the number of symbols of r. The conversion runs in linear time.

2.4.2 From NFA-ε to regular expressions

Given an NFA-ε A, we transform it into an equivalent NFA-reg Ar with two states and one single
transition, labeled by a regular expression r. It is again convenient to apply some preprocessing to
guarantee that the NFA-ε has a single initial state without incoming transitions, and a single final
state without outgoing transitions:

• If A has more than one initial state, or some initial state has an incoming transition, then:
Add a new initial state q0, add ε-transitions leading from q0 to each initial state, and replace
the set of initial states by {q0}.

• If A has more than one final state, or some final state has an outgoing transition, then: Add a
new state q f , add ε-transitions leading from each final state to q f , and replace the set of final
states by {q f }.

...
ε

ε

...q0{ {
ε

ε

... ... q f

Rule 1: Preprocessing

After preprocessing, the algorithm runs in phases. Each phase consist of two steps. The first step
yields an automaton with at most one transition between any two given states:

• Repeat exhaustively: replace a pair of transitions (q, r1, q′), (q, r2, q′) by a single transition
(q, r1 + r2, q′).

{
r1 + r2

r2

r1

Rule 2: At most one transition between two states

The second step reduces the number of states by one, unless the only states left are the initial and
final ones.

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA37

ε

a∗b∗ + c

dε

ε

a∗b∗

c

ε d

c

ε ε d

a b

εε

ε ε

(a∗b∗ + c)∗d

d(a∗b∗ + c)∗

c

ε ε d

b∗a∗

Figure 2.15: The result of converting (a∗b∗ + c)∗d into an NFA-ε.

38 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

• Pick a non-final and non-initial state q, and shortcut it: If q has a self-loop (q, r, q)1, replace
each pair of transitions (q′, s, q), (q, t, q′′), where q′ , q , q′′, but possibly q′ = q′′, by a
shortcut (q′, sr∗t, q′′). Otherwise, replace it by the shortcut (q′, st, q′′). After shortcutting all
pairs, remove q.

. {

s

. . .

r1s∗s1

r1s∗sm

rns∗s1

rns∗sm

rn sm

s1r1

Rule 3: Removing a state

At the end of the last phase we are left with a NFA-reg having exactly two states, the unique initial
state q0 and the unique final state q f . Moreover, q0 has no incoming transitions and q f has no
outgoing transitions, because it was initially so and the application of the rules cannot change it.
After applying Rule 2 exhaustively, there is exactly one transition from q0 to q f . The complete
algorithm is:

NFAtoRE(A)
Input: NFA-ε A = (Q,Σ, δ,Q0, F)
Output: regular expression r with L (r) = L (A)

1 apply Rule 1;
2 let q0 and q f be the initial and final states of A;
3 while Q \ {q0, q f } , ∅ do
4 apply exhaustively Rule 2
5 pick q from Q \ {q0, q f }

6 apply Rule 3 to q
7 apply exhaustively Rule 2
8 return the label of the (unique) transition

Example 2.16 Consider the automaton of Figure 2.16(a) on page 41. Parts (b) to(f) of the figure
show some snapshots of the run of NFAtoRE() on this automaton. Snapshot (b) is taken right after
applying Rule 1. Snapshots (c) to (e) are taken after each execution of the body of the while loop.
Snapshot (f) shows the final result.

1Notice that it can have at most one, because otherwise we would have two parallel edges, contradicting that Rule 2
was applied axhaustively.

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA39

(a)

(c)

(b)

(d)

(e) (f)

bb

a

a

bb

a

a

aa

bb

ab

ba

aa

a

bb

aa

a

bb

a

a

a

a

aa

aa + bb

aa + bb
ba + ab

ab + ba

ε
ε

b b

ε

ε
ε

εε

ε

aa + bb +

(ab + ba)(aa + bb)∗(ba + ab) (aa + bb +

(ab + ba)(aa + bb)∗(ba + ab))∗

Figure 2.16: Run of NFA-εtoRE() on a DFA

40 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Complexity. The complexity of this algorithm depends on the data structure used to store regular
expressions. If regular expresions are stored as strings or trees (following the syntax tree of the
expression), then the complexity can be exponential. To see this, consider for each n ≥ 1 the NFA
A = (Q,Σ, δ,Q0, F) where

Q = {q0, . . . , qn−1}

Σ = {ai j | 0 ≤ i, j ≤ n − 1}

Q0 = {Q}δ = {(qi, ai j, q j) | 0 ≤ i, j ≤ n − 1}

F = {Q}

By symmetry, the runtime of the algorithm is independent of the order in which states are elimi-
nated. Consider the order q1, q2, . . . , qn−1. It is easy to see that after eliminating the state qi the
NFA-reg contains some transitions labeled by regular expressions with 3i occurrences of letters.
The exponental blowup cannot be avoided: It can be shown that every regular expression recogniz-
ing the same language as A contains at least 2(n−1) occurrences of letters.

If regular expressions are stored as acyclic directed graphs by sharing common subexpressions
in the syntax tree, then the algorithm works in polynomial time, because the label for a new transi-
tion is obtained by concatenating or starring already computed labels.

2.5 A Tour of Conversions

We present an example illustrating all conversions of this chapter. We start with the DFA of Figure
2.16(a) recognizing the words over {a, b} with an even number of a’s and an even number of b’s.
The figure converts it into a regular expression. Now we convert this expression into a NFA-ε:
Figure 2.17 on page 43 shows four snapshots of the process of applying rules 1 to 4.

In the next step we convert the NFA-ε into an NFA. The result is shown in Figure 2.18 on page
44. Finally, we transform the NFA into a DFA by means of the subset construction. The result is
shown in Figure 2.19 on page 44.

Observe that we do not go back to the DFA we started with, but to a different one recognizing
the same language. A last step allowing us to close the circle is presented in the next chapter.

2.5. A TOUR OF CONVERSIONS 41

(c) (d)

(a)

(b)

(aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

(ab + ba)(aa + bb)∗(ab + ba)

ε ε

aa bb

aa + bb

ε ε

b
ba

a
ε

b
ε

b

a

ε ε

ab + ba ab + ba b b

aa
b

a

a
a b

ε ε

b
ba

a

Figure 2.17: Constructing a NFA-ε for (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

42 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

a
a b b

a

a

b

b

b a

b

a

a
a b

b

a b

bb

a
a

a b

11 12

9

87

10

6

4

5

32

1

Figure 2.18: NFA for the NFA-ε of Figure 2.17(d)

3, 7

a

b

2, 6

a

a

a

a
a

a

b

b

b

b b

b

4, 5

9, 12 8, 11

10

1

Figure 2.19: DFA for the NFA of Figure 2.18

Exercises

Exercise 1 Give a regular expression for the language of all words over Σ = {a, b} . . .

1. . . . beginning and ending with the same letter.

2. . . . having two occurrences of a at distance 3.

2.5. A TOUR OF CONVERSIONS 43

3. . . . with no occurrences of the subword aa.

4. . . . containing exactly two occurrences of aa.

5. . . . that can be obtained from abaab by deleting letters.

Exercise 2 Prove or disprove: the languages of the regular expressions (1 + 10)∗ and 1∗(101∗)∗ are
equal.

Exercise 3 (Blondin) Prove that the language of the regular expression r = (a + ε)(b∗ + ba)∗ is the
set of all words over {a, b} that do not contain any occurrence of aa.

Exercise 4 (Inspired by P. Rossmanith) Give syntactic characterizations of the regular expressions
r satisfying

1. L(r) = ∅.

2. L(r) = {ε}.

3. ε ∈ L(r).

4. the implication
(
L (rr) = L (r)

)
⇒

(
L (r) = L (r∗)

)
.

Exercise 5 Use the solution to Exercise 4 to define inductively boolean predicates IsEmpty(r),
IsEpsilon(r), and HasEpsilon(r) over the set of regular expressions such that

• IsEmpty(r)⇔
(
L(r) = ∅

)
;

• IsEpsilon(r)⇔
(
L(r) = {ε}

)
;

• HasEpsilon(r)⇔
(
ε ∈ L(r)

)
.

Exercise 6 Extend the syntax and semantics of regular expressions as follows. If r and r′ are
regular expressions over Σ, then r and r ∩ r′ are also regular expressions, where L (r) = L (r′) and
L (r ∩ r′) = L (r) ∩ L (r′). An extended regular expression is star-free if it does not contain any
occurrence of the Kleene star operation. So, for example, ab and (∅ ab ∅) ∩ (∅ ba ∅) are star-free,
but ab∗ is not.

A language L ⊆ Σ∗ is called star-free if there exists a star-free extended regular expression r
such that L = L (r). For example, Σ∗ is star-free, because Σ∗ = L

(
∅
)
. Show that the languages of

the regular expressions (a) (01)∗ and (b) (01 + 10)∗ are star-free.

Exercise 7 Consider the language L ⊆ {a, b}∗ given by the regular expression a∗b∗a∗a.

1. Give an NFA-ε that accepts L.

2. Give an NFA that accepts L.

44 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

3. Give a DFA that accepts L.

Exercise 8 Let |w|σ denote the number of occurrences of a letter σ in a word w. For every k ≥ 2,
let Lk,σ = {w ∈ {a, b}∗ | |w|σ mod k = 0}.

1. Give a DFA with k states that accepts Lk,σ.

2. Show that any NFA accepting Lm,a ∩ Ln,b has at least m · n states.
(Hint: consider using the pigeonhole principle.)

Exercise 9 Given a language L, let Lpref and Lsuf denote the languages of all prefixes and all
suffixes, respectively, of words in L. For example, if L = {abc, d} then Lpref = {abc, ab, a, ε, d} and
Lsuf = {abc, bc, c, ε, d}.

1. Given an NFA A, construct NFAs Apref and Asuf so that L(Apref) = L(A)pref and L(Asuf) =

L(A)suf .

2. Consider the regular expression r = (ab + b)∗cd. Give a regular expression rpref so that
L
(
rpref

)
= L (r)pref .

3. More generally, give an algorithm that takes an arbitrary regular expression r as input, and
returns a regular expression rpref so that L

(
rpref

)
= L (r)pref .

Exercise 10 (Blondin) Consider the regular expression r = (a + ab)∗.

1. Convert r into an equivalent NFA-ε A.

2. Convert A into an equivalent NFA B.

3. Convert B into an equivalent DFA C.

4. By inspection of C, give an equivalent minimal DFA D.

5. Convert D into an equivalent regular expression r′.

6. Prove formally that L (() r) = L (() r′).

Exercise 11 The reverse of a word w, denoted by wR, is defined as follows: if w = ε, then wR = ε,
and if w = a1a2 . . . an for n ≥ 1, then wR = anan−1 . . . a1. The reverse of a language L is the
language LR = {wR | w ∈ L}.

1. Give a regular expression for the reverse of
(
(a + ba)∗ba(a + b)

)∗ba.

2. Give an algorithm that takes as input a regular expression r and returns a regular expression
rR such that L

(
rR

)
=

(
L (r)

)R.

2.5. A TOUR OF CONVERSIONS 45

3. Give an algorithm that takes as input a NFA A and returns a NFA AR such that L
(
AR

)
=(

L (A)
)R.

Exercise 12 Prove or disprove: Every regular language is recognized by a NFA . . .

1. . . . having one single initial state.

2. . . . having one single final state.

3. . . . whose states are all initial.

4. . . . whose states are all final.

5. . . . whose initial states have no incoming transitions.

6. . . . whose final states have no outgoing transitions.

7. . . . such that all input transitions of a state (if any) carry the same label.

8. . . . such that all output transitions of a state (if any) carry the same label.

Which of the above hold for DFAs? Which ones for NFA-ε?

Exercise 13 Convert the following NFA-ε to an NFA using the algorithm NFAεtoNFA from the
lecture notes (see Sect. 2.3, p. 31).

p

q

r

s

ε

ε

b

a

ε

Exercise 14 Prove that every finite language (i.e., every language containing a finite number of
words) is regular, by defining a DFA that recognizes it.

Exercise 15 Let Σn = {1, 2, . . . , n}, and let Ln be the set of all words w ∈ Σn such that at least one
letter of Σn does not appear in w. So, for instance, 1221, 32, 1111 ∈ L3 and 123, 2231 < L3.

1. Give a NFA for Ln with O(n) states and transitions.

2. Give a DFA for Ln with 2n states.

3. Show that any DFA for Ln has at least 2n states.

46 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

4. Which of 1. and 2. are still possible for Ln, the set of words containing all letters of Σn?
Does 3. still hold for Ln ?

Let Mn ⊆ {0, 1}∗ be the set of words of length 2n of the form (0 + 1) j−10(0 + 1)n−10(0 + 1)n− j for
some 1 ≤ j ≤ n. These are the words containing at least one pair of 0s at distance n. For example,
101101, 001001, 000000 ∈ M3 and 101010, 000111, 011110 < M3.

• Give a NFA for Mn with O(n) states and transitions.

• Give a DFA for Mn with Ω(2n) states.

• Show that any DFA for Mn has at least 2n states.

Exercise 16 Let Ln ⊆ {a, b}∗ be the language of the regular expression (a + b)∗a(a + b)nb(a + b)∗.

1. Give an NFA with n + 3 states that accepts Ln.

2. Show that for every w ∈ {a, b}∗, if |w| = n + 1, then ww < Ln.

3. Show that any NFA accepting Ln has at least 2n+1 states. (Hint: use (b) and the pigeonhole
principle.)

Exercise 17 Recall that a nondeterministic automaton A accepts a word w if at least one of the
runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider
the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run
on w then it accepts w). This is called the universal accepting condition. Notice that a DFA accepts
the same language with both the existential and the universal accepting conditions.

Intuitively, we can visualize an automaton with universal accepting condition as executing all
runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by
all runs labelled by w, and accepts if all those states are accepting.

Consider the family Ln of languages over the alphabet {0, 1} given by Ln = {ww ∈ Σ2n | w ∈ Σn}.

1. Give an automaton of size O(n) with universal accepting condition that recognizes Ln.

2. Prove that every NFA (and so in particular every DFA) recognizing Ln has at least 2n states.

3. Give an algorithm that transforms an automaton with universal accepting condition into a
DFA recognizing the same language. This shows that automata with universal accepting
condition recognize the regular languages.

Exercise 18 1. Give a regular expression of size O(n) such that the smallest DFA equivalent to
it has Ω(2n) states.

2. Give a regular expression of size O(n) without “+” such that the smallest DFA equivalent to
it has Ω(2n) states.

2.5. A TOUR OF CONVERSIONS 47

3. Give a regular expression of size O(n) without + and of start-height 1 such that the smallest
DFA equivalent to it has Ω(2n) states. (Paper by Shallit at STACS 2008).

Exercise 19 Let Kn be the complete directed graph with nodes {1, . . . , n} and edges {(i, j) | 1 ≤
i, j ≤ n}. A path of Kn is a sequence of nodes, and a circuit of Kn is a path that begins and ends at
the same node.

Consider the family of DFAs An = (Qn,Σn, δn, q0n, Fn) given by

• Qn = {1, . . . , n,⊥} and Σn = {ai j | 1 ≤ i, j ≤ n};

• δn(⊥, ai j) = ⊥ for every 1 ≤ i, j ≤ n (that is, ⊥ is a trap state), and

δn(i, a jk) =

{
⊥ if i , j
k if i = j

• q0n = 1 and Fn = {1}.

For example, here are K3 and A3:

1 2

3

1 2

3

a12

a13
a23

a21

a31

a32

Every word accepted by An encodes a circuit of Kn. For example, the words a12 a21 and a13 a32 a21,
which are accepted by A3, encode the circuits 121 and 1321 of K3. Clearly, An recognizes the
encodings of all circuits of Kn starting at node 1.

A path expression r over Σn is a regular expression such that every word of L(r) models a path
of Kn. The purpose of this exercise is to show that every path expression for L(An)—and so every
regular expression, because any regular expression for L(An) is a path expression by definition—
must have length Ω(2n).

• Let π be a circuit of Kn. A path expression r covers π if L(r) contains a word uwv such that w
encodes π. Further, r covers π∗ if L(r) covers πk for every k ≥ 0. Let r be a path expression of
length m starting at a node i. Prove:

(a) Either r covers π∗, or it does not cover π2m.

(b) If r covers π∗ and no proper subexpression of r does, then r = s∗ for some expression s, and
every word of L(s) encodes a circuit starting at a node of π.

48 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

• For every 1 ≤ k ≤ n + 1, let [k] denote the permutation of 1, 2, · · · , n + 1 that cyclically shifts
every index k positions to the right. Formally, node i is renamed to i + k if i + k ≤ n + 1, and to
i + k − (n + 1) otherwise. Let π[k] be the result of applying the permutation to π. So, for instance,
if n = 4 and π = 24142, we get

π[1] = 35253 π[2] = 41314 π[3] = 52425 π[4] = 13531 π[5] = 24142 = π

(c) Prove that π[k] is a circuit of Kn+1 that does not pass through node k.

• Define inductively the circuit gn of Kn for every n ≥ 1 as follows:

- g1 = 11

- gn+1 = 1 gn[1]2n
gn[2]2n

· · · gn[n + 1]2n
for every n ≥ 1

In particular, we have

g1 = 11

g2 = 1 (22)2 (11)2

g3 = 1
(
2 (33)2 (22)2)4 (

3 (11)2 (33)2 3
)4 (

1 (22)2 (11)2)4

(d) Prove using parts (a)-(c) that every path expression covering gn has length at least 2n−1.

Exercise 20 The existential and universal accepting conditions can be combined, yielding alter-
nating automata. The states of an alternating automaton are partitioned into existential and univer-
sal states. An existential state q accepts a word w (i.e., w ∈ L (q)) if w = ε and q ∈ F or w = aw′

and there exists a transition (q, a, q′) such that q′ accepts w′. A universal state q accepts a word w if
w = ε and q ∈ F or w = aw′ and for every transition (q, a, q′) the state q′ accepts w′. The language
recognized by an alternating automaton is the set of words accepted by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recognizing the same
language.

Exercise 21 Let L be an arbitrary language over a 1-letter alphabet. Prove that L∗ is regular.

Exercise 22 In algorithm NFAεtoNFA for the removal of ε-transitions, no transition that has been
added to the workset, processed and removed from the workset is ever added to the workset again.
However, transitions may be added to the workset more than once. Give a NFA-ε and a run of
NFAεtoNFA on it in which this happens.

Exercise 23 We say that u = a1 · · · an is a scattered subword of w, denoted by u / w, if there are
words w0, · · · ,wn ∈ Σ∗ such that w = w0a1w1a2 · · · anwn. The upward closure of a language L
is the language L ↑= {u ∈ Σ∗ | ∃w ∈ L : w / u}. The downward closure of L is the language
L ↓:= {u ∈ Σ∗ | ∃w ∈ L : u / w}. Give algorithms that take a NFA A as input and return NFAs for
L (A)↑ and L (A)↓, respectively.

2.5. A TOUR OF CONVERSIONS 49

Exercise 24 Algorithm NFAtoRE transforms a finite automaton into a regular expression repre-
senting the same language by iteratively eliminating states of the automaton. In this exercise we
present an algebraic reformulation of the algorithm. We represent a NFA as a system of language
equations with as many variables as states, and solve the system by eliminating variables. A lan-
guage equation over an alphabet Σ and a set V of variables is an equation of the form r1 = r2, where
r1 and r2 are regular expressions over Σ ∪ V . For instance, X = aX + b is a language equation. A
solution of a system of equations is a mapping that assigns to each variable X a regular expression
over Σ, such that the languages of the left and right-hand-sides of each equation are equal. For
instance, a ∗ b is a solution of X = aX + b because L(a∗b) = L(aa∗b + b), and ∅ and a∗ are two
different solutions of X = aX.

(1) Arden’s Lemma states that given two languages A, B ⊆ Σ∗ with ε < A, the smallest language
X ⊆ Σ∗ satisfying X = AX + B is the language A∗B. Prove Arden’s Lemma.

(2) Consider the following system of equations, where the variables X,Y represent languages
(regular expressions) over the alphabet Σ = {a, b, c, d, e, f }:

X = aX + bY + c
Y = dX + eY + f .

This system has many solutions. For example, X = Y = Σ∗ is a solution. But there is again a
unique minimal solution, i.e., a solution contained in every other solution. Find the smallest
solution with the help of Arden’s Lemma.
Hint : In a first step, consider X not as a variable, but as a constant language, and solve the
equation for Y using Arden’s Lemma.

We can associate to any NFA A = (Q,Σ, δ, qI , F) a system of linear equations as follows. We
take as variables the states of the automaton, which we call here X,Y,Z, . . ., with X as initial state.
The system has an equation for each state X. If X < F, then the equation has the form

X =
∑

(X,a,Y)∈δ

aY

and if X ∈ F then

X =

 ∑
(X,a,Y)∈δ

aY

 + ε

if X ∈ F.

(3) Consider the DFA of Figure 2.16(a). Let X,Y,Z,W be the states of the automaton, read from
top to bottom and from left to right. The associated system of linear equations is

X = aY + bZ + ε

Y = aX + bW
Z = bX + aW
W = bY + aZ

50 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Calculate the solution of this linear system by iteratively eliminating variables. Start with Y ,
then eliminate Z, and finally W. Compare with the elimination procedure shown in Figure
2.16.

Exercise 25 (Inspired by R. Majumdar) Consider a deck of cards (with arbitrary many cards) in
which black and red cards alternate, the top card is black, and the bottom card is red. The set of
possible decks is then given by the regular expression (BR)∗. Cut the deck at any point into two
piles, and then perform a riffle (also called a dovetail shuffle) to yield a new deck. E.g., we can cut
a deck with six cards 123456 (with 1 as top card) into two piles 12 and 3456, and the riffle yields
345162 (we start the riffle with the first pile). Give a regular expression over the alphabet {B,R}
describing the possible configurations of the decks after the riffle.
Hint: After the cut, the last card of the first pile can be black or red. In the first case the two piles
belong to (BR)∗B and R(BR)∗, and in the second case to (BR)∗ and (BR)∗. Let Rif (r1, r2) be the
language of all decks obtained by performing a riffle on decks taken from L (r1) and L (r2). We are
looking for a regular expression for

Rif
(
(BR)∗B,R(BR)∗

)
+ Rif

(
(BR)∗, (BR)∗

)
.

Use Exercise 24 to set up a system of equations over the variables X := Rif
(
(BR)∗B,R(BR)∗

)
and

Y := Rif
(
(BR)∗, (BR)∗

)
, and solve it.

Exercise 26 Given n ∈ IN0, let MSBF(n) be the set of most-significant-bit-first encodings of n, i.e.,
the words that start with an arbitrary number of leading zeros, followed by n written in binary. For
example:

MSBF(3) = 0∗11 and MSBF(9) = 0∗1001 MSBF(0) = 0∗.

Similarly, let LSBF(n) denote the set of least-significant-bit-first encodings of n, i.e., the set con-
taining for each word w ∈ MSBF(n) its reverse. For example:

LSBF(6) = L(0110∗) and LSBF(0) = L(0∗).

1. Construct and compare DFAs recognizing the encodings of the even numbers n ∈ IN0 w.r.t.
the unary encoding, where n is encoded by the word 1n, the MSBF-encoding, and the LSBF-
encoding.

2. Same for the set of numbers divisible by 3.

3. Give regular expressions corresponding to the languages in (b).

Exercise 27 Consider the following DFA over the alphabet with letters
[
0
0

]
,

[
0
1

]
,

[
1
0

]
, and

[
1
1

]
.

2.5. A TOUR OF CONVERSIONS 51

[
0
0

] [
1
0

]

[
1
1

]

[
0
0

]

[
0
1

]

[
1
1

]

A word w encodes a pair of natural numbers (X(w),Y(w)), where X(w) and Y(w) are obtained by
reading the top and bottom rows in MSBF encoding, respectively. For instance, in the word[

1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
the top and bottom rows are 101100 and 010011, which in MSBF encoding correspond to 44 and
19, respectively. Show that the DFA recognizes the set of words w such that X(w) = 3 · Y(w), i.e.,
the solutions of the equation x − 3y = 0.

52 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Chapter 3

Minimization and Reduction

In the previous chapter we showed through a chain of conversions that the two DFAs of Figure
3.1 recognize the same language. Obviously, the automaton on the left of the figure is better as a
data structure for this language, since it has smaller size. A DFA (respectively, NFA) is minimal if

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a

Figure 3.1: Two DFAs for the same language

no other DFA (respectively, NFA) recognizing the same language has fewer states. We show that
every regular language has a unique minimal DFA up to isomorphism (i.e., up to renaming of the
states). and present an efficient algorithm that “minimizes” a given DFA, i.e., converts it into the
unique minimal DFA. In particular, the algorithm converts the DFA on the right of Figure 3.1 into
the one on the left.

From a data structure point of view, the existence of a unique minimal DFA has two important
consequences. First, as mentioned above, the minimal DFA is the one that can be stored with a
minimal amount of memory. Second, the uniqueness of the minimal DFA makes it a canonical
representation of a regular language. As we shall see, canonicity leads to a fast equality check: In
order to decide if two regular languages are equal, we can construct their minimal DFAs, and check

53

54 CHAPTER 3. MINIMIZATION AND REDUCTION

if they are isomorphic .
In the second part of the chapter we show that, unfortunately, computing a minimal NFA is

a PSPACE complete problem, for which no efficient algorithm is likely to exist. Moreover, the
minimal NFA is not unique. However, we show that a generalization of the minimization algorithm
for DFAs can be used to at least reduce the size of an NFA while preserving its language.

3.1 Minimal DFAs

We start with a simple but very useful definition.

Definition 3.1 Given a language L ⊆ Σ∗ and w ∈ Σ∗, the residual of L with respect to w is the
language Lw = {u ∈ Σ∗ | wu ∈ L} . A language L′ ⊆ Σ∗ is a residual of L if L′ = Lw for at least one
w ∈ Σ∗.

The language Lw satisfies the property

wu ∈ L⇔ u ∈ Lw (3.1)

Moreover, Lw is the only language satisfying this property. In other words, if a language L′ satisfies
wu ∈ L⇔ u ∈ L′ for every word u, then necessarily L′ = Lw.

Example 3.2 Let σ = {a, b} and L = {a, ab, ba, aab}. We compute Lw for all words w by increasing
length of w.

• |w| = 0. Lε = {a, ab, ba, aab}

• |w| = 1. La = {ε, b, ab}, Lb = {a}.

• |w| = 2. Laa = {b}, Lab = {ε}, Lba = {ε}, Lbb = ∅.

• |w| ≥ 3. Lw =

ε if w = aab
∅ otherwise

.

Observe that residuals with respect to different words can be equal. In fact, even thoughσ∗ contains
infinitely many words , L has only six residuals, namely the languages ∅, {ε}, {a}, {b}, {ε, b, ab}, and
{a, ab, ba, aab}.

Example 3.3 Languages containing infinitely many words can have a finite number of residuals.
For example, (a+b)∗ contains infinitely many words, but it has one single residual: indeed, we have
Lw = (a+b)∗ for every w ∈ {a, b}∗. Another example is the language of the two DFAs in Figure 3.1.
Recall it is the language of all words over {a, b} with an even number of a’s and an even number of
b’s. Let us call this language EE in the following1. The language has four residuals, namely the
languages EE, EO,OE,OO, where EO contains the words with an even number of a’s and an odd
number of b’s, etc. For example, we have (EE)ε = EE, (EE)a = OE, and (EE)ab = OO.

1Notice that EE is a two-letter name for a language, not a concatenation of two languages!

3.1. MINIMAL DFAS 55

Example 3.4 The languages of Example 3.2 and 3.3 have finitely many residuals, but this not the
case for every language. In general, proving that the number of residuals of a language is finite or
infinite can be complicated. To show that a language L has an infinite number of residuals one can
use the following general proof strategy:

• Define an infinite set W = {w0,w1,w2, . . .} ⊆ Σ∗.

• Prove that Lwi , Lw j holds for every i , j. For this, show that for every i , j there exists a
word wi, j that belongs to exactly one of the sets Lwi and Lw j .

We apply this strategy to two languages:

• Let L = {anbn | n ≥ 0}.
Define W := {ak | k ≥ 0}. For every two distinct words ai, a j ∈ W (i.e., i , j), we have
bi ∈ Lai

, because aibi ∈ L, but bi < La j
, because a jbi < L. So L has infinitely many residuals.

• Let L = {ww | w ∈ Σ∗}.
Define W = Σ∗. For every two distinct words w, v ∈ W (i.e., w , v), we have w ∈ Lw,
because ww ∈ L, but w < Lv, because vw < L. So L has infinitely many residuals.

There is a close connection between the states of a DA (not necessarily finite) and the residuals
of the language it recognizes. In order to formulate it we introduce the following definition:

Definition 3.5 Let A = (Q,Σ, δ, q0, F) be a DA and let q ∈ Q. The language recognized by q,
denoted by LA(q) (or just L (q) if there is no risk of confusion) is the language recognized by A with
q as initial state, i.e., the language recognized by the DA Aq = (Q,Σ, δ, q, F).

For every transition q
a
−−→ q′ of an automaton, deterministic or not, if a word w is accepted from

q′, then the word aw is accepted from q. For deterministic automata the converse also holds: since
q

a
−−→ q′ is the unique transition leaving q labeled by a, if aw is accepted from q, then w is accepted

from q′. So we have aw ∈ L(q′) iff w ∈ L(q) and comparing with Property 3.1 we obtain

For every transition q
a
−−→ q′ of a DA: L(q′) = L(q)a. (3.2)

More generally, we have:

Lemma 3.6 Let L be a language and let A = (Q,Σ, δ, q0, F) be a DA recognizing L.

(1) Every residual of L is recognized by some state of A. Formally: for every w ∈ Σ∗ there is at
least one state q ∈ Q such that LA(q) = Lw.

(2) Every state of A recognizes a residual of L. Formally: for every q ∈ Q there is at least one
word w ∈ Σ∗ such that LA(q) = Lw.

56 CHAPTER 3. MINIMIZATION AND REDUCTION

Proof: (1) Let w ∈ Σ∗, and let q be the state reached by the unique run of A on w, that is, q0
w
−−→ q.

We prove LA(q) = Lw. By Property 3.1, it suffices to show that every word u satisfies

wu ∈ L⇐⇒ u ∈ LA(q) .

Since A is a DFA, for every word wu ∈ Σ∗ the unique run of A on wu is of the form q0
w
−−→ q

u
−−→ q′.

So A accepts wu iff q′ is a final state, which is the case iff u ∈ LA(q). So LA(q) = Lw.
(2) Since A is in normal form, q can be reached from q0 by at least a word w. The proof that
LA(q) = Lw holds is exactly as above.

Example 3.7 Figure 3.2 shows the result of labeling the states of the two DFAs of Figure 3.1 with
the languages they recognize. All these languages are residuals of EE.

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a
EE OE

OOEO

EE

OE

EE

OE EO

EO

OO

Figure 3.2: Languages recognized by the states of the DFAs of Figure 3.1.

We use the notion of a residual to define the canonical deterministic automaton for a given
language L. The states of the canonical DA for a language are themselves languages. Further,
“each state recognizes itself”, i.e., the language recognized from the state L is the language L
itself. This single property completely determines the initial state, the transitions, and the final
states of the canonical DA:

• The canonical DA for a language L must recognize L. So the initial state of the canonical DA
recognizes L. Since each state “recognizes itself”, the initial state is necessarily the language
L itself.

• Since each state K recognizes the language K, by Property 3.2 all transitions of the canonical
DA are of the form K

a
−−→Ka.

• A state q of a DA is final iff it recognizes the empty word. Therefore, a state K of the
canonical DA is final iff ε ∈ K.

3.1. MINIMAL DFAS 57

{a, ab, ba, aab}

{ε, b, ab}

{a}

{ε}

{b}

∅

a

b

a

b

a

b

a

b

a, b

a, b

Figure 3.3: Canonical DA for the language {a, ab, ba, aab} over the alphabet {a, b}.

We formalize this construction, and prove its correctness.

Definition 3.8 Let L ⊆ Σ∗ be a language. The canonical DA for L is the DA CL = (QL,Σ, δL, q0L, FL),
where:

• QL is the set of residuals of L; i.e., QL = {Lw | w ∈ Σ∗};

• δL(K, a) = Ka for every K ∈ QL and a ∈ Σ;

• q0L = L; and

• FL = {K ∈ QL | ε ∈ K}.

Example 3.9 Figure 3.3 shows the canonical DA for the language of Example 3.2. Since the
language has six residuals, the DA has six states. Observe that every state “recognizes itself”.
For example, the language recognized from the state {ε, b, ab} is {ε, b, ab}. The final states are the
residuals containing ε, that is, the two residuals {ε, b, ab} and {ε}.

Example 3.10 The canonical DA for the language EE of Example 3.3 is the one shown on the left
of Figure 3.2. It has four states, corresponding to the four residuals of EE. Since, for instance,
EEa = OE, the canonical DA has a transition EE

a
−−→OE. The initial state is EE. Since the

empty word has an even number of a and b (naemly zero in both cases), we have ε ∈ EE, and
ε < EO,OE,OO. So the only final state is EE.

Proposition 3.11 For every language L ⊆ Σ∗, the canonical DA for L recognizes L.

Proof: Let CL be the canonical DA for L. We prove L (CL) = L.
Let w ∈ Σ∗. We prove by induction on |w| that w ∈ L iff w ∈ L (CL).

58 CHAPTER 3. MINIMIZATION AND REDUCTION

If |w| = 0 then w = ε, and we have

ε ∈ L (w = ε)
⇔ L ∈ FL (definition of FL)
⇔ q0L ∈ FL (q0L = L)
⇔ ε ∈ L (CL) (q0L is the initial state of CL)

If |w| > 0, then w = aw′ for some a ∈ Σ and w′ ∈ Σ∗, and we have

aw′ ∈ L
⇔ w′ ∈ La (definition of La)
⇔ w′ ∈ L (CLa) (induction hypothesis)
⇔ aw′ ∈ L (CL) (δL(L, a) = La)

We now prove that CL is the unique minimal DFA recognizing a regular language L (up to
isomorphism). The informal argument goes as follows. Since every DFA for L has at least one
state for each residual, and CL has exactly one state for each residual, CL has a minimal number
of states. Further, every other minimal DFA for L also has exactly one state for each residual.
It remains to show that all these minimal DFAs are isomorphic. For this we observe that, if we
know which state recognizes which residual, we can infer which is the initial state, which are the
transiitons, and which are the final states. In other words, the transitions, initial and final states of a
minimal DFA are completely determined by the residual recognized by each state. Indeed, if state
q recognizes residual R, then the a-transition leaving q necessarily leads to the state recognizing
Ra; further, q is initial iff R = L, and q is final iff ε ∈ R. A more formal proof looks as follows:

Theorem 3.12 If L is regular, then CL is the unique minimal DFA up to isomorphism that recog-
nizes L.

Proof: Let L be a regular language, and let A = (Q,Σ, δ, q0, F) be an arbitrary DFA recognizing L.
By Lemma 3.6 the number the number of states of A is greater than or equal to the number of states
of CL, and so CL is a minimal automaton for L. To prove uniqueness of the minimal automaton up
to isomorphism, assume A is minimal, and let LA be the mapping that assigns to each state q of A
the language L(q) recognizied from q. By Lemma 3.6(2), LA assigns to each state of A a residual
of L, and so LA : Q → QL. We prove that LA is an isomorphism between A and CL. First, LA

is bijective because it is surjective (Lemma 3.6(2)), and |Q| = |QL| (A is minimal by assumption).
Moreover, if δ(q, a) = q′, then LA(q′) = (LA(q))a, and so δL(LA(q), a) = LA(q′). Also, LA maps the
initial state of A to the initial state of CL: LA(q0) = L = q0L. Finally, LA maps final to final and
non-final to non-final states: q ∈ F iff ε ∈ LA(q) iff LA(q) ∈ FL.

The following simple corollary is often useful to establish that a given DFA is minimal:

3.2. MINIMIZING DFAS 59

Corollary 3.13 A DFA is minimal if and only if different states recognize different languages, i.e.,
L (q) , L (q′) holds for every two states q , q′.

Proof: (⇒): By Theorem 3.12, the number of states of a minimal DFA is equal to the number of
residuals of its language. Since every state of recognizes some residual, each state must recognize
a different residual.

(⇐): If all states of a DFA A recognize different languages, then, since every state recognizes
some residual, the number of states of A is less than or equal to the number of residuals. So A has
at most as many states as CL(A), and so it is minimal.

3.2 Minimizing DFAs

We present an algorithm that converts a given DFA into (a DFA isomorphic to) the unique minimal
DFA recognizing the same language. The algorithm first partitions the states of the DFA into
blocks, where a block contains all states recognizing the same residual. We call this partition the
language partition. Then, the algorithm “merges” the states of each block into one single state, an
operation usually called quotienting with respect to the partition. Intuitively, this yields a DFA in
which every state recognizes a different residual. These two steps are described in Section 3.2.1
and Section 3.2.2.

For the rest of the section we fix a DFA A = (Q,Σ, δ, q0, F) recognizing a regular language L.

3.2.1 Computing the language partition

We need some basic notions on partitions. A partition of Q is a finite set P = {B1, . . . , Bn} of
nonempty subsets of Q, called blocks, such that Q = B1 ∪ . . . ∪ Bn, and Bi ∩ B j = ∅ for every
1 ≤ i , j ≤ n. The block containing a state q is denoted by [q]P. A partition P′ refines or is a
refinement of another partition P if every block of P′ is contained in some block of P. If P′ refines
P and P′ , P, then P is coarser than P′.

The language partition, denoted by P`, puts two states in the same block if and only if they
recognize the same language (i.e, the same residual). To compute P` we iteratively refine an initial
partition P0 while maintaining the following

Invariant: States in different blocks recognize different languages.

P0 consists of two blocks containing the final and the non-final states, respectively (or just one of
the two if all states are final or all states are nonfinal). That is, P0 = {F,Q \ F} if F and Q \ F
are nonempty, P0 = {F} if Q \ F is empty, and P0 = {Q \ F} = {Q} if F is empty. Notice that P0
satisfies the invariant, because every state of F accepts the empty word, but no state of Q \ F does.

A partition is refined by splitting a block into two blocks. To find a block to split, we first
observe the following:

Fact 3.14 If L (q1) = L (q2), then L (δ(q1, a)) = L (δ(q2, a)) for every a ∈ Σ.

60 CHAPTER 3. MINIMIZATION AND REDUCTION

Now, by contraposition, if L (δ(q1, a)) , L (δ(q2, a)), then L (q1) , L (q2), or, rephrasing in terms of
blocks: if δ(q1, a) and δ(q2, a) belong to different blocks, but q1 and q2 belong to the same block B,
then B can be split, because q1 and q2 can be put in different blocks while respecting the invariant.

Definition 3.15 Let B, B′ be (not necessarily distinct) blocks of a partition P, and let a ∈ Σ. The
pair (a, B′) splits B if there are q1, q2 ∈ B such that δ(q1, a) ∈ B′ and δ(q2, a) < B′. The result of
the split is the partition Ref P[B, a, B′] = (P \ {B}) ∪ {B0, B1}, where

B0 = {q ∈ B | δ(q, a) < B′} and B1 = {q ∈ B | δ(q, a) ∈ B′} .

A partition is unstable if it contains blocks B, B′ such that (a, B′) splits B for some a ∈ Σ, and stable
otherwise.

The partition refinement algorithm LanPar(A) iteratively refines the initial partition of A until
it becomes stable. The algorithm terminates because every iteration increases the number of blocks
by one, and a partition can have at most |Q| blocks.

LanPar(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: The language partition P`.

1 if F = ∅ or Q \ F = ∅ then return {Q}
2 else P← {F,Q \ F}
3 while P is unstable do
4 pick B, B′ ∈ P and a ∈ Σ such that (a, B′) splits B
5 P← Ref P[B, a, B′]
6 return P

Notice that if all states of a DFA are nonfinal then every state recognizes ∅, and if all are
final then every state recognizes Σ∗. In both cases all states recognize the same language, and the
language partition is {Q}.

Example 3.16 Figure 3.4 shows a run of LanPar on the DFA on the right of Figure 3.1. States
that belong to the same block have the same color. The initial partition, shown at the top, consists
of the yellow and the pink states. The yellow block and the letter a split the pink block into the
green block (pink states with an a-transition to the yellow block) and the rest (pink states with an
a-transition to other blocks), which stay pink. In the final step, the green block and the letter b split
the pink block into the magenta block (pink states with a b transition into the green block) and the
rest, which stay pink.

We prove correctness of LanPar in two steps. First, we show that it computes the coarsest stable
refinement of P0, denoted by CSR; in other words, we show that after termination the partition P is
coarser than every other stable refinement of P0. Then we prove that CSR is equal to P`.

3.2. MINIMIZING DFAS 61

a

b

a

a

a

a
a

a

b

b

b

b b

b

a

b

a

a

a

a
a

a

b

b

b

b b

b

a

b

a

a

a

a
a

a

b

b

b

b b

b

Figure 3.4: Computing the language partition for the DFA on the left of Figure 3.1

62 CHAPTER 3. MINIMIZATION AND REDUCTION

Lemma 3.17 LanPar(A) computes CSR.

Proof: LanPar(A) clearly computes a stable refinement of P0. We prove that after termination P
is coarser than any other stable refinement of P0, or, equivalently, that every stable refinement of
P0 refines P. Actually, we prove that this holds not only after termination, but at any time.

Let P′ be an arbitrary stable refinement of P0. Initially P = P0, and so P′ refines P. Now,
we show that if P′ refines P, then P′ also refines Ref P[B, a, B′]. For this, let q1, q2 be two states
belonging to the same block of P′. We show that they belong to the same block of Ref P[B, a, B′].
Assume the contrary. Since the only difference between P and Ref P[B, a, B′] is the splitting of B
into B0 and B1, exactly one of q1 and q2, say q1, belongs to B0, and the other belongs to B1. So
there exists a transition (q2, a, q′2) ∈ δ such that q′2 ∈ B′. Since P′ is stable and q1, q2 belong to the
same block of P′, there is also a transition (q1, a, q′1) ∈ δ such that q′1 ∈ B′. But this contradicts
q1 ∈ B0.

Theorem 3.18 CSR is equal to P`.

Proof: The proof has three parts:

(a) P` refines P0. Obvious.

(b) P` is stable. By Fact 3.14, if two states q1, q2 belong to the same block of P`, then δ(q1, a), δ(q2, a)
also belong to the same block, for every a. So no block can be split.

(c) Every stable refinement P of P0 refines P`. Let q1, q2 be states belonging to the same block
B of P. We prove that they belong to the same block of P`, i.e., that L (q1) = L (q2). By
symmetry, it suffices to prove that, for every word w, if w ∈ L (q1) then w ∈ L (q2). We
proceed by induction on the length of w. If w = ε then q1 ∈ F, and since P refines P0 , we
have q2 ∈ F, and so w ∈ L (q2). If w = aw′, then there is (q1, a, q′1) ∈ δ such that w′ ∈ L

(
q′1

)
.

Let B′ be the block containing q′1. Since P is stable, B′ does not split B, and so there is
(q2, a, q′2) ∈ δ such that q′2 ∈ B′. By induction hypothesis, w′ ∈ L

(
q′1

)
iff w′ ∈ L

(
q′2

)
. So

w′ ∈ L
(
q′2

)
, which implies w ∈ L (q2).

3.2.2 Quotienting

It remains to define the quotient of A with respect to a partition. It is convenient to define it not only
for DFAs, but more generally for NFAs. The states of the quotient are the blocks of the partition,
and there is a transition (B, a, B′) from block B to block B′ if A contains some transition (q, a, q′)
for states q and q′ belonging to B and B′, respectively. Formally:

Definition 3.19 The quotient of a NFA A with respect to a partition P is the NFA A/P = (QP,Σ, δP,Q0P, FP)
where

3.2. MINIMIZING DFAS 63

• QP is the set of blocks of P;

• (B, a, B′) ∈ δP if (q, a, q′) ∈ δ for some q ∈ B, q′ ∈ B′;

• Q0P is the set of blocks of P that contain at least one state of Q0; and

• FP is the set of blocks of P that contain at least one state of F.

Example 3.20 Figure 3.5 shows on the right the result of quotienting the DFA on the left with
respect to its language partition. The quotient has as many states as colors, and it has a transition
between two colors (say, an a-transition from pink to magenta) if the DFA on the left has such a
transition.

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a

Figure 3.5: Quotient of a DFA with respect to its language partition

We show that A/P`, the quotient of a DFA A with respect to the language partition, is the
minimal DFA for L. The main part of the argument is contained in the following lemma. Loosely
speaking, it says that any refinement of the language partition, i.e., any partition in which states
of the same block recognize the same language, “is good” for quotienting, because the quotient
recognizes the same language as the original automaton. Moreover, if the partition not only refines
but is equal to the language partition, then the quotient is a DFA.

Lemma 3.21 Let A be a NFA, and let P be a partition of the states of A. If P refines P`, then
LA(q) = LA/P(B) for every state q of A, where B is the block of P containing q; in particular
L(A/P) = L(A). Moreover, if A is a DFA and P = P`, then A/P is a DFA.

Proof: Let P be any refinement of P`. We prove that for every w ∈ Σ∗ we have w ∈ LA(q) iff
w ∈ LA/P(B). The proof is by induction on |w|.
|w| = 0. Then w = ε and we have

64 CHAPTER 3. MINIMIZATION AND REDUCTION

ε ∈ LA(q)
iff q ∈ F
iff B ⊆ F (P refines P`, and so also P0)
iff B ∈ FP

iff ε ∈ LA/P(B)

|w| > 0. Then w = aw′ for some a ∈ Σ. So w ∈ LA(q) iff there is a transition (q, a, q′) ∈ δ
such that w′ ∈ LA(q′). Let B′ be the block containing q′. By the definition of A/P we have
(B, a, B′) ∈ δP, and so:

aw′ ∈ LA(q)
iff w′ ∈ LA(q′) (definition of q′)
iff w′ ∈ LA/P(B′) (induction hypothesis)
iff aw′ ∈ LA/P(B) ((B, a, B′) ∈ δP)

For the second part, show that (B, a, B1), (B, a, B2) ∈ δP` implies B1 = B2. By definition there
exist (q, a, q1), (q′, a, q2) ∈ δ for some q, q′ ∈ B, q1 ∈ B1, and q2 ∈ B2. Since q, q′ belong to
the same block of the language partition, we have LA(q) = LA(q′). Since A is a DFA, we get
LA(q1) = LA(q2). Since P = P`, the states q1 and q2 belong to the same block, and so B1 = B2.

Proposition 3.22 The quotient A/P` is the minimal DFA for L.

Proof: By Lemma 3.21, A/P` is a DFA, and its states recognize residuals of L. Moreover, two
states of A/P` recognize different residuals by definition of the language partition. So A/P` has as
many states as residuals, and we are done.

3.2.3 Hopcroft’s algorithm

Algorithm LanPar leaves the choice of an adequate refinement triple [B, a, B′] open. While every
exhaustive sequence of refinements leads to the same result, and so the choice does not affect the
correctness of the algorithm, it affects its runtime. Hopcroft’s algorithm is a modification of LanPar
which carefully selects the next triple. When properly implemented, Hopcroft’s algorithm runs in
time O(mn log n) for a DFA with n states over a m-letter alphabet. A full analysis of the algorithm
is beyond the scope of this book, and so we limit ourselves to presenting its main ideas.

It is convenient to start by describing an intermediate algorithm, not as efficient as the final
one. The intermediate algorithm maintains a workset of pairs (a, B′), called splitters. Initially, the
workset contains all pairs (a, B′) where a is an arbitrary letter and B′ is a block of the original
partition (that is, either B′ = F or B′ = Q \ F). At every step, the algorithm chooses a splitter
from the workset, and uses it to split every block of the current partition (if possible). Whenever
a block B is split by (a, B′) into two new blocks B0 and B1, the algorithm adds to the workset all
pairs (b, B0) and (b, B1) for every letter b ∈ Σ.

It is not difficult to see that the intermediate algorithm is correct. The only point requiring a
moment of thought is that it suffices to use each splitter at most once. A priori a splitter (a, B′)

3.2. MINIMIZING DFAS 65

could be required at some point of the execution, and then later again. To discard this observe that,
by the definition of split, if (a, B′) splits a block B into B0 and B1, then it does not split any subset
of B0 or B1. So, after (a, B′) is used to split all blocks of a partition, since all future blocks are strict
subsets of the current blocks, (a, B′) is not useful anymore.

Hopcroft’s algorithm improves on the intermediate algorithm by observing that when a block
B is split into B0 and B1, it is not always necessary to add both (b, B0) and (b, B1) to the workset.
The fundamental for this is the following proposition:

Proposition 3.23 Let A = (Q,Σ, δ, q0, F), let P be a partition of Q, and let B be a block of P.
Suppose we refine B into B0 and B1. Then, for every a ∈ Σ, refining all blocks of P with respect
to any two of the splitters (a, B), (a, B0), and (a, B1) gives the same result as refining them with
respect to all three of them.

Proof: Let C be a block of P. Every refinement sequence with respect to two of the splitters
(there are six possible cases) yields the same partition of C, namely {C0,C1,C2}, where C0 and C1
contain the states q ∈ Q such that δ(q, a) ∈ B0 and δ(q, a) ∈ B1, respectively, and C2 contains the
states q ∈ Q such that δ(q, a) < B.

Now, assume that (a, B′) splits a block B into B0 and B1. For every b ∈ Σ, if (b, B) is in the workset,
then adding both (b, B0) and (b, B1) is redundant, because we only need two of the three. In this
case, Hopcroft’s algorithm chooses to replace (b, B) in the workset by (b, B0) and (b, B1) (that is,
to remove (b, B) and to add (b, B0) and (b, B1)). If (b, B) is not in the workset, then in principle we
could have two possible cases.

• If (b, B) was already removed from the workset and used to refine, then we only need to add
one of (b, B0) and (b, B1). Hopcroft’s algorithm adds the smaller of the two (i.e., (b, B0) if
|B0| ≤ |B1|, and (b, B1) otherwise).

• If (b, B) has not been added to the workset yet, then it looks as if we would still have to add
both of (b, B0) and (b, B1). However, a more detailed analysis shows that this is not the case,
it suffices again to add only one of (b, B0) and (b, B1), and Hopcroft’s algorithm adds again
the smaller of the two.

These considerations lead to the following pseudocode for Hopcroft’s algorithm, where (b,min{B0, B1})
denotes the smaller of (b, B0) and (b, B1):

66 CHAPTER 3. MINIMIZATION AND REDUCTION

Hopcroft(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: The language partition P`.

1 if F = ∅ or Q \ F = ∅ then return {Q}
2 else P← {F,Q \ F}
3 W← { (a,min{F,Q \ F}) | a ∈ Σ}

4 while W , ∅ do
5 pick (a, B′) from W

6 for all B ∈ P split by (a, B′) do
7 replace B by B0 and B1 in P
8 for all b ∈ Σ do
9 if (b, B) ∈W then replace (b, B) by (b, B0) and (b, B1) in W

10 else add (b,min{B0, B1}) to W

11 return P

We sketch an argument showing that the while loop is executed at most O(mn log n) times,
where m = |Σ| and n = |Q|. Fix a state q ∈ Q and a letter a ∈ Σ. It is easy to see that at every
moment during the execution of Hopcroft the workset contains at most one splitter (a, B) such that
q ∈ B (in particular, if (a, B) is in the workset and B is split at line 9, then q goes to either B0 or to
B1). We call this splitter (if present) the a-q-splitter, and define its size as the size of the block B.
So during the execution of the algorithm there are alternating phases in which the workset contains
one or zero a-q-splitters, respectively. Let us call them one-phases and zero-phases, respectively. It
is easy to see that during a one-phase the size of the a-q-splitter (defined as the number of states in
the block) can only decrease (at line 9). Moreover, if at the end of a one-phase the a-q-splitter has
size k, then, because of line 10, at the beginning of the next one-phase it has size at most k/2. So the
number of a-q-splitters added to the workset throughout the execution of the algorithm is O(log n),
and therefore the total number of splitters added to the workset is O(mn log n). So the while loop is
executed O(mn log n) times. If the algorithm is carefully implemented (which is non-trivial), then
it also runs in O(mn log n) time.

3.3 Reducing NFAs

a

a a

a

Figure 3.6: Two minimal NFAs for aa∗.

There is no canonical minimal NFA for a given regular language. The simplest witness of this

3.3. REDUCING NFAS 67

fact is the language aa∗, which is recognized by the two non-isomorphic, minimal NFAs of Figure
3.6. Moreover, computing any of the minimal NFAs equivalent to a given NFA is computationally
hard. In Chapter 4 we will show that the universality problem for NFAs is PSPACE-complete:
given a NFA A over an alphabet Σ, decide whether L (A) = Σ∗. Using this result, we can easily
prove that deciding the existence of a small NFA equivalent to a given one is PSPACE-complete.

Theorem 3.24 The following problem is PSPACE-complete: given a NFA A and a number k ≥ 1,
decide if there exists an NFA equivalent to A having at most k states.

Proof: To prove membership in PSPACE, observe first that if A has at most k states, then we can
answer A. So assume that A has more than k states. We use NPSPACE = PSPACE = co-PSPACE.
Since PSPACE = co-PSPACE, it suffices to give a procedure to decide if no NFA with at most
k states is equivalent to A. For this we construct all NFAs with at most k states (over the same
alphabet as A), reusing the same space for each of them, and check that none of them is equivalent
to A. Now, since NPSPACE=PSPACE, it suffices to exhibit a nondeterministic algorithm that,
given a NFA B with at most k states, checks that B is not equivalent to A (and runs in polynomial
space). The algorithm nondeterministically guesses a word, one letter at a time, while maintaining
the sets of states in both A and B reached from the initial states by the word guessed so far. The
algorithm stops when it observes that the current word is accepted by exactly one of A and B.

PSPACE-hardness is easily proved by reduction from the universality problem. If an NFA is
universal, then it is equivalent to an NFA with one state, and so, to decide if a given NFA A is
universal we can proceed as follows: Check first if A accepts all words of length 1. If not, then A
is not universal. Otherwise, check if some NFA with one state is equivalent to A. If not, then A is
not universal. Otherwise, if such a NFA, say B, exists, then, since A accepts all words of length 1,
B is the NFA with one final state and a loop for each alphabet letter. So A is universal.

However, we can reuse part of the theory for the DFA case to obtain an efficient algorithm to
possibly reduce the size of a given NFA.

3.3.1 The reduction algorithm

We fix for the rest of the section an NFA A = (Q,Σ, δ,Q0, F) recognizing a language L. Recall that
Definition 3.19 and the first part of Lemma 3.21 were defined for NFA. So L (A) = L (A/P) holds
for every refinement P of P`, and so any refinement of P` can be used to reduce A. The largest
reduction is obtained for P = P`, but P` is hard to compute for NFA. On the other extreme, the
partition that puts each state in a separate block is always a refinement of P`, but it does not provide
any reduction.

To find a reasonable trade-off we examine again Lemma 3.17, which proves that LanPar(A)
computes CSR for deterministic automata. Its proof only uses the following property of stable
partitions: if q1, q2 belong to the same block of a stable partition and there is a transition (q2, a, q′2) ∈
δ such that q′2 ∈ B′ for some block B′, then there is also a transition (q1, a, q′1) ∈ δ such that q′1 ∈ B′.

68 CHAPTER 3. MINIMIZATION AND REDUCTION

We extend the definition of stability to NFAs so that stable partitions still satisfy this property: we
just replace condition

δ(q1, a) ∈ B′ and δ(q2, a) < B′

of Definition 3.15 by

δ(q1, a) ∩ B′ , ∅ and δ(q2, a) ∩ B′ = ∅.

Definition 3.25 (Refinement and stability for NFAs) Let B, B′ be (not necessarily distinct) blocks
of a partition P, and let a ∈ Σ. The pair (a, B′) splits B if there are q1, q2 ∈ B such that δ(q1, a)∩B′ ,
∅ and δ(q2, a)∩B′ = ∅. The result of the split is the partition Ref NFA

P [B, a, B′] = (P\ {B})∪{B0, B1},
where

B0 = {q ∈ B | δ(q, a) ∩ B′ = ∅} and B1 = {q ∈ B | δ(q, a) ∩ B′ , ∅} .

A partition is unstable if it contains blocks B, B′ such that B′ splits B, and stable otherwise.

Using this definition we generalize LanPar(A) to NFAs in the obvious way: allow NFAs as
inputs, and replace Ref P by Ref NFA

P as new notion of refinement. Lemma 3.17 still holds: the
algorithm still computes CSR, but with respect to the new notion of refinement. Notice that in the
special case of DFAs it reduces to LanPar(A), because Ref P and Ref NFA

P coincide for DFAs.

CSR(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: The partition CSR of A.

1 if F = ∅ or Q \ F = ∅ then P← {Q}
2 else P← {F,Q \ F}
3 while P is unstable do
4 pick B, B′ ∈ P and a ∈ Σ such that (a, B′) splits B
5 P← Ref NFA

P [B, a, B′]
6 return P

Notice that line 1 of CSR(A) is different from line 1 in algorithm LanPar. If all states of a
NFA are nonfinal then every state recognizes ∅, but if all are final we can no longer conclude that
every state recognizes Σ∗, as was the case for DFAs. In fact, all states might recognize different
languages.

In the case of DFAs we had Theorem 3.18, stating that CSR is equal to P`. The theorem does
not hold anymore for NFAs, as we will see later. However, part (c) of the proof, which showed that
CSR refines P`, still holds, with exactly the same proof. So we get:

Theorem 3.26 Let A = (Q,Σ, δ,Q0, F) be a NFA. The partition CSR refines P`.

Now, Lemma 3.21 and Theorem 3.26 lead to the final result:

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 69

Corollary 3.27 Let A = (Q,Σ, δ,Q0, F) be a NFA. Then L (A/CSR) = L (A).

Example 3.28 Consider the NFA at the top of Figure 3.7. CSR is the partition indicated by the
colors. A possible run of CSR(A) is graphically represented at the bottom of the figure as a tree.
Initially we have the partition with two blocks shown at the top of the figure: the block {1, . . . , 14}
of non-final states and the block {15} of final states. The first refinement uses (a, {15}) to split
the block of non-final states, yielding the blocks {1, . . . , 8, 11, 12, 13} (no a-transition to {15}) and
{9, 10, 14} (an a-transition to {15}). The leaves of the tree are the blocks of CSR.

In this example we have CSR , P`. For instance, states 3 and 5 recognize the same language,
namely (a + b)∗aa(a + b)∗, but they belong to different blocks of CSR.

The quotient automaton is shown in Figure 3.8.

We finish the section with a remark.

Remark 3.29 If A is an NFA, then A/P` might not be a minimal NFA for L. The NFA of Figure 3.9
is an example: all states accept different languages, and so A/P` = A, but the NFA is not minimal,
since, for instance, the state at the bottom can be removed without changing the language.

It is not difficult to show that if two states q1, q2 belong to the same block of CSR, then they not
only recognize the same language, but also satisfy the following far stronger property: for every
a ∈ Σ and for every q′1 ∈ δ(q1, a), there exists q′2 ∈ δ(q2, a) such that L

(
q′1

)
= L

(
q′2

)
. This can

be used to show that two states belong to different blocks of CSR. For instance, consider states 2
and 3 of the NFA on the left of Figure 3.10. They recognize the same language, but state 2 has a
c-successor, namely state 4, that recognizes {d}, while state 3 has no such successor. So states 2
and 3 belong to different blocks of CSR. A possible run of of the CSR algorithm on this NFA is
shown on the right of the figure. For this NFA, CSR has as many blocks as states.

3.4 A Characterization of the Regular Languages

We present a useful byproduct of the results of Section 3.1.

Theorem 3.30 A language L is regular iff it has finitely many residuals.

Proof: If L is not regular, then no DFA recognizes it. Since, by Proposition 3.11, the canonical
automaton CL recognizes L, then CL necessarily has infinitely many states, and so L has infinitely
many residuals.

If L is regular, then some DFA A recognizes it. By Lemma 3.6, the number of states of A is
greater than or equal to the number of residuals of L, and so L has finitely many residuals.

This theorem provides a useful technique for proving that a given language L ⊆ Σ∗ is not regular:
exhibit an infinite set of words W ⊆ Σ∗ such that Lw , Lv for every two distinct words w, v ∈ W (see
also Example 3.4). In Example 3.4 we showed using this technique that the languages {anbn | n ≥ 0}
and {ww | w ∈ Σ∗} have infinitely many residuals, and so that they are not regular. We give here a
third example:

70 CHAPTER 3. MINIMIZATION AND REDUCTION

a a a a

6

a, b

a a a a

a, ba, b

a, b a, b a, b

a

a a

a a

a

a

a

a

a

a a

aa

1 2

7

1211 13

8

4

9

14 15

10

53

{2, 7, 12}

(a, {4, 8})

{7, 12} {2}

(b, {6, 11})

{6, 11}

{6} {11}

{1, . . . , 8, 11, 12, 13}

(a, {15})

{1, . . . , 14}

{9, 10, 14}

(a, {9, 10, 14})

{15}

(a, {3, 4, 5, 8, 13})

{1, 2, 6, 7, 11, 12}

{1, 6, 11}

(b, {1, 6, 11})

{1}

{3, 4, 5, 8, 13}

(b, {3, 4, 5, 8, 13})

{4, 8} {3, 5, 13}

(a, {4, 8})

{3} {5, 13}

Figure 3.7: An NFA and a run of CSR() on it.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 71

a, b

a

a

a

a, b

a

a, b a, b

a, b

a
a

a

a

a

a

a
aa

a a

Figure 3.8: The quotient of the NFA of Figure 3.7.

a

a b

a, b

Figure 3.9: An NFA A such that A/P` is not minimal.

72 CHAPTER 3. MINIMIZATION AND REDUCTION

{1, 3}

(b, {1, 3})

{1} {3}

(c, {5})

{1, 2, 3}

{2}

{1, 2, 3, 5}

(e, {7})

{5}

{4, 6}

(e, {7})

{4} {6}

c

d, e

c

c d

ea

b

1

2

3

5

6

7

4 (d, {7})

{1, . . . , 6} {7}

Figure 3.10: An NFA such that CSR , P`.

• {an2
| n ≥ 0}. Let W = {an2

| n ≥ 0} (W = L in this case). For every two distinct
words ai2 , a j2 ∈ W (i.e., i , j), we have that a2i+i belongs to the ai2-residual of L, because
ai2+2i+1 = a(i+1)2

, but not to the a j2-residual, because a j2+2i+1 is only a square number for
i = j.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 73

Exercises

Exercise 28 Determine the residuals of the following languages over Σ = {a, b}: (ab + ba)∗, (aa)∗,
and {anbncn | n ≥ 0}.

Exercise 29 Consider the most-significant-bit-first encoding (MSBF encoding) of natural numbers
over the alphabet Σ = {0, 1}. In this exercise we assume that every number has infinitely many
encodings, because all the words of 0 ∗ w encode the same number as w.

Construct the minimal DFAs accepting the following languages, where Σ4 denotes all words of
length 4:

1. {w | MSBF−1(w) mod 3 = 0} ∩ Σ4.

2. {w | MSBF−1(w) is a prime } ∩ Σ4.

Exercise 30 (Blondin) Let A and B be the DFAs of Figure 3.11 in page 76.

1. Compute the language partitions of A and B.

2. Construct the quotients of A and B with respect to their language partitions.

3. Give regular expressions for L(A) and L(B).

Exercise 31 Consider the language partition algorithm LanPar. Since every execution of its while
loop increases the number of blocks by one, the loop can be executed at most |Q| − 1 times. Show
that this bound is tight, i.e. give a family of DFAs for which the loop is executed |Q| − 1 times.
Hint: There exists a family with a one-letter alphabet.

Exercise 32 (Blondin) Let A and B be the NFAs of Figure 3.12 in page 77.

1. Compute the coarsest stable refinements (CSR) of A and B.

2. Construct the quotients of A and B with respect to their CSRs.

3. Are the obtained automata minimal?

Exercise 33 Let A1, A2 be two DFAs with n1 and n2 states, respectively. Show: if L (A1) ,
L (() A2), then there exists a word w of length at most n1 + n2 − 2 such that w ∈ (L1 \ L2)∪ (L2 \ L1).
Hint: Consider the NFA obtained by putting A1 and A2 “side by side”, and compute CSR(A). If
L (A1) , L (A2), then after termination the initial states q01 and q02 will be in different blocks.

Exercise 34 Consider the family of languages Lk = {ww | w ∈ Σk}, where k ≥ 2.

(1) Construct the minimal DFA for L2.

74 CHAPTER 3. MINIMIZATION AND REDUCTION

q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

q0 q1

q2 q3

q4

b

a a b b

a

b

a

a, b

Figure 3.11: DFAs A (left) and B (right) of Exercise 30.

(2) How many states has the minimal DFA accepting Lk ?

Exercise 35 Given a language L ⊆ Σ∗ and w ∈ Σ∗, we denote wL = {u ∈ Σ∗ | uw ∈ L} . A language
L′ ⊆ Σ∗ is an inverse residual of L if L′ = wL for some w ∈ Σ∗.

1. Determine the inverse residuals of the first two languages in Exercise 28.

2. Show that a language is regular iff it has finitely many inverse residuals.

3. Does a language always have as many residuals as inverse residuals?

Exercise 36 A DFA A = (Q,Σ, δ, q0, F) is reversible if no letter can enter a state from two distinct
states, i.e. for every p, q ∈ Q and σ ∈ Σ, if δ(p, σ) = δ(q, σ), then p = q.

1. Give a reversible DFA recognizing L = {ab, ba, bb}.

2. Show that the minimal DFA recognizing L is not reversible.

3. Is there a unique minimal reversible DFA recognizing L (up to isomorphism)? Justify your
answer.

4. Prove that the language (a∗ba∗) + (b∗ab∗) is not recognized by any reversible DFA. (Paper
by Holzer, Jakobi, and Kutrib in DLT 2015.)

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 75

q0

q1 q2

q3 q4

q5

a

a

b

a

a

a

a

b

a, b

a, b

a

a

q1 q2 q3

q4

a

a

a b

a

a b

a

Figure 3.12: NFAs for Exercise 32.

Exercise 37 Design an efficient algorithm Res(r, a), where r is a regular expression over an alpha-
bet Σ and a ∈ Σ, that returns a regular expression satisfying L

(
Res(r, a)

)
=

(
L(r)

)a.

Exercise 38 A DFA with negative transitions (DFA-n) is a DFA whose transitions are partitioned
into positive and negative transitions. A run of a DFA-n is accepting if:

• it ends in a final state and the number of occurrences of negative transitions is even, or

• it ends in a non-final state and the number of occurrences of negative transitions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the acceptance condition:
after taking the transition we accept iff we would not accept were the transition positive.

• Prove that the languages recognized by DFAs with negative transitions are regular.

• Give a DFA-n for a regular language having fewer states than the minimal DFA for the
language.

• Show that the minimal DFA-n for a language is not unique (even for languages whose mini-
mal DFA-n’s have fewer states than their minimal DFAs).

Exercise 39 A residual of a regular language L is composite if it is the union of other residuals of
L. A residual of L is prime if it is not composite. Show that every regular language L is recognized
by an NFA whose number of states is equal to the number of prime residuals of L.

76 CHAPTER 3. MINIMIZATION AND REDUCTION

Exercise 40 Prove or disprove:

1. A subset of a regular language is regular.

2. A superset of a regular language is regular.

3. If L1 and L1L2 are regular, then L2 is regular.

4. If L2 and L1L2 are regular, then L1 is regular.

Exercise 41 (T. Henzinger) Which of these languages over the alphabet {0, 1} are regular?

1. The set of words containing the same number of 0’s and 1’s.

2. The set of words containing the same number of occurrences of the strings 01 and 10.
(E.g., 01010001 contains three occurrences of 01 and two occurrences of 10.)

3. Same for the pair of strings 00 and 11, the pair 001 and 110, and the pair 001 and 100.

Exercise 42 (Blondin) Let Σ1 and Σ2 be alphabets. A morphism is a function h : Σ∗1 → Σ∗2
such that h(ε) = ε and h(uv) = h(u) · h(v) for every u, v ∈ Σ∗1. In particular, h(a1a2 · · · an) =

h(a1)h(a2) · · · h(an) for every a1, a2, . . . , an ∈ Σ. Hence, a morphism h is entirely determined by its
image over letters.

1. Let A be an NFA over Σ1. Give an NFA B that accepts h(L(A)) = {h(w) : w ∈ L(A)}.

2. Let A be an NFA over Σ2. Give an NFA B that accepts h−1(L(A)) = {w ∈ Σ∗1 : h(w) ∈ L(A)}.

3. Recall that {anbn : n ∈ N} is not regular. Using this fact and the previous results, show that
L ⊆ {a, b, c, d, e}∗ where

L = {(ab)mane(cd)mdn : m, n ∈ N}

is also not regular.

Exercise 43 A word w = a1 . . . an is a subword of v = b1 . . . bm, denoted by w � v, if there are
indices 1 ≤ i1 < i2 . . . < in ≤ m such that ai j = b j for every j ∈ {1, . . . n}. Higman’s lemma states
that every infinite set of words over a finite alphabet contains two words w1, w2 such that w1 � w2.

A language L ⊆ Σ∗ is upward-closed, resp. downward-closed), if for every two words w, v ∈ Σ∗,
if w ∈ L and w � v, then v ∈ L, resp. if w ∈ L and w � v, then v ∈ L. The upward-closure of a
language L is the upward-closed language obtained by adding to L all words v such that w � v for
some v ∈ L.

1. Prove using Higman’s lemma that every upward-closed language is regular.
Hint: Consider the minimal words of L, i.e., the words w ∈ L such that no proper subword
of w belongs to L.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 77

2. Prove that every downward-closed language is regular.

3. Give regular expressions for the upward and downward closures of {anbn min n ≥ 0}.

4. Give algorithms that transform a regular expression r for a language into regular expressions
r⇑ and r⇓ for its upward-closure and its downward-closure.

5. Give algorithms that transform an NFA A recognizing a language into NFAs A ⇑ and A ⇓
recognizing its upward-closure and its downward-closure.

Exercise 44 (Abdulla, Bouajjani, and Jonsson) An atomic expression over an alphabet Σ∗ is an
expression of the form ∅, ε, (a + ε) or (a1 + . . . + an)∗, where a, a1, . . . , an ∈ Σ. A product is a
concatenation e1 e2 . . . en of atomic expressions. A simple regular expression is a sum p1 + . . .+ pn

of products.

1. Prove that the language of a simple regular expression is downward-closed (see Exercise 43).

2. Prove that every downward-closed language can be represented by a simple regular expres-
sion.
Hint: since every downward-closed language is regular, it is represented by a regular expres-
sion. Prove that this expression is equivalent to a simple regular expression.

Exercise 45 Consider the alphabet Σ = {up, down, left, right}. A word over Σ corresponds to a line
in a grid consisting of concatenated segments drawn in the direction specified by the letters. In the
same way, a language corresponds to a set of lines. For example, the set of all staircases can be
specified as the set of lines given by the regular language (up right)∗. It is a regular language.

1. Specify the set of all skylines as a regular language (i.e., formalize the intuitive notion of
skyline). Out of the three lines below, the left one is a skyline, while the other two are not.

2. Show that the set of all rectangles is not regular.

Exercise 46 A NFA A = (Q,Σ, δ,Q0, F) is reverse-deterministic if (q1, a, q) ∈ δ and (q2, a, q) ∈
trans implies q1 = q2, i.e., no state has two input transitions labelled by the same letter. Further, A
is trimmed if every state accepts at least one word, i.e., if LA(q) , ∅ for every q ∈ Q.

Let A be a reverse-deterministic, trimmed NFA with one single final state q f . Prove that
NFAtoDFA(A) is a minimal DFA.

Hint: Show that any two distinct states of NFAtoDFA(A) recognize different languages, and
apply Corollary 3.13.

78 CHAPTER 3. MINIMIZATION AND REDUCTION

Exercise 47 Let Rev(A) be the algorithm of Exercise 11 that, given a NFA A as input, returns a
trimmed NFA AR such that L(AR) =

(
L(A))R, where LR denotes the reverse of L (see Exercise 11).

Recall that a NFA is trimmed if every state accepts at least one word (see Exercise 46). Prove that
for every NFA A the DFA

NFAtoDFA
(

Rev
(

NFAtoDFA(Rev(A))
))

is the unique minimal DFA recognizing L(A).

Chapter 4

Operations on Sets: Implementations

Recall the list of operations on sets that should be supported by our data structures, where U is the
universe of objects, X,Y are subsets of U, x is an element of U:

Member(x, X) : returns true if x ∈ X, false otherwise.
Complement(X) : returns U \ X.
Intersection(X, Y) : returns X ∩ Y .
Union(X, Y) : returns X ∪ Y .
Empty(X) : returns true if X = ∅, false otherwise.
Universal(X) : returns true if X = U, false otherwise.
Included(X,Y) : returns true if X ⊆ Y , false otherwise.
Equal(X,Y) : returns true if X = Y , false otherwise.

We fix an alphabet Σ, and assume that there exists a bijection between U and Σ∗, i.e., we assume
that each object of the universe is encoded by a word, and each word is the encoding of some object.
Under this assumption, the operations on sets and elements become operations on languages and
words. For instance, the first two operations become

Member(w, L) : returns true if w ∈ L, false otherwise.
Complement(L) : returns L.

The assumption that each word encodes some object may seem too strong. Indeed, the language
E of encodings is usually only a subset of Σ∗. However, once we have implemented the operations
above under this strong assumption, we can easily modify them so that they work under a much
weaker assumption, that almost always holds: the assumption that the language E of encodings is
regular. Assume, for instance, that E is a regular subset of Σ∗ and L is the language of encodings
of a set X. Then, we implement Complement(X) so that it returns, not L, but Intersection(L, E).

For each operation we present an implementation that, given automata representations of the

79

80 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

operands, returns an automaton representing the result (or a boolean, when that is the return type).
Sections 4.1 and 4.2 consider the cases in which the representation is a DFA and a NFA, respec-
tively.

4.1 Implementation on DFAs

In order to evaluate the complexity of the operations we must first make explicit our assumptions
on the complexity of basic operations on a DFA A = (Q,Σ, δ, q0, F). We assume that dictionary
operations (lookup, add, remove) on Q and δ can be performed in constant time using hashing. We
assume further that, given a state q, we can decide in constant time if q = q0, and if q ∈ F, and that
given a state q and a letter a ∈ Σ, we can find in constant time the unique state δ(q, a).

4.1.1 Membership.

To check membership for a word w we just execute the run of the DFA on w. It is convenient
for future use to have an algorithm Member[A](w, q) that takes as parameter a DFA A, a word w,
and a state q, and a and checks if w is accepted with q as initial state. Member(w, L) can then be
implemented by Mem[A](w, q0), where A is the automaton representing L. Writing head(aw) = a
and tail(aw) = w for a ∈ Σ and w ∈ Σ∗, the algorithm looks as follows:

MemDFA[A](w, q)
Input: DFA A = (Q,Σ, δ,Q0, F), state q ∈ Q, word w ∈ Σ∗,
Output: true if w ∈ L(q), false otherwise

1 if w = ε then return q ∈ F
2 else return Member[A](tail(w) , δ(q, head(w)))

The complexity of the algorithm is O(|w|).

4.1.2 Complement.

Implementing the complement operations on DFAs is easy. Recall that a DFA has exactly one run
for each word, and the run is accepting iff it reaches a final state. Therefore, if we swap final and
non-final states, the run on a word becomes accepting iff it was non-accepting, and so the new DFA
accepts the word iff the new one did not accept it. So we get the following linear-time algorithm:

CompDFA(A)
Input: DFA A = (Q,Σ, δ,Q0, F),
Output: DFA B = (Q′,Σ, δ′,Q′0, F

′) with L (B) = L (A)

1 Q′ ← Q; δ′ ← δ; q′0 ← q0; F′ = ∅

2 for all q ∈ Q do
3 if q < F then add q to F′

4.1. IMPLEMENTATION ON DFAS 81

Observe that complementation of DFAs preserves minimality. By construction, each state of
CompDFA(A) recognizes the complement of the language recognized by the same state in A. There-
fore, if the states of A recognize pairwise different languages, so do the states of CompDFA(A).
Apply now Corollary 3.13, stating that a DFA is minimal iff their states recognize different lan-
guages.

4.1.3 Binary Boolean Operations

Instead of specific implementations for union and intersection, we give a generic implementation
for all binary boolean operations. Given two DFAs A1 and A2 and a binary boolean operation
like union, intersection, or difference, the implementation returns a DFA recognizing the result of
applying the operation to L (A1) and L (A2). The DFAs for different boolean operations always have
the same states and transitions, they differ only in the set of final states. We call this DFA with a
yet unspecified set of final states the pairing of A1 and A2, denoted by [A1, A2]. Formally:

Definition 4.1 Let A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) be DFAs. The pairing
[A1, A2] of A1 and A2 is the tuple (Q,Σ, δ, q0) where:

• Q = { [q1, q2] | q1 ∈ Q1, q2 ∈ Q2};

• δ = { ([q1, q2], a, [q′1, q
′
2]) | (q1, a, q′1) ∈ δ1, (q2, a, q′2) ∈ δ2};

• q0 = [q01, q02].

The run of [A1, A2] on a word of Σ∗ is defined as for DFAs.

It follows immediately from this definition that the run of [A1, A2] over a word w = a1a2 . . . an is
also a “pairing” of the runs of A1 and A2 over w. Formally,

q01
a1
−−−→ q11

a2
−−−→ q21 . . . q(n−1)1

an
−−−→ qn1

q02
a1
−−−→ q12

a2
−−−→ q22 . . . q(n−1)2

an
−−−→ qn2

are the runs of A1 and A2 on w if and only if[
q01
q02

]
a1
−−−→

[
q11
q12

]
a2
−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

]
an
−−−→

[
qn1
qn2

]
is the run of [A1, A2] on w.

DFAs for different boolean operations are obtained by adding an adequate set of final states to
[A1, A2]. For intersection, [A1, A2] must accept w if and only if A1 accepts w and A2 accepts w.
This is achieved by declaring a state [q1, q2] final if and only if q1 ∈ F1 and q2 ∈ F2. For union,
we just replace and by or. For difference, [A1, A2] must accept w if and only if A1 accepts w and
A2 does not accepts w, and so we declare [q1, q2] final if and only if q1 ∈ F1 and not q2 ∈ F2.

82 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Example 4.2 Figure 4.2 shows at the top two DFAs over the alphabet Σ = {a}. They recognize
the words whose length is a multiple of 2 and a multiple of three, respectively. We denote these
languages by Mult(2) and Mult(3). The Figure then shows the pairing of the two DFAs (for clar-
ity the states carry labels x, y instead of [x, y]), and three DFAs recognizing Mult(2) ∩ Mult(3),
Mult(2) ∪ Mult(3), and Mult(2) \Mult(3), respectively.

3 4
aa

a

5

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a

a

a

a

a

a

21

Figure 4.1: Two DFAs, their pairing, and DFAs for the intersection, union, and difference of their
languages.

Example 4.3 The tour of conversions of Chapter 2 started with a DFA for the language of all
words over {a, b} containing an even number of a’s and an even number of b’s. This language is
the intersection of the language of all words containing an even number of a’s, and the language of
all words containing an even number of b’s. Figure 4.2 shows DFAs for these two languages, and
the DFA for their intersection.

We can now formulate a generic algorithm that, given two DFAs recognizing languages L1, L2
and a binary boolean operation, returns a DFA recognizing the result of “applying” the boolean
operation to L1, L2. First we formally define what this means. Given an alphabet Σ and a binary

4.1. IMPLEMENTATION ON DFAS 83

a

a

a

a

b b

bb

a

a

bb

1 2 3 4b

b

a a

1, 3 2, 3

2, 41, 4

Figure 4.2: Two DFAs and a DFA for their intersection.

boolean operator � : {true, false} × {true, false} → {true, false}, we lift � to a function �̂ : 2Σ∗ ×

2Σ∗ → 2Σ∗ on languages as follows

L1�̂L2 = {w ∈ Σ∗ | (w ∈ L1) � (w ∈ L2)}

That is, in order to decide if w belongs to L1�̂L2, we first evaluate (w ∈ L1) and (w ∈ L2) to true
of false, and then apply �̂ to the results. For instance we have L1 ∩ L2 = L1∧L2. The generic
algorithm, parameterized by �, looks as follows:

BinOp[�](A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: DFA A = (Q,Σ, δ,Q0, F) with L (A) = L (A1) �̂ L (A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02]
3 W ← {q0}

4 while W , ∅ do
5 pick [q1, q2] from W
6 add [q1, q2] to Q
7 if (q1 ∈ F1) � (q2 ∈ F2) then add [q1, q2] to F
8 for all a ∈ Σ do
9 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)

10 if [q′1, q
′
2] < Q then add [q′1, q

′
2] to W

11 add ([q1, q2], a, [q′1, q
′
2]) to δ

Popular choices of boolean language operations are summarized in the left column below, while
the right column shows the corresponding boolean operation needed to instantiate BinOp[�].

84 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Language operation b1 � b2

Union b1 ∨ b2
Intersection b1 ∧ b2
Set difference (L1 \ L2) b1 ∧ ¬b2
Symmetric difference (L1 \ L2 ∪ L2 \ L1) b1 ⇔ ¬b2

The output of BinOp is a DFA with O(|Q1| · |Q2|), states, regardless of the boolean operation
being implemented. To show that the bound is reachable, let Σ = {a}, and for every n ≥ 1 let Mult(n)
denote the language of words whose length is a multiple of n. As in Figure 4.2, the minimal DFA
recognizing Mult(n) is a cycle of n states, with the initial state being also the only final state. For
any two relatively prime numbers n1 and n2 (i.e., two numbers without a common divisor), we have
Mult(n1)∩Mult(n2) = Mult(n1 · n2). Therefore, any DFA for Mult(n1 · n2) has at least n1 · n2 states.
In fact, if we denote the minimal DFA for Mult(k) by Ak, then BinOp[∧](An, Am) = An·m.

Notice however, that in general minimality is not preserved: the product of two minimal DFAs
may not be minimal. In particular, given any regular language L, the minimal DFA for L ∩ L has
one state, but the result of the product construction is a DFA with the same number of states as the
minimal DFA for L.

4.1.4 Emptiness.

A DFA accepts the empty language if and only if it has no final states (recall our normal form,
where all states must be reachable!).

Empty(A)
Input: DFA A = (Q,Σ, δ,Q0, F)
Output: true if L (A) = ∅, false otherwise

1 return F = ∅

The runtime depends on the implementation. If we keep a boolean indicating whether the DFA
has some final state, then the complexity of Empty() is O(1). If checking F = ∅ requires a linear
scan over Q, then the complexity is O(|Q|).

4.1.5 Universality.

A DFA accepts Σ∗ iff all its states are final, again an algorithm with complexity O(1) given normal
form, and O(|Q|) otherwise.

UnivDFA(A)
Input: DFA A = (Q,Σ, δ,Q0, F)
Output: true if L (A) = Σ∗, false otherwise

1 return F = Q

4.1. IMPLEMENTATION ON DFAS 85

4.1.6 Inclusion.

Given two regular languages L1, L2, the following lemma characterizes when L1 ⊆ L2 holds.

Lemma 4.4 Let A1 = (Q1,Σ, δ1,Q01, F1) and A2 = (Q2,Σ, δ2,Q02, F2) be DFAs. L (A1) ⊆ L (A2)
if and only if every state [q1, q2] of the pairing [A1, A2] satisfying q1 ∈ F1 also satisfies q2 ∈ F2.

Proof: Let L1 = L (A1) and L2 = L (A2). We have

L1 * L2
⇔ L1 \ L2 , ∅

⇔ at least one state [q1, q2] of the DFA for L1 \ L2 is final
⇔ q1 ∈ F1 and q2 < F2.

The condition of the lemma can be checked by slightly modifying BinOp. The resulting algorithm
checks inclusion on the fly:

InclDFA(A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: true if L (A1) ⊆ L (A2), false otherwise

1 Q← ∅;
2 W ← {[q01, q02]}
3 while W , ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if (q1 ∈ F1) and (q2 < F2) then return false
7 for all a ∈ Σ do
8 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)
9 if [q′1, q

′
2] < Q then add [q′1, q

′
2] to W

10 return true

4.1.7 Equality.

For equality, just observe that L (A1) = L (A2) holds if and only if the symmetric difference of
L (A1) and L (A2) is empty. The algorithm is obtained by replacing Line 7 of IncDFA(A1, A2) by

if ((q1 ∈ F1) and q2 < F2)) or ((q1 < F1) and (q2 ∈ F2)) then return false .

Let us call this algorithm EqDFA. An alternative procedure is to minimize A1 and A2, and then
check if the results are isomorphic DFAs. In fact, the isomorphism check is not even necessary:
one can just apply CSR to the NFA A1 ∪ A2 = (Q1 ∪ A2,Σ, δ1 ∪ δ2, {q01, q02}, F1 ∪ F2. It is

86 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

easy to see that in this particular case CSR still computes the language partition, and so we have
L (() A1) = L (() A2) if and only if after termination the initial states of A1 and A2 belong to the same
block.

If Hopcroft’s algorithm is used for computing CSR, then the equality check can be performed
in O(n log n) time, where n is the sum of the number of states of A1 and A2. This complexity is
lower than that of EqDFA. However, EqDFA has two important advantages:

• It works on-the-fly. That is, L (A1) = L (A2) can be tested while constructing A1 and A2. This
allows to stop early if a difference in the languages is detected. On the contrary, minimization
algorithms cannot minimize a DFA while constructing it. All states and transitions must be
known before the algorithm can start.

• It is easy to modify EqDFA so that it returns a witness when L (A1) , L (A2), that is, a word
in the symmetric difference of L (A1) and L (A2). This is more difficult to achieve with the
minimization algorithm. Moreover, to the best of our knowledge it cancels the complexity
advantage. This may seem surprising, because, as shown in Exercise ??, the shortest element
in the symmetric difference of L (A1) and L (A2) has length n1+n2−2, where n1 and n2 are the
numbers of states of A1 and A2, respectively. However, this element is computed by tracking
for each pair of states the shortest word in the symmetric difference of the languages they
recognize. Since there are O(n1 · n2) pairs, this takes O(n1 · n2) time. There could be a more
efficient way to compute the witness, but we do not know of any.

4.2 Implementation on NFAs

For NFAs we make the same assumptions on the complexity of basic operations as for DFAs.
For DFAs, however, we had the assumption that, given a state q and a letter a ∈ Σ, we can find
in constant time the unique state δ(q, a). This assumption no longer makes sense for NFA, since
δ(q, a) is a set.

4.2.1 Membership.

Membership testing is slightly more involved for NFAs than for DFAs. An NFA may have many
runs on the same word, and examining all of them one after the other in order to see if at least one
is accepting is a bad idea: the number of runs may be exponential in the length of the word. The
algorithm below does better. For each prefix of the word it computes the set of states in which the
automaton may be after having read the prefix.

4.2. IMPLEMENTATION ON NFAS 87

MemNFA[A](w)
Input: NFA A = (Q,Σ, δ,Q0, F), word w ∈ Σ∗,
Output: true if w ∈ L(A), false otherwise

1 W ← Q0;
2 while w , ε do
3 U ← ∅
4 for all q ∈ W do
5 add δ(q, head(w)) to U
6 W ← U
7 w← tail(w)
8 return (W ∩ F , ∅)

Example 4.5 Consider the NFA of Figure 4.3, and the word w = aaabba. The successive values
of W, that is, the sets of states A can reach after reading the prefixes of w, are shown on the right.
Since the final set contains final states, the algorithm returns true.

1

2

3

4

a

b

a
a, b

b

a, b

a

a
b

Prefix read W

ε {1}
a {2}
aa {2, 3}
aaa {1, 2, 3}
aaab {2, 3, 4}
aaabb {2, 3, 4}
aaabba {1, 2, 3, 4}

Figure 4.3: An NFA A and the run of Mem[A](aaabba) .

For the complexity, observe first that the while loop is executed |w| times. The for loop is exe-
cuted at most |Q| times. Each execution takes at most time O(|Q|), because δ(q, head(w)) contains
at most |Q| states. So the overall runtime is O(|w| · |Q|2).

4.2.2 Complement.

Recall that an NFA A may have multiple runs on a word w, and it accepts w if at least one is
accepting. In particular, an NFA can accept w because of an accepting run ρ1, but have another
non-accepting run ρ2 on w. It follows that the complementation operation for DFAs cannot be
extended to NFAs: after exchanging final and non-final states the run ρ1 becomes non-accepting,

88 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

but ρ2 becomes accepting. So the new NFA still accepts w (at least ρ2 accepts), and so it does not
recognize the complement of L (A).

For this reason, complementation for NFAs is carried out by converting to a DFA, and comple-
menting the result.

CompNFA(A)
Input: NFA A,
Output: DFA A with L

(
A
)

= L (A)

1 A← CompDFA (NFAtoDFA(A))

Since making the NFA deterministic may cause an exponential blow-up in the number of states,
the number of states of A may be O(2|Q|).

4.2.3 Union and intersection.

On NFAs it is no longer possible to uniformly implement binary boolean operations. The pairing
operation can be defined exactly as in Definition 4.1. The runs of a pairing [A1, A2] of NFAs on a
given word are defined as for NFAs. The difference with respect to the DFA case is that the pairing
may have multiple runs or no run at all on a word. But we still have that

q01
a1
−−−→ q11

a2
−−−→ q21 . . . q(n−1)1

an
−−−→ qn1

q02
a1
−−−→ q12

a2
−−−→ q22 . . . q(n−1)2

an
−−−→ qn2

are runs of A1 and A2 on w if and only if

[
q01
q02

]
a1
−−−→

[
q11
q12

]
a2
−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

]
an
−−−→

[
qn1
qn2

]

is a run of [A1, A2] on w.
Let us now discuss separately the cases of intersection, union, and set difference.

Intersection. Let [q1, q2] be a final state of [A1, A2] if q1 is a final state of A1 and q2 is a final
state of q2. Then it is still the case that [A1, A2] has an accepting run on w if and only if A1 has an
accepting run on w and A2 has an accepting run on w. So, with this choice of final states, [A1, A2]
recognizes L (A1) ∩ L (A2). So we get the following algorithm:

4.2. IMPLEMENTATION ON NFAS 89

IntersNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: NFA A1 ∩ A2 = (Q,Σ, δ,Q0, F) with L (A1 ∩ A2) = L (A1) ∩ L (A2)

1 Q, δ, F ← ∅; Q0 ← Q01 × Q02

2 W ← Q0

3 while W , ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F
7 for all a ∈ Σ do
8 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do
9 if [q′1, q

′
2] < Q then add [q′1, q

′
2] to W

10 add ([q1, q2], a, [q′1, q
′
2]) to δ

Notice that we overload the symbol ∩, and denote the output by A1∩A2. The automaton A1∩A2 is
often called the product of A1 and A2. It is easy to see that, as operation on NFAs, ∩ is associative
and commutative in the following sense:

L ((A1 ∩ A2) ∩ A3) = L (A1) ∩ L (A2) ∩ L (A3) = L (A1 ∩ (A2 ∩ A3))
L (A1 ∩ A2) = L (A1) ∩ L (A2) = L (A2 ∩ A1)

For the complexity, observe that in the worst case the algorithm must examine all pairs (q1, a, q′1) ∈
δ1, (q2, a, q′2) ∈ δ2 of transitions, but every pair is examined at most once. So the runtime is
O(|δ1||δ2|).

Example 4.6 Consider the two NFAs of Figure 4.4 over the alphabet {a, b}. The first one recog-
nizes the words containing at least two blocks with two consecutive a’s each, the second one those
containing at least one block. The result of applying IntersNFA() is the NFA of Figure 3.7 in page
72. Observe that the NFA has 15 states, i.e., all pairs of states are reachable.

Observe that in this example the intersection of the languages recognized by the two NFAs
is equal to the language of the first NFA. So there is an NFA with 5 states that recognizes the
intersection, which means that the output of IntersNFA() is far from optimal in this case. Even after
applying the reduction algorithm for NFAs we only obtain the 10-state automaton of Figure 3.8.

Union. The argumentation for intersection still holds if we replace and by or, and so an algorithm
obtained from IntersNFA() by substituting or for and correctly computes a NFA for L (A1)∪L (A2).
However, this is unnecessary. To obtain such a NFA, it suffices to put A1 and A2 “side by side”:
take the union of its states, transitions, initial, and final states (where we assume that these sets are
disjoint):

90 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

a, b

a a a a

a, ba, b

a a

a, ba, b

Figure 4.4: Two NFAs

UnionNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: NFA A1 ∪ A2 = (Q,Σ, δ,Q0, F) with L (A1 ∪ A2) =

L (A1) ∪ L (A2)

1 Q← Q1 ∪ Q2

2 δ← δ1 ∪ δ2

3 Q0 ← Q01 ∪ Q02

4 F ← F1 ∪ F2

Set difference. The generalization of the procedure for DFAs fails. Let [q1, q2] be a final state of
[A1, A2] if q1 is a final state of A1 and q2 is not a final state of q2. Then [A1, A2] has an accepting
run on w if and only if A1 has an accepting run on w and A2 has a non-accepting run on w. But
“A2 has a non-accepting run on w” is not equivalent to “A2 has no accepting run on w”: this only
holds in the DFA case. An algorithm producing an NFA A1 \ A2 recognizing L (A1) \ L (A2) can be
obtained from the algorithms for complement and intersection through the equality L (A1)\L (A2) =

L (A1) ∩ L (A2).

4.2.4 Emptiness and Universality.

Emptiness for NFAs is decided using the same algorithm as for DFAs: just check if the NFA has at
least one final state.

Universality requires a new algorithm. Since an NFA may have multiple runs on a word, an
NFA may be universal even if some states are non-final: for every word having a run that leads to a
non-final state there may be another run leading to a final state. An example is the NFA of Figure
4.3, which, as we shall show in this section, is universal.

A language L is universal if and only if L is empty, and so universality of an NFA A can be
checked by applying the emptiness test to A. Since complementation, however, involves a worst-
case exponential blowup in the size of A, the algorithm requires exponential time and space.

4.2. IMPLEMENTATION ON NFAS 91

We show that the universality problem is PSPACE-complete. That is, the superpolynomial
blowup cannot be avoided unless P = PS PACE,which is unlikely.

Theorem 4.7 The universality problem for NFAs is PSPACE-complete

Proof: We only sketch the proof. To prove that the problem is in PSPACE, we show that it belongs
to NPSPACE and apply Savitch’s theorem. The polynomial-space nondeterministic algorithm for
universality looks as follows. Given an NFA A = (Q,Σ, δ,Q0, F), the algorithm guesses a run of
B = NFAtoDFA(A) leading from {q0} to a non-final state, i.e., to a set of states of A containing no
final state (if such a run exists). The algorithm only does not store the whole run, only the current
state, and so it only needs linear space in the size of A.

We prove PSPACE-hardness by reduction from the acceptance problem for linearly bounded
automata. A linearly bounded automaton is a deterministic Turing machine that always halts and
only uses the part of the tape containing the input. A configuration of the Turing machine on an
input of length k is coded as a word of length k. The run of the machine on an input can be encoded
as a word c0#c1 . . . #cn, where the ci’s are the encodings of the configurations.

Let Σ be the alphabet used to encode the run of the machine. Given an input x, M accepts if
there exists a word w of (Σ ∪ {#})∗ (we assume # < Σ) satisfying the following properties:

(a) w has the form c0#c1 . . . #cn, where the ci’s are configurations;

(b) c0 is the initial configuration;

(c) cn is an accepting configuration; and

(d) for every 0 ≤ i ≤ n − 1: ci+1 is the successor configuration of ci according to the transition
relation of M.

The reduction shows how to construct in polynomial time, given a linearly bounded automaton
M and an input x, an NFA A(M, x) accepting all the words of Σ∗ that do not satisfy at least one of
the conditions (a)-(d) above. We then have

• If M accepts x, then there is a word w(M, x) encoding the accepting run of M on x, and so
L (A(M, x)) = Σ∗ \ {w(M, x)}.

• If M rejects x, then no word encodes an accepting run of M on x, and so L (A(M, x)) = Σ∗.

So M accepts x if and only if L (A(M, x)) = Σ∗, and we are done.

A Subsumption Test. We show that it is not necessary to completely construct A. First, the
universality check for DFA only examines the states of the DFA, not the transitions. So instead
of NFAtoDFA(A) we can apply a modified version that only stores the states of A, but not its
transitions. Second, it is not necessary to store all states.

92 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Definition 4.8 Let A be a NFA, and let B = NFAtoDFA(A). A state Q′ of B is minimal if no other
state Q′′ satisfies Q′′ ⊂ Q′.

Proposition 4.9 Let A be a NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state
of B is final.

Proof: Since A and B recognize the same language, A is universal iff B is universal. So A is
universal iff every state of B is final. But a state of B is final iff it contains some final state of A,
and so every state of B is final iff every minimal state of B is final.

Example 4.10 Figure 4.5 shows a NFA on the left, and the equivalent DFA obtained through the
application of NFAtoDFA() on the right. Since all states of the DFA are final, the NFA is universal.
Only the states {1}, {2}, and {3, 4} (shaded in the picture), are minimal.

b

a

1

3

4

2, 3, 4, 12, 3, 4

2, 3, 12, 3

a

b

a
a, b

b

a, b

a

a
b

2

b

b

a

b

a

a

b

a
b

b

a

b

b

a

a

a

a

a

1, 3, 4

1

3, 42

Figure 4.5: An NFA, and the result of converting it into a DFA, with the minimal states shaded.

Proposition 4.9 shows that it suffices to construct and store the minimal states of B. Algorithm
UnivNFA(A) below constructs the states of B as in NFAtoDFA(A), but introduces at line 8 a sub-
sumption test: it checks if some state Q′′ ⊆ δ(Q′, a) has already been constructed. In this case either
δ(Q′, a) has already been constructed (case Q′′ = δ(Q′, a)) or is non-minimal (case Q′′ ⊂ δ(Q′, a)).
In both cases, the state is not added to the workset.

4.2. IMPLEMENTATION ON NFAS 93

UnivNFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: true if L (A) = Σ∗, false otherwise

1 Q← ∅;
2 W← { Q0 }

3 while W , ∅ do
4 pick Q′ from W

5 if Q′ ∩ F = ∅ then return false
6 add Q′ to Q

7 for all a ∈ Σ do
8 Q′′ ←

⋃
q∈Q′ δ(q, a)

9 if W ∪ Q contains no Q′′′ ⊆ Q′′ then add Q′′ to W

10 return true

The next proposition shows that UnivNFA(A) constructs all minimal states of B. If UnivNFA(A)
would first generate all states of A and then would remove all non-minimal states, the proof would
be trivial. But the algorithm removes non-minimal states whenever they appear, and we must show
that this does not prevent the future generation of other minimal states.

Proposition 4.11 Let A = (Q,Σ, δ,Q0, F) be a NFA, and let B = NFAtoDFA(A). After termination
of UnivNFA(A), the set Q contains all minimal states of B.

Proof: Let Qt be the value of Q after termination of UnivNFA(A). We show that no path of B leads
from a state of Qt to a minimal state of B not in Qt. Since {q0} ∈ Qt and all states of B are reachable
from {q0}, it follows that every minimal state of B belongs to Qt.

Assume there is a path π = Q1
a1
−−−→Q2 . . .Qn−1

an
−−−→Qn of B such that Q1 ∈ Qt, Qn < Qt, and

Qn is minimal. Assume further that π is as short as possible. This implies Q2 < Qt (otherwise
Q2 . . .Qn−1

an
−−−→Qn is a shorter path satisfying the same properties), and so Q2 is never added to

the workset. On the other hand, since Q1 ∈ Qt, the state Q1 is eventually added to and picked
from the workset. When Q1 is processed at line 7 the algorithm considers Q2 = δ(Q1, a1), but
does not add it to the workset in line 8. So at that moment either the workset or Q contain a state
Q′2 ⊂ Q2. This state is eventually added to Q (if it is not already there), and so Q′2 ∈ Qt. So B

has a path π′ = Q′2
a2
−−−→Q′3 . . .Q

′
n−1

an
−−−→Q′n for some states Q′3, . . . ,Q

′
n. Since Q′2 ⊂ Q2 we have

Q′2 ⊂ Q2,Q′3 ⊆ Q3, . . . ,Q′n ⊆ Qn (notice that we may have Q′3 = Q3). By the minimality of Qn, we
get Q′n = Qn, and so π′ leads from Q′2, which belongs to Qt, to Qn, which is minimal and not in to
Qt. This contradicts the assumption that π is as short as possible.

Notice that the complexity of the subsumption test may be considerable, because the new set
δ(Q′, a) must be compared with every set in W ∪ Q. Good use of data structures (hash tables or
radix trees) is advisable.

94 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

4.2.5 Inclusion and Equality.

Recall Lemma 4.4: given two DFAs A1, A2, the inclusion L (A1) ⊆ L (A2) holds if and only if every
state [q1, q2] of [A1, A2] having q1 ∈ F1 also has q2 ∈ F2. This lemma no longer holds for NFAs.
To see why, let A be any NFA having two runs for some word w, one of them leading to a final
state q1, the other to a non-final state q2. We have L (A) ⊆ L (A), but the pairing [A, A] has a run on
w leading to [q1, q2].

To obtain an algorithm for checking inclusion, we observe that L1 ⊆ L2 holds if and only if
L1 ∩ L2 = ∅. This condition can be checked using the constructions for intersection and for the
emptiness check. However, as in the case of universality, we can apply a subsumption check.

Definition 4.12 Let A1, A2 be NFAs, and let B2 = NFAtoDFA(A2). A state [q1,Q2] of [A1, B2] is
minimal if no other state [q′1,Q

′
2] satisfies q′1 = q1 and Q′2 ⊂ Q′.

Proposition 4.13 Let A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2) be NFAs, and let B2 =

NFAtoDFA(A2). L (A1) ⊆ L (A2) iff every minimal state [q1,Q2] of [A1, B2] having q1 ∈ F1 also
has Q2 ∩ F2 , ∅.

Proof: Since A2 and B2 recognize the same language,

L (A1) ⊆ L (A2)
⇔ L (A1) ∩ L (A2) = ∅

⇔ L (A1) ∩ L (B2) = ∅

⇔ [A1, B2] has a state [q1,Q2] such that q1 ∈ F1 and Q2 ∩ F2 = ∅

⇔ [A1, B2] has a minimal state [q1,Q2] such that q1 ∈ F1 and Q2 ∩ F2 = ∅

So we get the following algorithm to check inclusion:

InclNFA(A1, A2)
Input: NFAs A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: true if L (A1) ⊆ L (A2), false otherwise

1 Q← ∅;
2 W ← { [q01,Q02] | q01 ∈ Q01 }

3 while W , ∅ do
4 pick [q1,Q′2] from W
5 if (q1 ∈ F1) and (Q′2 ∩ F2 = ∅) then return false
6 add [q1,Q′2] to Q
7 for all a ∈ Σ, q′1 ∈ δ1(q1, a) do
8 Q′′2 ←

⋃
q2∈Q′2

δ2(q2, a)
9 if W ∪ Q contains no [q′′1 ,Q

′′′
2] s.t. q′′1 = q′1 and Q′′′2 ⊆ Q′′2 then

10 add [q′1,Q
′′
2] to W

11 return true

4.2. IMPLEMENTATION ON NFAS 95

Notice that in unfavorable cases the overhead of the subsumption test may not be compensated
by a reduction in the number of states. Without the test, the number of pairs that can be added to
the workset is at most |Q1|2|Q2 |. For each of them we have to execute the for loop O(|Q1|) times,
each of them taking O(|Q2|

2) time. So the algorithm runs in |Q1|
22O(|Q2 |) time and space.

As was the case for universality, the inclusion problem is PSPACE-complete, and so the expo-
nential cannot be avoided unless P = PS PACE.

Proposition 4.14 The inclusion problem for NFAs is PSPACE-complete

Proof: We first prove membership in PSPACE. Since PSPACE=co-PSPACE=NPSPACE, it suf-
fices to give a polynomial space nondeterministic algorithm that decides non-inclusion. Given
NFAs A1 and A2, the algorithm guesses a word w ∈ L (A1) \ L (A2) letter by letter, maintaining the
sets Q′1, Q′2 of states that A1 and A2 can reached by the word guessed so far. When the guessing
ends, the algorithm checks that Q′1 contains some final state of A1, but Q′2 does not.

Hardness follows from the fact that A is universal iff Σ ⊆ L (A), and so the universality problem,
which is PSPACE-complete, is a subproblem of the inclusion problem.

There is however an important case with polynomial complexity, namely when A2 is a DFA.
The number the number of pairs that can be added to the workset is then at most |Q1||Q2|. The for
loop is still executed O(|Q1|] times, but each of them takes O(1) time. So the algorithm runs in
O(|Q1|

2|Q2|) time and space.

Equality. Equality of two languages is decided by checking that each of them is included in the
other. The equality problem is again PSPACE-complete. The only point worth observing is that,
unlike the inclusion case, we do not get a polynomial algorithm when A2 is a DFA.

96 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Exercises

Exercise 48 Consider the following languages over the alphabet Σ = {a, b}:

• L1 is the set of all words where between any two occurrences of b’s there is at least one a.

• L2 is the set of all words where every non-empty maximal sequence of consecutive a’s has
odd length.

• L3 is the set of all words where a occurs only at even positions.

• L4 is the set of all words where a occurs only at odd positions.

• L5 is the set of all words of odd length.

• L6 is the set of all words with an even number of a’s.

Construct an NFA for the language

(L1 \ L2) ∪ (L3 4 L4) ∩ L5 ∩ L6

where L4 L′ denotes the symmetric difference of L and L′, while sticking to the following rules:

• Start from NFAs for L1, . . . , L6.

• Any further automaton must be constructed from already existing automata via an algorithm
introduced in the chapter, e.g. Comp, BinOp, UnionNFA, NFAtoDFA, etc.

Try to find an order on the construction steps such that the intermediate automata and the final
result have as few states as possible.

Exercise 49 Prove or disprove: the minimal DFAs recognizing a language L and its complement
L have the same number of states.

Exercise 50 Give a regular expression for the words over {0, 1} that do not contain 010 as subword.

Exercise 51 1. Prove that the following problem is PSPACE-complete:

Given: DFAs A1, . . . , An over the same alphabet Σ.
Decide: Is

⋂n
i=1 L (Ai) = ∅?

Hint: Reduction from the acceptance problem for deterministic, linearly bounded automata.

2. Prove that if the DFAs are acyclic but the alphabet arbitrary then the problem is still coNP-
complete. (Where acyclic means that the graph of the transition relation has no cycles, apart
from a self-loop on the trap state.)
Hint: Reduction from 3-SAT to the nonemptiness of

⋂n
i=1 L (Ai).

4.2. IMPLEMENTATION ON NFAS 97

3. Prove that if Σ is a 1-letter alphabet then the problem is again coNP-complete.

Exercise 52 Let A = (Q,Σ, δ,Q0, F) be an NFA. Show that with the universal accepting condition
of Exercise 17 the automaton A′ = (Q,Σ, δ, q0,Q \ F) recognizes the complement of the language
recognized by A.

Exercise 53 Recall the alternating automata introduced in Exercise 20.

(a) Let A = (Q1,Q2,Σ, δ, q0, F) be an alternating automaton, where Q1 and Q2 are the sets of
existential and universal states, respectively, and δ : (Q1 ∪ Q2) × Σ → P(Q1 ∪ Q2). Show
that the alternating automaton A = (Q2,Q1,Σ, δ, q0,Q \ F) recognizes the complement of
the language recognized by A. I.e., show that alternating automata can be complemented by
exchanging existential and universal states, and final and non-final states.

(b) Give linear time algorithms that take two alternating automata recognizing languages L1, L2
and deliver a third alternating automaton recognizing L1 ∪ L2 and L1 ∩ L2.
Hint: The algorithms are very similar to UnionNFA.

(c) Show that the emptiness problem for alternating automata is PSPACE-complete.
Hint: Using Exercise 51, prove that the emptiness problem for alternating automata is
PSPACE-complete.

Exercise 54 Find a family {An}
∞
n=1 of NFAs with O(n) states such that every NFA recognizing the

complement of L (An) has at least 2n states.

Hint: See Exercise 17.

Exercise 55 Consider again the regular expressions (1 + 10)∗ and 1∗(101∗)∗ of Exercise 2.

• Construct NFAs for the expressions and use InclNFA to check if their languages are equal.

• Construct DFAs for the expressions and use InclDFA to check if their languages are equal.

• Construct minimal DFAs for the expressions and check whether they are isomorphic.

Exercise 56 Consider the variant of IntersNFA in which line 7

if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F

is replaced by

if (q1 ∈ F1) or (q2 ∈ F2) then add [q1, q2] to F

Let A1⊗A2 be the result of applying this variant to two NFAs A1, A2. We call A1⊗A2 the or-product
of A1 and A2.

An NFA A = (Q,Σ, δ,Q0, F) is complete if δ(q, a) , ∅ for every q ∈ Q and every a ∈ Σ.

98 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

• Prove: If A1 and A2 are complete NFAs, then L (A1 ⊗ A2) = L (A1) ∪ L (L2).

• Give NFAs A1, A2 such that L (A1 ⊗ A2) = L (A1)∪L (L2) but neither A1 nor A2 are complete.

Exercise 57 Given a word w = a1a2 . . . an over an alphabet Σ, we define the even part of w as the
word a2a4 . . . abn/2c. Given an NFA for a language L, construct an NFA recognizing the even parts
of the words of L.

Exercise 58 Given regular languages L1, L2 over an alphabet Σ, the left quotient of L1 by L2 is the
language

L2�L1 := {v ∈ Σ∗ | ∃u ∈ L2 : uv ∈ L1}

(Note that L2�L1 is different from the set difference L2 \ L1.)

1. Given NFA A1, A2, construct an NFA A such that L (A) = L (A1)�L (A2).

2. Do the same for the right quotient of L1 by L2, defined as L1�L2 := {u ∈ Σ∗ | ∃v ∈ L2 : uv ∈
L1}.

3. Determine the inclusion relations between the following languages: L1, (L1�L2)L2, and
(L1L2)�L2

Exercise 59 Let Li = {w ∈ {a}∗ | the length of w is divisible by i }.

1. Construct an NFA for L := L4 ∪ L6 with at most 11 states.

2. Construct the minimal DFA for L.

Exercise 60 • Modify algorithm Empty so that when the DFA or NFA is nonempty it returns
a witness, i.e., a word accepted by the automaton.

• Same for a shortest witness.

Exercise 61 Use the algorithm UnivNFA to test whether the following NFA is universal.

q0

q1 q2

q3 q4

b
a

b

a, b

a, b
a

a a, b

Exercise 62 1. Build Bp and Cp for the word pattern p = mammamia.

4.2. IMPLEMENTATION ON NFAS 99

2. How many transitions are taken when reading t = mami in Bp and Cp?

3. Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}∗ such that testing whether p
occurs in t takes n transitions in Bp and 2n − 1 transitions in Cp.

Exercise 63 Let Σ be an alphabet, and define the shuffle operator ‖ : Σ∗ × Σ∗ → 2Σ∗ as follows,
where a, b ∈ Σ and w, v ∈ Σ∗:

w ‖ ε = {w}

ε ‖ w = {w}

aw ‖ bv = {a} (w ‖ bv) ∪ {b} (aw ‖ v) ∪ {bw | w ∈ au||v}

For example we have:

b||d = {bd, db}, ab||d = {abd, adb, dab}, ab||cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1, L2 ⊆ Σ∗ construct an NFA recognizing their shuffle

L1 ‖ L2 :=
⋃

u∈L1,v∈L2

u ‖ v .

Exercise 64 The perfect shuffle of two languages L, L′ ∈ Σ∗ is defined as:

L |̃|| L′ = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ s.t. a1 · · · an ∈ L and
b1 · · · bn ∈ L′ and
w = a1b1 · · · anbn } .

Give an algorithm that takes two DFAs A and B in input, and that returns a DFA accepting
L(A) |̃|| L(B).

Exercise 65 Let Σ1,Σ2 be two alphabets. A homomorphism is a map h : Σ∗1 → Σ∗2 such that
h(ε) = ε and h(w1w2) = h(w1)h(w2) f oreveryw1,w2 ∈ Σ∗1. Observe that if Σ1 = {a1, . . . , an} then h
is completely determined by the values h(a1), . . . , h(an).

1. Let h : Σ∗1 → Σ∗2 be a homomorphism and let A be a NFA over Σ1. Describe how to constuct
a NFA for the language

h(L (A)) := {h(w) | w ∈ L (A)}.

2. Let h : Σ∗1 → Σ∗2 be a homomorphism and let A be a NFA over Σ2. Describe how to construct
a NFA for the language

h−1(L (A)) := {w ∈ Σ∗1 | h(w) ∈ L (A)}.

3. Recall that the language {0n1n | n ∈ IN} is not regular. Use the preceding results to show that
{(01k2)n3n | k, n ∈ IN} is also not regular.

100 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Exercise 66 Given alphabets Σ and ∆, a substitution is a map f : Σ → 2∆∗ assigning to each letter
a ∈ Σ a language La ⊆ ∆∗.A subsitution f can be canonically extended to a map 2Σ∗ → 2∆∗ by
defining f (ε) = ε, f (wa) = f (w) f (a), and f (L) =

⋃
w∈L f (w). Note that a homomorphism can be

seen as the special case of a substitution in which all La’s are singletons.
Let Σ = {Name, Tel, :, #}, let ∆ = {A, . . . ,Z, 0, 1, . . . , 9, :, #}, and let f be the substitution f

given by

f (Name) = (A + · · · + Z)∗

f (:) = {:}
f (Tel) = 0049(1 + . . . + 9)(0 + 1 + . . . + 9)10 + 00420(1 + . . . + 9)(0 + 1 + . . . + 9)8

f (#) = {#}

1. Draw a DFA recognizing L = Name:Tel(#Telephone)∗.

2. Sketch an NFA-reg recognizing f (L).

3. Give an algorithm that takes as input an NFA A, a substitution f , and for every a ∈ Σ an NFA
recognizing f (a), and returns an NFA recognizing f (L (A)).

Exercise 67 Given two NFAs A1 and A2, let B = NFAtoDFA(IntersNFA(A1, A2)) and C = IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)).
Show that B and C are isomorphic, and so in particular have thesame number of states.
(A superficial analysis gives that for NFAs with n1 and n2 states B and C have O(2n1·n2) and
O(2n1+n2) states, respectively, wrongly suggesting that C might be more compact than B.)

Exercise 68 (Blondin) Let A = (Q,Σ, δ, q0, F) be a DFA. A word w ∈ Σ∗ is a synchronizing word
of A if reading w from any state of A leads to a common state, i.e. if there exists q ∈ Q such that
for every p ∈ Q, p

w
−→ q. A DFA is synchronizing if it has a synchronizing word.

1. Show that the following DFA is synchronizing:

p q

r s

a

b

a

b
a

b

a
b

2. Give a DFA that is not synchronizing.

4.2. IMPLEMENTATION ON NFAS 101

3. Give an exponential time algorithm to decide whether a DFA is synchronizing. (Hint: use
the powerset construction).

4. Show that a DFA A = (Q,Σ, δ, q0, F) is synchronizing if, and only if, for every p, q ∈ Q,
there exist w ∈ Σ∗ and r ∈ Q such that p

w
−→ r and q

w
−→ r.

5. Give a polynomial time algorithm to test whether a DFA is synchronizing. (Hint: use 4).

6. Show that 4 implies that every synchronizing DFA with n states has a synchronizing word
of length at most (n2 − 1)(n − 1). (Hint: you might need to reason in terms of the product
construction.)

7. Show that the upper bound obtained in 6 is not tight by finding a synchronizing word of
length (4 − 1)2 for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

102 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Chapter 5

Applications I: Pattern matching

As a first example of a practical application of automata, we consider the pattern matching problem.
Given w,w′ ∈ Σ∗, we say that w′ is a factor of w if there are words w1,w2 ∈ Σ∗ such that w =

w1w′w2. If w1 and w1w′ have lengths k and k′, respectively, we say that w′ is the [k, k′]-factor of
w. The pattern matching problem is defined as follows: Given a word t ∈ Σ+ (called the text), and
a regular expression p over Σ (called the pattern), determine the smallest k ≥ 0 such that some
[k′, k]-factor of t belongs to L (p). We call k the first occurrence of p in t.

Example 5.1 Let p = a(ab∗a)b. Since ab, aabab ∈ L (p), the [1, 3]-, [3, 5]-, and [0, 5]-factors of
aabab belong to L (p). So the first occurrence of p in aabab is 3.

Usually one is interested not only in finding the ending position k of the [k′, k]-factor, but also
in the starting position k′. Adapting the algorithms to also provide this information is left as an
exercise.

5.1 The general case

We present two different solutions to the pattern matching problem, using nondeterministic and
deterministic automata, respectively.

Solution 1. Clearly, some word of L (p) occurs in t if and only if some prefix of t belongs to
L (Σ∗p). So we construct an NFA A for the regular expression Σ∗p using the rules of Figure 2.14 on
page 37, and then removing the ε transitions by means of NFAεtoNFA on page 34. Let us call the
resulting algorithm RegtoNFA. Once A is constructed, we simulate A on t as in MemNFA[A](q0,t)
on page 82. Recall that the simulation algorithm reads the text letter by letter, maintaining the set
of states reachable from the initial state by the prefix read so far. So the simulation reaches a set of
states S containing a final state if and only if the prefix read so far belongs to L (Σ∗p). Here is the
pseudocode for this algorithm:

103

104 CHAPTER 5. APPLICATIONS I: PATTERN MATCHING

PatternMatchingNFA(t, p)
Input: text t = a1 . . . an ∈ Σ+, pattern p ∈ Σ∗

Output: the first occurrence of p in t, or ⊥ if no such occurrence exists.

1 A← RegtoNFA(Σ∗p)
2 S ← Q0

3 for all k = 0 to n − 1 do
4 if S ∩ F , ∅ then return k
5 S ← δ(S , ak+1)
6 return ⊥

For a given fixed alphabet Σ, a rough estimate of the complexity of PatternMatchingNFA for a word
of length n and a pattern of length m can be obtained as follows. RegtoNFA is the concatenation
of RegtoNFAε and NFAεtoNFA. For a pattern of size m, RegtoNFAε takes O(m) time, and outputs
a NFAε with O(m) states and O(m) transitions. So, when applied to this automaton, NFAεtoNFA
takes O(m2) time, and outputs a NFA with O(m) states and O(m2) transitions (see page 36 for the
complexity of NFAεtoNFA). The loop is executed at most n times, and, for an automaton with O(m)
states, each line of the loop’s body takes at most O(m2) time. So the loop runs in O(nm2) time. The
overall runtime is thus O(nm2).

Solution 2. We proceed as in the previous case, but constructing a DFA for Σ∗p instead of a NFA:

PatternMatchingDFA(t, p)
Input: text t = a1 . . . an ∈ Σ+, pattern p
Output: the first occurrence of p in t, or ⊥ if no such occurrence exists.

1 A← NFAtoDFA(RegtoNFA(Σ∗p))
2 q← q0

3 for all k = 0 to n − 1 do
4 if q ∈ F then return k
5 q← δ(q, ak+1)
6 return ⊥

Notice that there is trade-off: while the conversion to a DFA can take (much) longer than the
conversion to a NFA, the membership check for a DFA is faster. The complexity of PatternMatch-
ingDFA for a word of length n and a pattern of length m can be easily estimated: RegtoNFA(p)
runs in O(m2) time, but it outputs a NFA with only O(m) states, and so the call to NFAtoDFA (see
Table ??) takes 2O(m) time and space. Since the loop is executed at most n times, and each line of
the body takes constant time, the overall runtime is O(n) + 2O(m).

5.2. THE WORD CASE 105

5.2 The word case

We study the special but very common special case of the pattern-matching problem in which we
wish to know if a given word appears in a text. In this case the pattern p is the word itself. For
the rest of the section we consider an arbitrary but fixed text t = a1 . . . an and an arbitrary but
fixed word pattern p = b1 . . . bm. Instead of taking a fixed alphabet, we assume that the alphabet is
implicitely defined by the text and the pattern, and so that the alphabet has size O(n + m).

It is easy to find a faster algorithm for this special case, without any use of automata theory:
just move a “window” of length m over the text t, one letter at a time, and check after each move
whether the content of the window is p. The number of moves is n − m + 1, and a check requires
O(m) letter comparisons, giving a runtime of O(nm). In the rest of the section we present a faster
algorithm with time complexity O(m + n). Notice that in many applications n is very large, and so,
even for a relatively small m the difference between nm and m + n can be significant. Moreover, the
constant hidden in the O-notation is now independent of the size of the alphabet. This is important
for applications where the alphabet is large (like chinese texts).

Figure 5.1(a) shows the obvious NFA Ap recognizing Σ∗p for the case p = nano. In general,
Ap = (Q,Σ, δ, {q0}, F), where Q = {0, 1, . . . ,m}, q0 = 0, F = {m}, and

δ = {(i, bi+1, i + 1) | i ∈ [0,m − 1]} ∪ {(0, a, 0) | a ∈ Σ} .

Clearly, Ap can reach state k whenever the word read so far ends with b0 . . . bk. We define the hit
letter for each state of Ap. Intuitively, it is the letter that makes Ap “progress” towards reading p.

Definition 5.2 We say that a ∈ Σ is a hit for state i of Ap if δ(i, a) = {i + 1}; otherwise a is a miss
for state i.

Figure 5.1(b) shows the DFA Bp obtained by applying NFAtoDFA to Ap. It has as many states
as Ap, and there is a natural correspondence between the states of Ap and Bp: each state of Ap is
the largest element of exactly one state of Bp. For instance, 3 is the largest element of {3, 1, 0}, and
4 is the largest element of {4, 0}.

Definition 5.3 The head of a state S ⊆ {0, . . . ,m} of Bp, denoted by h(S), is the largest element of
S . The tail of S , denoted by t(S) is the set t(S) = S \ {h(S)}. The hit for a state S of Bp is defined
as the hit of the state h(S) in Ap.

If we label a state with head k by the string b1 . . . bk, as shown in Figure 5.1(c), then we see that
Bp keeps track of how close it is to finding nano. For instance:

• if Bp is in state n and reads an a (a hit for this state), then it “makes progress”, and moves to
state na;

• if Bp is in state nan and reads an a (a miss for this state), then it is “thrown back” to state na.
Not to ε, because if the next two letters are n and o, then Bp should accept!

106 CHAPTER 5. APPLICATIONS I: PATTERN MATCHING

0 21(a) 3 4

Σ

n a n o

0 2, 01, 0(b)

other n

n a

a

n

n

other

other
3, 1, 0n o

other
other

4, 0

ε nan(b)

other n

n a

a

n

n

other

other
nann o

other
other

nano

Figure 5.1: NFA Ap and DFA Bp for p = nano

Bp has another property that will be very important later on: for each state S of Bp (with the
exception of S = {0}) the tail of S is again a state of Bp. For instance, the tail of {3, 1, 0} is {1, 0},
which is also a state of Bp. We show that this property and the ones above hold in general, and
not only in the special case p = nano. Formally, we prove the following invariant of NFAtoDFA
(which is shown again in Table 5.2 for convenience) when applied to a word pattern p.

Proposition 5.4 Let p = b1 . . . bm, and let S k be the k-th set picked from the workset during the
execution of NFAtoDFA(Ap). Then

(1) h(S k) = k (and therefore k ≤ m), and

(2) either k = 0 and t(S k) = ∅, or k > 0 and t(S k) ∈ Q.

5.2. THE WORD CASE 107

NFAtoDFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: DFA B = (Q,Σ,∆,Q0,F) with L (B) = L (A)

1 Q,∆,F ← ∅; Q0 ← {q0}

2 W = {Q0}

3 while W , ∅ do
4 pick S from W

5 add S to Q

6 if S ∩ F , ∅ then add S to F

7 for all a ∈ Σ do
8 S ′ ← δ(S , a)
9 if S ′ < Q then add S ′ to W

10 add (S , a, S ′) to ∆

Table 5.1: NFAtoDFA(A)

Proof: We prove that (1) and (2) hold for all 0 ≤ k ≤ m − 1, and moreover that right before the
k-th iteration of the while loop the workset only contains S k (we call this (3)).

Clearly, (1), (2), and (3) hold for k = 0. For k > 0, consider the k-th iteration of the while
loop. By induction hypothesis, we have h(S k) = k by (1), t(S k) = S l for some l < k by (2), and
by (3) we know that before the k-th iteration the workset only contains S k. So the algorithm picks
S k from the workset and examines the sets δ(S k, a) for every action a, where we use the notation
δ(S k, a) =

⋃
q∈S k δ(q, a).

We consider two cases: a is a hit for S k, and a is a miss for S k.
If a is a miss for S k, then by definition it is also a miss for its head h(S k) = k. So we have

δ(k, a) = ∅, and hence δ(S k, a) = δ(t(S k), a) = δ(S l, a). So δ(S k, a) was already explored by the
algorithm during the l-th iteration of the loop, and δ(S k, a) is not added to the workset at line 9.

If a is a hit for S k, then δ(k, a) = {k + 1}. Since δ(S k, a) = δ(h(S k), a) ∪ δ(t(S k), a), we get
δ(S k, a) = {k + 1} ∪ δ(S l, a). Since state k + 1 has not been explored before, the set {k + 1} ∪ δ(S l, a)
becomes the (k + 1)-st state added to the workset, i.e., S k+1 = {k + 1} ∪ δ(S l, a). So we get
h(S k+1) = k + 1, and, since t(S k+1) = t(S l), also t(S k+1) ∈ Q; in other words, S k+1 satisfies (1) and
(2). Moreover, S k+1 is the only state added to the workset during the k-th iteration of the loop, and
so we also have (3).

Finally, consider the m-th iteration of the loop. Since no letter is a hit for state m, the algorithm
does not add any new state to the workset, and so at the end of the iteration the workset is empty
and the algorithm terminates.

By Proposition 5.4, Bp has at most m + 1 states for a pattern of length m. So NFAtoDFA does
not incur in any exponential blowup for word patterns. Even more: any DFA for Σ∗p must have at

108 CHAPTER 5. APPLICATIONS I: PATTERN MATCHING

least m+1 states, because for any two distinct prefixes p1, p2 of p the residuals (Σ∗p)p1 and (Σ∗p)p2

are also distinct. So we get

Corollary 5.5 Bp is the minimal DFA recognizing Σ∗p.

Bp has m + 1 states and m |Σ| transitions. Transitions of Bp labeled by letters that do not appear
in p always lead to state 0, and so they do not need to be explicitely stored. The remaining O(m)
transitions for each state can be constructed and stored using O(m2) space and time, leading to a
O(n + m2) algorithm. To achieve O(n + m) time we introduce an even more compact data structure:
the lazy DFA for Σ∗p, that, as we shall see, can be constructed in O(m) space and time.

5.2.1 Lazy DFAs

Recall that a DFA can be seen as the control unit of a machine that reads input from a tape divided
into cells by means of a reading head At each step, the machine reads the content of the cell
occupied by the reading head, updates the current state according to the transition function, and
advances the head one cell to the right. The machine accepts a word if the state reached after
reading it completely is final.

...b a n a n a n o n a

q7

Figure 5.2: Tape with reading head.

In lazy DFAs the machine may advance the head one cell to the right or keep it on the same
cell. Which of the two takes place is a function of the current state and the current letter read by the
head. Formally, a lazy DFA only differs from a DFA in the transition function, which has the form
δ : Q × Σ → Q × {R,N}, where R stands for move Right and N stands for No move. A transition
of a lazy DFA is a fourtuple (q, a, q′, d), where d ∈ {R,N} is the move of the head. Intuitively, a
transition (q, a, q′,N) means that state q is lazy and delegates processing the letter a to the state q′.

A lazy DFA Cp for Σ∗p. Recall that every state S k of Bp has a hit letter and all other letters are
misses. In particular, if a is a miss, then δB(S k, a) = δ(t(S k), a), and so

when it reads a miss, Bp moves from S k to the same state it would move to, if it were
in state t(S).

Using this, we construct a lazy DFA Cp with the same states as Bp and transition function δC(S k, a)
given by:

5.2. THE WORD CASE 109

• If a is a hit for S k, then Cp behaves as Bp: δC(S k, a) = (S k+1,R).

• If a is a miss for S k, then S k “delegates” to t(S k): δC(S k, a) = (t(S k),N).
However, if k = 0 then t(S k) is not a state, and Cp moves as Bp: δC(S 0, a) = (S 0,R).

Notice that in the case of a miss Cp always delegates to the same state, independently of the
letter being read, and so we can “summarize” the transitions for all misses into a single transition
δC(S k,miss) = (t(S k),N). Figure 5.3 shows the DFA and the lazy DFA for p = nano. (We write
just k instead of S k in the states.) Consider the behaviours of Bp and Cp from state S 3 if they
read a n. Bp moves to S 1 (what it would do if it were in state S 1); instead, Cp delegates to S 1,
which delegates to S 0, which moves S 1: that is, the move of Bp is simulated in Cp by a chain of
delegations, followed by a move of the head to the right (in the worst case the chain of delegations
reaches S 0, who cannot delegate to anybody). The final destination is the same in both cases.

0 2, 01, 0(b)

other n

n a

a

n

n

other

other
3, 1, 0n o

other
other

4, 0

0 2

miss, N

miss, N
3

miss, R

n, R a, R n, R o, R

miss, N
miss, N

1 4

Figure 5.3: DFA and lazy DFA for p = nano

Notice that Cp may require more steps than Bp to read the text. But the number of steps is at
most 2n. For every letter the automaton Cp does a number of N-steps, followed by one R-step.
Call this step sequence a macrostep, and let S ji be the state reached after the i-th macrostep, with
j0 = 0. Since the i-th macrostep leads from S ji−1 to S ji , and N-steps never move forward along the
spine, the number of steps of the i-th macrostep is bounded by ji−1 − ji + 2. So the total number of

110 CHAPTER 5. APPLICATIONS I: PATTERN MATCHING

steps is bounded by
n∑

i=1

(ji−1 − ji + 2) = j0 − jn + 2n ≤ 0 − m + 2n = 2n .

Computing Cp in O(m) time. Let Miss(i) be the head of the target state of the miss transition
for S i. For instance, for p = nano we have Miss(3) = 1 and Miss(i) = 0 for i = 0, 1, 2, 4. Clearly,
if we can compute all of Miss(0), . . . ,Miss(m) together in O(m) time, then we can construct Cp in
O(m) time.

Consider the auxiliary function miss(S i) which returns the target state of the miss transition,
instead of its head (i.e., miss(S i) = S j iff Miss(i) = j). We obtain some equations for miss, which
can then be easily transformed into an algorithm for Miss. By definition, for every i > 0 in the case
of a miss the state S i delegates to t(S i) , i.e., miss(S i) = t(S i). Since t(S 1) = {0} = S 0, this already
gives miss(S 1) = S 0. For i > 1 we have S i = {i} ∪ t(S i), and so

t(S i) = t(δB(S i−1, bi)) = t(δ(i − 1, bi) ∪ δ(t(S i−1, bi)) = t({i} ∪ δ(t(S i−1), bi)) = δB(t(S i−1), bi) .

Hence we get
miss(S i) = δB(miss(S i−1), bi)

Moreover, we have

δB(S j, b) =


S j+1 if b = b j+1 (hit)
S 0 if b , b j+1 (miss) and j = 0
δB(t(S j), b) if b , b j+1 (miss) and j , 0

Putting these two last equations together, and recalling that miss(S 0) = S 0, we finally obtain

miss(S i) =

{
S 0 if i = 0 or i = 1
δB(miss(S i−1), bi) if i > 1

(5.1)

δB(S j, b) =


S j+1 if b = b j+1 (hit)
S 0 if b , b j+1 (miss) and j = 0
δB(miss(S j), b) if b , b j+1 (miss) and j , 0

(5.2)

Equations 5.1 and 5.2 lead to the algorithms shown in Table 5.2. CompMiss(p) computes
Miss(i) for each index i ∈ {0, . . . ,m}. CompMiss(p) calls DeltaB(j, b), shown on the right of the
Table, which returns the head of the state δB(S j, b), i.e., DeltaB(j, b)= k iff δB(S j, b) = S k.
It remains to show that all calls to DeltaB during the execution of Miss(p) take together O(m) time.
Let ni be the number of iterations of the while loop at line 1 during the call DeltaB(Miss(i− 1), bi).
We prove

∑m
i=2 ni ≤ m. To this end, observe that ni ≤ Miss(i− 1)− (Miss(i)− 1), because initially j

is set to Miss(i− 1), each iteration of the loop decreases j by at least 1 (line 2), and the return value
assigned to Miss(i) is at most the final value of j plus 1. So we get

m∑
i=2

ni ≤

m∑
i=2

(
Miss(i − 1) −Miss(i) + 1) ≤ Miss(1) −Miss(m) + m ≤ Miss(1) + m = m

5.2. THE WORD CASE 111

CompMiss(p)
Input: pattern p = b1 · · · bm.
Output: heads of targets of miss transitions.

1 Miss(0)← 0; Miss(1)← 0
2 for i← 2, . . . ,m do
3 Miss(i)← DeltaB(Miss(i − 1) , bi)

DeltaB(j, b)
Input: head j ∈ {0, . . . ,m}, letter b.
Output: head of the state δB(S j, b).

1 while b , b j+1 and j , 0 do j← CompMiss(j)
2 if b = b j+1 then return j + 1
3 else return 0

Table 5.2: Algorithm CopmpMiss(p)

Exercises

Exercise 69 Design an algorithm that solves the following problem for an alphabet Σ: Given a text
t ∈ Σ∗ and a regular expression p over Σ, find a shortest prefix w1 ∈ Σ∗ of t such that some prefix
w1w2 of w satisfies w2 ∈ L(p). Discuss the complexity of your solution.

Exercise 70 (Blondin)

1. Build the automata Bp and Cp for the word pattern p = mammamia.

2. How many transitions are taken when reading t = mami in Bp and Cp?

3. Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}∗ such that testing whether p
occurs in t takes n transitions in Bp and 2n − 1 transitions in Cp.

Exercise 71 We have shown that lazy DFAs for a word pattern may need more than n steps to read
a text of length n, but not more than 2n + m, where m is the length of the pattern. Find a text t and
a word pattern p such that the run of Bp on t takes at most n steps and the run of Cp takes at least
2n − 1 steps.
Hint: a simple pattern of the form ak for some k ≥ 0 is sufficient.

Exercise 72 (Blondin) Two-way DFAs are an extension of lazy automata where the reading head
is also allowed to move left. Formally, a two-way DFA (2DFA) is a tuple A = (Q,Σ, δ, q0, F) where
δ : Q × (Σ ∪ {`, a}) → Q × {L, S ,R}. Given a word w ∈ Σ∗, A starts in q0 with its reading tape
initialized with ` w a, and its reading head pointing on `. When reading a letter, A moves the head
according to δ (Left, S tationnary, Right). Moving left on ` or right on a does not move the reading
head. A accepts w if, and only if, it reaches a in a state of F.

1. Let n ∈ N. Give a 2DFA that accepts (a + b)∗a(a + b)n.

2. Give a 2DFA that does not terminate on any input.

3. Describe an algorithm to test whether a given 2DFA A accepts a given word w.

112 CHAPTER 5. APPLICATIONS I: PATTERN MATCHING

4. Let A1, A2, . . . , An be DFAs over a common alphabet. Give a 2DFA B such that

L(B) = L(A1) ∩ L(A2) ∩ · · · ∩ L(An) .

Chapter 6

Operations on Relations:
Implementations

We show how to implement operations on relations over a (possibly infinite) universe U. Even
though we will encode the elements of U as words, when implementing relations it is convenient
to think of U as an abstract universe, and not as the set Σ∗ of words over some alphabet Σ. The
reason, as we shall see, is that for some operations we encode an element of X not by one word,
but by many, actually by infinitely many. In the case of operations on sets this is not necessary, and
one can safely identify the object and its encoding as word.

We are interested in a number of operations. A first group contains the operations we already
studied for sets, but lifted to relations. For instance,we consider the operation Membership((x, y),R)
that returns true if (x, y) ∈ R, and false otherwise, or Complement(R), that returns R = (X×X)\R.
Their implementations will be very similar to those of the language case. A second group contains
three fundamental operations proper to relations. Given R,R1,R2 ⊆ U × U:

Projection 1(R) : returns the set π1(R) = {x | ∃y (x, y) ∈ R}.
Projection 2(R) : returns the set π2(R) = {y | ∃x (x, y) ∈ R}.
Join(R1, R2) : returns R1 ◦ R2 = {(x, z) | ∃y (x, y) ∈ R1 ∧ (y, z) ∈ R2}

Finally, given X ⊆ U we are interested in two derived operations:

Post(X, R) : returns postR(X) = {y ∈ U | ∃x ∈ X : (x, y) ∈ R}.
Pre(X, R) : returns preR(X) = {y | ∃x ∈ X : (y, x) ∈ R}.

Observe that Post(X, R) = Projection 2(Join(IdX , R)), and Pre(X, R) = Projection 1(Join(R,
Idx)), where IdX = {(x, x) | x ∈ X}.

113

114 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

6.1 Encodings

We encode elements of U as words over an alphabet Σ. It is convenient to assume that Σ contains
a padding letter #, and that an element x ∈ U is encoded not only by a word sx ∈ Σ∗ , but by all the
words sx#n with n ≥ 0. That is, an element x has a shortest encoding sx, and other encodings are
obtained by appending to sx an arbitrary number of padding letters. We assume that the shortest
encodings of two distinct elements are also distinct, and that for every x ∈ U the last letter of sx is
different from #. It follows that the sets of encodings of two distinct elements are disjoint.

The advantage is that for any two elements x, y there is a number n (in fact infinitely many)
such that both x and y have encodings of length n. We say that (wx,wy) encodes the pair (x, y)
if wx encodes x, wy encodes y, and wx,wy have the same length. Notice that if (wx,wy) encodes
(x, y), then so does (wx#k,wy#k) for every k ≥ 0. If sx, sy are the shortest encodings of x and y, and
|sx| ≤ |sy|, then the shortest encoding of (x, y) is (sx#|sy |−|sx |, sy).

Example 6.1 We encode the number 6 not only by its small end binary representation 011, but by
any word of L (0110∗). In this case we have Σ = {0, 1} with 0 as padding letter. Notice, however,
that taking 0 as padding letter requires to take the empty word as the shortest encoding of the
number 0 (otherwise the last letter of the encoding of 0 is the padding letter).

In the rest of this chapter, we will use this particular encoding of natural numbers without
further notice. We call it the least significant bit first encoding and write LSBF(6) to denote the
language L (0110∗)

If we encode an element of U by more than one word, then we have to define when is an
element accepted or rejected by an automaton. Does it suffice that the automaton accepts(rejects)
some encoding, or does it have to accept (reject) all of them? Several definitions are possible,
leading to different implementations of the operations. We choose the following option:

Definition 6.2 Assume an encoding of the universe U over Σ∗ has been fixed. Let A be an NFA.

• A accepts x ∈ U if it accepts all encodings of x.

• A rejects x ∈ U if it accepts no encoding of x.

• A recognizes a set X ⊆ U if

L (A) = {w ∈ Σ∗ | w encodes some element of X} .

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that if A recognizes X ⊆ U then, as one would expect, A accepts every x ∈ X and rejects
every x < X. Observe further that with this definition a NFA may neither accept nor reject a given
x. An NFA is well-formed if it recognizes some set of objects, and ill-formed otherwise.

6.2. TRANSDUCERS AND REGULAR RELATIONS 115

6.2 Transducers and Regular Relations

We assume that an encoding of the universe U over the alphabet Σ has been fixed.

Definition 6.3 A transducer over Σ is an NFA over the alphabet Σ × Σ.

Transducers are also called Mealy machines. According to this definition a transducer accepts
sequences of pairs of letters, but it is convenient to look at it as a machine accepting pairs of words:

Definition 6.4 Let T be a transducer over Σ. Given words w1 = a1a2 . . . an and w2 = b1b2 . . . bn,
we say that T accepts the pair (w1,w2) if it accepts the word (a1, b1)...(an, bn) ∈ (Σ × Σ)∗.

In other words, we identify the sets⋃
i≥0

(Σi × Σi) and (Σ × Σ)∗ =
⋃
i≥0

(Σ × Σ)i .

We now define when a transducer accepts a pair (x, y) ∈ X × X, which allows us to define the
relation recognized by a transducer. The definition is completely analogous to Definition 6.2

Definition 6.5 Let T be a transducer.

• T accepts a pair (x, y) ∈ U × U if it accepts all encodings of (x, y).

• T rejects a pair (x, y) ∈ U × U if it accepts no encoding of (x, y).

• T recognizes a relation R ⊆ U × U if

L (T) = {(wx,wy) ∈ (Σ × Σ)∗ | (wx,wy) encodes some pair of R} .

A relation is regular if it is recognized by some transducer.

It is important to emphasize that not every transducer recognizes a relation, because it may rec-
ognize only some, but not all, the encodings of a pair (x, y). As for NFAs, we say a transducer if
well-formed if it recognizes some relation, and ill-formed otherwise.

Example 6.6 The Collatz function is the function f : N→ N defined as follows:

f (n) =

{
3n + 1 if n is odd
n/2 if n is even

Figure 6.1 shows a transducer that recognizes the relation {(n, f (n)) | n ∈ N} with LSBF-
encoding and with Σ = {0, 1}. The elements of Σ × Σ are drawn as column vectors with two
components. The transducer accepts for instance the pair (7, 22) because it accepts the pairs
(111000k, 011010k), that is, it accepts[

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

] ([
0
0

])k

for every k ≥ 0, and we have LSBF(7) = L (1110∗) and LSBF(22) = L (011010∗).

116 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

Figure 6.1: A transducer for Collatz’s function.

Why “transducer”? In Engineering, a transducer is a device that converts signals in one form
of energy into signals in a different form. Two examples of transducers are microphones and
loudspeakers. We can look at a transducer T over an alphabet Σ as a device that transforms an
input word into an output word. If we choose Σ as the union of an input and an output alphabet,

and ensure that in every transition q
(a,b)
−−−−→ q′ the letters a and b are an input and an output letter,

respectively, then the transducer transforms a word over the input alphabet into a word over the
output alphabet. (Observe that the same word can be transformed into different ones.)

When looking at transducers from this point of view, it is customary to write a pair (a, b) ∈
Σ × Σ as a/b, and read it as “the transducer reads an a and writes a b”. In some exercises we
use this notation. However, in section 6.4 we extend the definition of a transducer, and consider
transducers that recognize relations of arbitrary arity. For such transducers, the metaphore of a
converter is less appealing: while in a binary relation it is natural and canonical to interpret the first
and second components of a pair as “input” and “output”, there is no such canonical interpretation
for a relation of arity 3 or higher. In particular, there is no canonical extension of the a/b notation.
For this reason, while we keep the name “transducer” for historical reasons, we use the notation

q
(a1,...,an)
−−−−−−−−→ q′ for transitions, or the column notation, as in Example 6.6.

Determinism A transducer is deterministic if it is a DFA. In particular, a state of a deterministic
transducer over the alphabet Σ×Σ has exactly |Σ|2 outgoing transitions. The transducer of Figure 6.1
is deterministic in this sense, when an appropriate trap state is added.

There is another possibility to define determinism of transducers, which corresponds to the
converter interpretation (a, b) 7→ a/b described in the previous paragraph. If the letter a/b is
interpreted as “the transducer receives the input a and produces the output b”, then it is natural to

6.3. IMPLEMENTING OPERATIONS ON RELATIONS 117

call a transducer deterministic if for every state q and every letter a there is exactly one transition
of the form (q, a/b, q′). Observe that these two definitions of determinism are not equivalent.

We do not give separate implementations of the operations for deterministic and nondetermin-
istic transducers. The new operations (projection and join) can only be reasonably implemented
on nondeterministic transducers, and so the deterministic case does not add anything new to the
discussion of Chapter 4.

6.3 Implementing Operations on Relations

In Chapter 4 we made two assumptions on the encoding of objects from the universe U as words:

• every word is the encoding of some object, and

• every object is encoded by exactly one word.

We have relaxed the second assumption, and allowed for multiple encodings (in fact, infinitely
many), of an object. Fortunately, as long as the first assumption still holds, the implementations
of the boolean operations remain correct, in the following sense: If the input automata are well
formed then the output automaton is also well-formed. Consider for instance the complementation
operation on DFAs. Since every word encodes some object, the set of all words can be partitioned in
equivalence classes, each of them containing all the encodings of an object. If the input automaton
A is well-formed, then for every object x from the universe, A either accepts all the words in an
equivalence class, or none of them. The complement automaton then satisfies the same property,
but accepting a class iff the original automaton does not accept it.

Notice further that membership of an object x in a set represented by a well-formed automaton
can be checked by taking any encoding wx of x, and checking if the automaton accepts wx.

6.3.1 Projection

Given a transducer T recognizing a relation R ⊆ X × X, we construct an automaton over Σ recog-
nizing the set π1(R). The initial idea is very simple: loosely speaking, we go through all transitions,
and replace their labels (a, b) by a. This transformation yields a NFA, and this NFA has an accept-
ing run on a word a1 . . . an iff the transducer has an accepting run on some pair (w,w′). Formally,
this step is carried out in lines 1-4 of the following algorithm (line 5 is explained below):

Proj 1(T)
Input: transducer T = (Q,Σ × Σ, δ,Q0, F)
Output: NFA A = (Q′,Σ, δ′,Q′0, F

′) with L (A) = π1(L (T))

1 Q′ ← Q; Q′0 ← Q0; F′′ ← F
2 δ′ ← ∅;
3 for all (q, (a, b), q′) ∈ δ do
4 add (q, a, q′) to δ′

5 F′ ← PadClosure((Q′,Σ, δ′,Q′0, F
′′), #)

118 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

However, this initial idea is not fully correct. Consider the relation R = {(1, 4)} over N. A
transducer T recognizing R recognizes the language

{(10n+2, 0010n) | n ≥ 0}

and so the NFA constructed after lines 1-4 recognizes {10n+2 | n ≥ 0}. However, it does not
recognize the number 1, because it does not accept all its encodings: the encodings 1 and 10 are
rejected.

This problem can be easily repaired. We introduce an auxiliary construction that “completes”
a given NFA: the padding closure of an NFA is another NFA A′ that accepts a word w if and only
if the first NFA accepts w#n for some n ≥ 0 and a padding symbol #. Formally, the padding closure
augments the set of final states and return a new such set. Here is the algorithm constructing the
padding closure:

PadClosure(A, #)
Input: NFA A = (Σ × Σ,Q, δ, q0, F)
Output: new set F′ of final states

1 W ← F; F′ ← ∅;
2 while W , ∅ do
3 pick q from W
4 add q to F′

5 for all (q′, #, q) ∈ δ do
6 if q′ < F′ then add q′ to W
7 return F′

Projection onto the second component is implemented analogously. The complexity of Proj i()
is clearly O(|δ| + |Q|), since every transition is examined at most twice, once in line 3, and possibly
a second time at line 5 of PadClosure.

Observe that projection does not preserve determinism, because two transitions leaving a state
and labeled by two different (pairs of) letters (a, b) and (a, c), become after projection two tran-
sitions labeled with the same letter a: In practice the projection of a transducer is hardly ever
deterministic. Since, typically, a sequence of operations manipulating transitions contains at least
one projection, deterministic transducers are relatively uninteresting.

Example 6.7 Figure 6.2 shows the NFA obtained by projecting the transducer for the Collatz func-
tion onto the first and second components. States 4 and 5 of the NFA at the top (first component)
are made final by PadClosure, because they can both reach the final state 6 through a chain of 0s
(recall that 0 is the padding symbol in this case). The same happens to state 3 for the NFA at the
bottom (second component), which can reach the final state 2 with 0.
Recall that the transducer recognizes the relation R = {(n, f (n)) | n ∈ N}, where f denotes the
Collatz function. So we have π1(R) = {n | n ∈ N} = N and π2(R) = { f (n) | n ∈ N}, and a moment
of thought shows that π2(R) = N as well. So both NFAs should be universal, and the reader

6.3. IMPLEMENTING OPERATIONS ON RELATIONS 119

1

2 3

4 5 6

0 1

0

1
0

1 0 0

1

1

1

0

0

1

2 3

4 5 6

0 1

1

0
0

0 0 1

0

1

1

0

1

Figure 6.2: Projections of the transducer for the Collatz function onto the first and second compo-
nents.

can easily check that this is indeed the case. Observe that both projections are nondeterministic,
although the transducer is deterministic.

6.3.2 Join, Post, and Pre

We give an implementation of the Join operation, and then show how to modify it to obtain imple-
mentations of Pre and Post.

Given transducers T1,T2 recognizing relations R1 and R2, we construct a transducer T1 ◦ T2
recognizing R1◦R2. We first construct a transducer T with the following property: T accepts (w,w′)
iff there is a word w′′ such that T1 accepts (w,w′′) and T2 accepts (w′′,w′). The intuitive idea is to
slightly modify the product construction. Recall that the pairing [A1, A2] of two NFA A1, A2 has a

120 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

transition [q, r]
a
−−→[q′, r′] if and only if A1 has a transition q

a
−−→ r and A2 has a transition q′

a
−−→ r′.

Similarly, T1◦T2 has a transition [q, r]
(a,b)
−−−−→[q′, r′] if there is a letter c such that T1 has a transition

q
(a,c)
−−−−→ r and A2 has a transition q′

(c,b)
−−−−→ r′. Intuitively, T can output b on input a if there is a letter

c such that T1 can output c on input a, and T2 can output b on input c. The transducer T has a run

[
q01
q02

] a1
b1


−−−−→

[
q11
q12

] a2
b2


−−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

] an

bn


−−−−→

[
qn1
qn2

]
iff T1 and T2 have runs

q01

a1
c1


−−−−→ q11

a2
c2


−−−−→ q21 . . . q(n−1)1

an

cn


−−−−→ qn1

q02

c1
b1


−−−−→ q12

c2
b2


−−−−→ q22 . . . q(n−1)2

cn

bn


−−−−→ qn2

Formally, if T1 = (Q1,Σ × Σ, δ1,Q01, F1) and T2 = (Q2,Σ × Σ, δ2,Q02, F2), then T = (Q,Σ ×
Σ, δ,Q0, F′) is the transducer generated by lines 1–9 of the algorithm below:

Join(T1,T2)
Input: transducers T1 = (Q1,Σ × Σ, δ1,Q01, F1),

T2 = (Q2,Σ × Σ, δ2,Q02, F2)
Output: transducer T1 ◦ T2 = (Q,Σ × Σ, δ,Q0, F)

1 Q, δ, F′ ← ∅; Q0 ← Q01 × Q02

2 W ← Q0

3 while W , ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if q1 ∈ F1 and q2 ∈ F2 then add [q1, q2] to F′

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], (a, b), [q′1, q

′
2]) to δ

9 if [q′1, q
′
2] < Q then add [q′1, q

′
2] to W

10 F ← PadClosure((Q,Σ × Σ, δ,Q0, F′), (#, #))

However, T is not yet the transducer we are looking for. The problem is similar to the one of
the projection operation. Consider the relations on numbers R1 = {(2, 4)} and R2 = {(4, 2)}. Then
T1 and T2 recognize the languages {(010n+1, 0010n) | n ≥ 0} and {(0010n, 010n+1) | n ≥ 0} of word
pairs. So T recognizes {(010n+1, 010n+1) | n ≥ 0}. But then, according to our definition, T does not

6.3. IMPLEMENTING OPERATIONS ON RELATIONS 121

accept the pair (2, 2) ∈ N ×N, because it does not accept all its encodings: the encoding (01, 01)
is missing. So we add a padding closure again at line 10, this time using [#, #] as padding symbol.

The number of states of Join(T1,T2) is O(|Q1| · |Q2|), as for the standard product construction.

Example 6.8 Recall that the transducer of Figure 6.1, shown again at the top of Figure 6.3, rec-
ognizes the relation {(n, f (n)) | n ∈ N}, where f is the Collatz function. Let T be this transducer.
The bottom part of Figure 6.3 shows the transducer T ◦ T as computed by Join(T ,T). For example,
the transition leading from [2, 3] to [3, 2], labeled by (0, 0), is the result of “pairing” the transition
from 2 to 3 labeled by (0, 1), and the one from 3 to 2 labeled by (1, 0). Observe that T ◦ T is
not deterministic, because for instance [1, 1] is the source of two transitions labeled by (0, 0), even
though T is deterministic. This transducer recognizes the relation {(n, f (f (n))) | n ∈ N}. A little
calculation gives

f (f ((n)) =


n/4 if n ≡ 0 mod 4
3n/2 + 1 if n ≡ 2 mod 4
3n/2 + 1/2 if n ≡ 1 mod 4 or n ≡ 3 mod 4

The three components of the transducer reachable from the state [1, 1] correspond to these three
cases.

Post(X,R) and Pre(X, R) Given an NFA A1 = (Q1,Σ, δ1,Q01, F1) recognizing a regular set X ⊆ U
and a transducer T2 = (Q2,Σ×Σ, δ2, q02, F2) recognizing a regular relation R ⊆ U×U, we construct
an NFA B recognizing the set postR(U). It suffices to slightly modify the join operation. The
algorithm Post(A1,T2) is the result of replacing lines 7-8 of Join() by

7 for all (q1, c, q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], b, [q′1, q

′
2]) to δ

As for the join operation, the resulting NFA has to be postprocessed, closing it with respect to the
padding symbol.

In order to construct an NFA recognizing preR(X), we replace lines 7-8 by

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, c, q′2) ∈ δ2 do
8 add δ to ([q1, q2], a, [q′1, q

′
2])

Notice that both post and pre are computed with the same complexity as the pairing construction,
namely, the product of the number of states of transducer and NFA.

Example 6.9 We construct an NFA recognizing the image under the Collatz function of all multi-
ples of 3, i.e., the set { f (3n) | n ∈ N}. For this, we first need an automaton recognizing the set Y of
all lsbf encodings of the multiples of 3. The following DFA does the job:

122 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

1, 1

2, 5 2, 6

[
0
1

] [
0
0

]

6, 2
[
0
0

][
0
0

]

[
1
0

]

[
0
1

][
1
1

] [
0
1

]

6, 3

4, 2 5, 3

[
0
1

]

[
1
1

]

[
1
0

]

4, 3 5, 2

[
1
0

]3, 4 3, 5

[
1
1

]

2, 3 3, 3[
0
0

]
[
0
1

]

[
1
0

]

[
0
1

] [
1
1

]

2, 2 3, 2

[
1
1

]
[
1
0

]
[
0
1

]

[
1
1

]
[
1
0

]

[
0
0

] [
0
0

]

[
0
0

]

[
0
0

]

[
0
1

][
1
1

][
1
0

] [
0
0

]

[
1
0

]

[
1
1

]
Figure 6.3: A transducer for f (f (n)).

6.4. RELATIONS OF HIGHER ARITY 123

0 1

1 0

1 0

1 2 3

For instance, this DFA recognizes 0011 (encoding of 12) and 01001 (encoding of 18), but not 0101
(encoding of 10). We now compute postR(Y), where, as usual, R = {(n, f (n)) | n ∈ N}. The result

is the NFA shown in Figure 6.4. For instance, the transition [1, 1]
1
−−→[1, 3] is generated by the

transitions 1
0
−−→ 1 of the DFA and 1

(0,1)
−−−−→ 3 of the transducer for the Collatz function. State [2, 3]

becomes final due to the closure with respect to the padding symbol 0.
The NFA of Figure 6.4 is not difficult to interpret. The multiples of 3 are the union of the sets

{6k | k ≥ 0}, all whose elements are even, and the set {6k + 3 | k ≥ 0}, all whose elements are odd.
Applying f to them yields the sets {3k | k ≥ 0} and {18k + 10 | k ≥ 0}. The first of them is again
the set of all multiples of 3, and it is recognized by the upper part of the NFA. (In fact, this upper
part is a DFA, and if we minimize it we obtain exactly the DFA given above.) The lower part of the
NFA recognizes the second set. The lower part is minimal; it is easy to find for each state a word
recognized by it, but not by the others.

It is interesting to observe that an explicit computation of the set { f (3k) | k ≥ 0}) in which we
apply f to each multiple of 3 does not terminate, because the set is infinite. In a sense, our solution
“speeds up” the computation by an infinite factor!

6.4 Relations of Higher Arity

The implementations described in the previous sections can be easily extended to relations of higher
arity over the universe U. We briefly describe the generalization.

Fix an encoding of the universe U over the alphabet Σ with padding symbol #. A tuple
(w1, . . . ,wk) of words over Σ encodes the tuple (x1, . . . , xk) ∈ Uk if wi encodes xi for every
1 ≤ i ≤ k, and w1, . . . ,wk have the same length. A k-transducer over Σ is an NFA over the al-
phabet Σk. Acceptance of a k-transducer is defined as for normal transducers.

Boolean operations are defined as for NFAs. The projection operation can be generalized to
projection over an arbitrary subset of components. For this, given an index set I = {i1, . . . , in} ⊆
{1, . . . , k}, let ~xI denote the projection of a tuple ~x = (x1, . . . , xk) ∈ Uk over I, defined as the tuple
(xi1 , . . . , xin) ∈ Un. Given a relation R ⊆ U, we define

Projection I(R): returns the set πI(R) = {~xI | ~x ∈ R}.

The operation is implemented analogously to the case of a binary relation. Given a k-transducer T
recognizing R, the n-transducer recognizing Projection P(R) is computed as follows:

• Replace every transition (q, (a1, . . . , ak), q′) of T by the transition (q, (ai1 , . . . , ain), q′).

124 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

0 1

1 0

1 0

1 2 3
1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

1, 1

1, 2

2, 2

0

0

0

1 13, 3

3, 2

1, 3

2, 3

0

1

1

0

0

0

1, 52, 4

1, 62, 5

2, 63, 63, 5

3, 4

1, 4

0

0

0

0

1

1

1 0

1

1

1

1

0

1

0

1

1

01

0

0

1

Figure 6.4: Computing f (n) for all multiples of 3.

6.4. RELATIONS OF HIGHER ARITY 125

• Compute the PAD-closure of the result: for every transition (q, (#, . . . , #), q′), if q′ is a final
state, then add q to the set of final states.

The join operation can also be generalized. Given two tuples ~x = (x1, . . . , xn) and ~y =

(y1, . . . , ym) of arities n and m, respectively, we denote the tuple (x1, . . . , xn, y1, . . . , ym) of dimen-
sion n + m by ~x · ~y. Given relations R1 ⊆ Uk1 and R2 ⊆ Uk2 of arities k1 and k2, respectively, and
index sets I1 ⊆ {1, . . . , k1}, I2 ⊆ {1, . . . , k2} of the same cardinality, we define

Join I(R1, R2): returns R1 ◦I1,I2 R2 = {~xK1\I1 ~xK2\I2 | ∃~x ∈ R1, ~y ∈ R2 : ~xI1 = ~yI2}

The arity of Join I(R1, R2) is k1 + k2 − |I1|. The operation is implemented analogously to the case
of binary relations. We proceed in two steps. The first step constructs a transducer according to the
following rule:

If the transducer recognizing R1 has a transition (q, ~a, q′), the transducer recognizing
R2 has a transition (r, ~b, r′), and ~aI1 = ~bI2, then add to the transducer for Join I(R1,
R2) a transition ([q, r], ~aK1\I1 ·

~bK2\I2 , [q
′, r′]).

In the second step, we compute the PAD-closure of the result. The generalization of the Pre and
Post operations is analogous.

Exercises

Exercise 73 Let val : {0, 1}∗ → N be such that val(w) is the number represented by w with the
“least significant bit first” encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer recognizing the language{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2 · val(x)

}
.

(b) Give an algorithm that takes k ∈ N as input and produces a transducer Ak recognizing the
language

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2k · val(x)

}
.

(Hint: use (a) and joins.)

(c) Give a transducer for the addition of two numbers, i.e. a transducer recognizing the language{
[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ | val(z) = val(x) + val(y)

}
.

(d) For every k ∈ N>0, let

Xk =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = k · val(x)

}
.

Suppose you are given transducers A and B recognizing respectively Xa and Xb for some
a, b ∈ N>0. Sketch an algorithm that builds a transducer C recognizing Xa+b. (Hint: use (c).)

126 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

(e) Let k ∈ N>0. Using (b) and (d), how can you build a transducer recognizing Xk?

(f) Show that the following language has infinitely many residuals, and hence that it is not
regular: {

[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = val(x)2
}
.

Exercise 74 Let U = N be the universe of natural numbers, and consider the MSBF encoding.
Give transducers for the sets of pairs (n,m) ∈ N2 such that (a) m = n + 1, (b) m = bn/2c, (c)
n/4 ≤ m ≤ 4n. How do the constructions change for the LSBF encoding?

Exercise 75 Let U be some universe of objects, and fix an encoding of U over Σ∗. Prove or
disprove: if a relation R ⊆ U × U is regular, then the language

LR = {wxwy | (wx,wy) encodes a pair (x, y) ∈ R}

is regular.

Exercise 76 Let A be an NFA over the alphabet Σ.

(a) Show how to construct a transducer T over the alphabet Σ × Σ such that (w, v) ∈ L(T) iff
wv ∈ L(A) and |w| = |v|.

(b) Give an algorithm that accepts an NFA A as input and returns an NFA A/2 such that L (A/2) =

{w ∈ Σ∗ | ∃v ∈ Σ∗ : wv ∈ L (A) ∧ |w| = |v|}.

Exercise 77 In phone dials letters are mapped into digits as follows:

ABC 7→ 2 DEF 7→ 3 GHI 7→ 4 JKL 7→ 5
MNO 7→ 6 PQRS 7→ 7 TUV 7→ 8 WXYZ 7→ 9

This map can be used to assign a telephone number to a given word. For instance, the number for
AUTOMATON is 288662866.

Consider the problem of, given a telephone number (for simplicity, we assume that it contains
neither 1 nor 0), finding the set of English words that are mapped into it. For instance, the set of
words mapping to 233 contains at least ADD, BED, and BEE. Assume a DFA N over the alphabet
{A, . . . ,Z} recognizing the set of all English words is given. Given a number n, show how to
construct a NFA recognizing all the words that are mapped to n.

Exercise 78 As we have seen, the application of the Post, Pre operations to transducers requires
to compute the padding closure in order to guarantee that the resulting automaton accepts either all
or none of the encodings of a object. The padding closure has been defined for encodings where
padding occurs on the right, i.e., if w encodes an object, then so does w #k for every k ≥ 0. However,
in some natural encodings, like the most-significant-bit-first encoding of natural numbers, padding
occurs on the left. Give an algorithm for calculating the padding closure of a transducer when
padding occurs on the left.

6.4. RELATIONS OF HIGHER ARITY 127

Exercise 79 We have defined transducers as NFAs whose transitions are labeled by pairs of sym-
bols (a, b) ∈ Σ×Σ. With this definition transducers can only accept pairs of words (a1 . . . an, b1 . . . bn)
of the same length. In many applications this is limiting.

An ε-transducer is a NFA whose transitions are labeled by elements of (Σ ∪ {ε}) × (Σ ∪ {ε}).
An ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a1,b1)
−−−−−→ q1

(a2,b2)
−−−−−→ · · ·

(an,bn)
−−−−−→ qn with ai, bi ∈ Σ ∪ {ε}

such that w = a1 . . . an and w′ = b1 . . . bn. Note that |w| ≤ n and |w′| ≤ n. The relation accepted
by the ε-transducer T is denoted by L (T). The figure below shows a transducer over the alphabet
{a, b} that, intuitively, duplicates the letters of a word, e.g., on input aba it outputs aabbaa. In the
figure we use the notation a/b.

a/a

b/b

ε/a

ε/b

Give an algorithm Postε(A,T) that, given a NFA A and an ε-transducer T , both over the same
alphabet Σ, returns a NFA recognizing the language

postTε(A) = {w | ∃w′ ∈ L(A) such that (w′,w) ∈ L(T)}

Hint: View ε as an additional alphabet letter.

Exercise 80 Transducers can be used to capture the behaviour of simple programs. Figure 6.5
shows a program P and its control-flow diagram. The instruction end finishes the execution of the
program. P communicates with the environment through its two boolean variables, both with 0 as
initial value. The I/O-relation of P is the set of pairs (wI ,wO) ∈ {0, 1}∗ × {0, 1}∗ such that there is
an execution of P during which P reads the sequence wI of values and writes the sequence wO.

Let [i, x, y] denote the configuration of P in which P is at node i of the control-flow diagram,
and the values of its two boolean variables are x and y, respectively. The initial configuration of P
is [1, 0, 0]. By executing the first instruction P moves nondeterministically to one of the configu-
rations [2, 0, 0] and [2, 1, 0]; no input symbol is read and no output symbol is written. Similarly,
by executing its second instruction, the program P moves from [2, 1, 0] to [3, 1, 0] while reading
nothing and writing 1.

(a) Give an ε-transducer recognizing the I/O-relation of P.

128 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

bool x, y init 0
x←?
write x
while true do

read y until y = x ∧ y
if x = y then write y end
x← x − 1 or y← x + y
if x , y then write x end

1

2

3

4

5
6

78

9 10

x←?

write x

read y

y = x ∧ y

y , x ∧ y

x , y

x = y

write y

y← x + yx← x − 1

x , y

write x

x = y

Figure 6.5: Programm used in Exercise 80.

(b) Can an overflow error occur? (That is, can a configuration be reached in which the value of
x or y is not 0 or 1?)

(c) Can node 10 of the control-flow graph be reached?

(d) What are the possible values of x upon termination, i.e. upon reaching end?

(e) Is there an execution during which P reads 101 and writes 01?

(f) Let I and O be regular sets of inputs and outputs, respectively. Think of O as a set of
dangerous outputs that we want to avoid. We wish to prove that the inputs from I are safe,
i.e. that when P is fed inputs from I, none of the dangerous outputs can occur. Describe an
algorithm that decides, given I and O, whether there are i ∈ I and o ∈ O such that (i, o)
belongs to the I/O-relation of P.

Exercise 81 In Exercise 79 we have shown how to compute pre- and post-images of relations
described by ε-transducers. In this exercise we show that, unfortunately, and unlike standard trans-
ducers, ε-transducers are not closed under intersection.

(a) Construct ε-transducers T1,T2 recognizing the relations R1 = {(anbm, c2n) | n,m ≥ 0}, and
R2 = {(anbm, c2m) | n,m ≥ 0}.

(b) Show that no ε-transducer recognizes R1 ∩ R2.

6.4. RELATIONS OF HIGHER ARITY 129

Exercise 82 (Inspired by a paper by Galwani al POPL’11.) Consider transducers whose transitions
are labeled by elements of (Σ ∪ {ε}) × (Σ∗ ∪ {ε}). Intuitively, at each transition these transducers
read one letter or no letter, an write a string of arbitrary length. These transducers can be used
to perform operations on strings like, for instance, capitalizing all the words in the string: if the
transducer reads, say, ”singing in the rain”, it writes ”Singing In The Rain”. Sketch ε-transducers
for the following operations, each of which is informally defined by means of two examples. In
each example, when the transducer reads the string on the left it writes the string on the right.

Company\Code\index.html Company\Code

Company\Docs\Spec\specs.doc Company\Docs\Spec

International Business Machines IBM

Principles Of Programming Languages POPL

Oege De Moor Oege De Moor

Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.

Bill Gates Gates, B.

004989273452 +49 89 273452

(00)4989273452 +49 89 273452

273452 +49 89 273452

130 CHAPTER 6. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

Chapter 7

Finite Universes

In Chapter 3 we proved that every regular language has a unique minimal DFA. A natural ques-
tion is whether the operations on languages and relations described in Chapters 4 and 6 can be
implemented using minimal DFAs and minimal deterministic transducers as data structure.

The implementations of (the first part of) Chapter 4 accept and return DFAs, but do not pre-
serve minimality: even if the arguments are minimal DFAs, the result may be non-minimal (the
only exception was complementation). So, in order to return the minimal DFA for the result an
extra minimization operation must be applied. The situation is worse for the projection and join
operations of Chapter 6, because they do not even preserve determinacy: the result of projecting
a deterministic transducer or joining two of them may be nondeterministic. In order to return a
minimal DFA it is necessary to first determinize, at exponential cost in the worst case, and then
minimize.

In this chapter we present implementations that directly yield the minimal DFA, with no need
for an extra minimization step, for the case in which the universe U of objects is finite.

When the universe is finite, all objects can be encoded by words of the same length, and this
common length is known a priori. For instance, if the universe consists of the numbers in the range
[0..232 − 1], its objects can be encoded by words over {0, 1} of length 32. Since all encodings have
the same length, padding is not required to represent tuples of objects, and we can assume that each
object is encoded by exactly one word. As in Chapter 4, we also assume that each word encodes
some object. Operations on objects correspond to operations on languages, but complementation
requires some care. If X ⊂ U is encoded as a language L ⊆ Σk for some number k ≥ 0, then the
complement set U \ X is not encoded by L (which contains words of any length) but by L ∩ Σk.

7.1 Fixed-length Languages and the Master Automaton

Definition 7.1 A language L ⊆ Σ∗ has length n ≥ 0 if every word of L has length n. If L has length
n for some n ≥ 0, then we say that L is a fixed-length language, or that it has fixed-length.

Some remarks are in order:

131

132 CHAPTER 7. FINITE UNIVERSES

• According to this definition, the empty language has length n for every n ≥ 0 (the asser-
tion “every word of L has length n” is vacuously true). This is useful, because then the
complement of a language of length n has also length n.

• There are exactly two languages of length 0: the empty language ∅, and the language {ε}
containing only the empty word.

• Every fixed-length language contains only finitely many words, and so it is regular.

The master automaton over an alphabet Σ is a deterministic automaton with an infinite number
of states, but no initial state. As in the case of canonical DAs, the states are languages.

For the definition, recall the notion of residual with respect to a letter: given a language L ⊆ Σ∗

and a ∈ Σ, its residual with respect to a is the language La = {w ∈ Σ∗ | aw ∈ L}. Recall that, in
particular, we have ∅a = {ε}a = ∅. A simple but important observation is that if L has fixed-length,
then so does La.

Definition 7.2 The master automaton over the alphabet Σ is the tuple M = (QM,Σ, δM, FM), where

• QM is is the set of all fixed-length languages over Σ;

• δ : QM × Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ;

• FM is the singleton set containing the language {ε} as only element.

Example 7.3 Figure 7.1 shows a small fragment of the master automaton for the alphabet Σ =

{a, b}. Notice that M is almost acyclic. More precisely, the only cycles of M are the self-loops
corresponding to δM(∅, a) = ∅ for every a ∈ Σ.

The following proposition was already proved in Chapter 3, but with slightly different termi-
nology.

Proposition 7.4 Let L be a fixed-length language. The language recognized from the state L of the
master automaton is L.

Proof: By induction on the length n of L. If n = 0, then L = {ε} or L = ∅, and the result is
proved by direct inspection of the master automaton. For n > 0 we observe that the successors of
the initial state L are the languages La for every a ∈ Σ. Since, by induction hypothesis, the state La

recognizes the language La, the state L recognizes the language L.

By this proposition, we can look at the master automaton as a structure containing DFAs rec-
ognizing all the fixed-length languages. To make this precise, each fixed-length language L deter-
mines a DFA AL = (QL,Σ, δL, q0L, FL) as follows: QL is the set of states of the master automaton
reachable from the state L; q0L is the state L; δL is the projection of δM onto QL; and FL = FM. It
is easy to show that AL is the minimal DFAs recognizing L:

7.2. A DATA STRUCTURE FOR FIXED-LENGTH LANGUAGES 133

{aa, ab, ba, bb}

{a} {a, b} {b}

{ε}

{aa, ab, ba} {ab, bb} {aa, ab, bb}

a, b

∅

b

a
b

a, b

a, b
a

b
a

b
a a, b a, b

{aab, abb, baa, bab, bbb}

baa

{aaa, aab, aba, baa, bab, bba, bbb}

b

Figure 7.1: A fragment of the master automaton for the alphabet {a, b}

Proposition 7.5 For every fixed-language L, the automaton AL is the minimal DFA recognizing L.

Proof: By definition, distinct states of the master automaton are distint languages. By Proposition
7.4, distinct states of AL recognize distinct languages. By Corollary 3.13 (a DFA is minimal if and
only if distinct states recognized different languages) AL is minimal.

7.2 A Data Structure for Fixed-length Languages

Proposition 7.5 allows us to define a data structure for representing finite sets of fixed-length
languages, all of them of the same length. Loosely speaking, the structure representing the lan-
guages L = {L1, . . . , Lm} is the fragment of the master automaton containing the states recognizing
L1, . . . , Ln and their descendants. It is a DFA with multiple initial states, and for this reason we call
it the multi-DFA for L. Formally:

Definition 7.6 Let L = {L1, . . . , Ln} be a set of languages of the same length over the same alpha-
bet Σ. The multi-DFA AL is the tuple AL = (QL,Σ, δL,Q0L, FL), where QL is the set of states of
the master automaton reachable from at least one of the states L1, . . . , Ln; Q0L = {L1, . . . , Ln}; δL
is the projection of δM onto QL; and FL = FM.

134 CHAPTER 7. FINITE UNIVERSES

4

7

1

3

6

2

5

L3L2L1

a, b a

a, b
a b

a, bb

Figure 7.2: The multi-DFA for {L1, L2, L3} with L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}.

Example 7.7 Figure 7.2 shows (a DFA isomorphic to) the multi-DFA for the set {L1, L2, L3}, where
L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}. For clarity the state for the empty language has
been omitted, as well as the transitions leading to it.

In order to manipulate multi-DFAs we represent them as a table of nodes. Assume Σ =

{a1, . . . , am}. A node is a pair 〈q, s〉, where q is a state identifier and s = (q1, . . . , qm) is the succes-
sor tuple of the node. Along the chapter we denote the state identifiers of the state for the languages
∅ and {ε} by q∅ and qε , respectively.

The multi-DFA is represented by a table containing a node for each state, with the exception of
the nodes q∅ and qε . The table for the multi-DFA of Figure 7.2, where state identifiers are numbers,
is

Ident. a-succ b-succ
2 1 0
3 1 1
4 0 1
5 2 2
6 2 3
7 4 4

The procedure make(s). The algorithms on multi-DFAs use a procedure make(s) that returns the
state of T having s as successor tuple, if such a state exists; otherwise, it adds a new node 〈q, s〉 to
T , where q is a fresh state identifier (different from all other state identifiers in T) and returns q. If
s is the tuple all whose components are q∅, then make(s) returns q∅. The procedure assumes that
all the states of the tuple s (with the exception of q∅ and qε) appear in T .1 For instance, if T is the

1Notice that the procedure makes use of the fact that no two states of the table have the same successor tuple.

7.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 135

4

7

1

3

6

2

5 8

L3L1

a, b a

a, b
a b

a, bb b

L2 ∩ L3L2L1 ∪ L2

Figure 7.3: The multi-DFA for {L1, L2, L3, L1 ∪ L2, L2 ∩ L3}

table above, then make(2, 2) returns 5, but make(3, 2) adds a new row, say 8, 3, 2, and returns 8.

7.3 Operations on fixed-length languages

All operations assume that the input fixed-length language(s) is (are) given as multi-DFAs repre-
sented as a table of nodes. Nodes are pairs of state identifier and successor tuple.

The key to all implementations is the fact that if L is a language of length n ≥ 1, then La is
a language of length n − 1. This allows to design recursive algorithms that directly compute the
result when the inputs are languages of length 0, and reduce the problem of computing the result
for languages of length n ≥ 1 to the same problem for languages of smaller length.

Fixed-length membership. The operation is implemented as for DFAs. The complexity is linear
in the size of the input.

Fixed-length union and intersection. Implementing a boolean operation on multi-DFAs corre-
sponds to possibly extending the multi-DFA, and returning the state corresponding to the result of
the operation. This is best explained by means of an example. Consider again the multi-DFA of
Figure 7.2. An operation like Union(L1, L2) gets the initial states 5 and 6 as input, and returns the
state recognizing L1 ∪ L2; since L1 ∪ L2 = L2, the operation returns state 6. However, if we take
Intersection(L2, L3), then the multi-DFA does not contain any state recognizing it. In this case the
operation extends the multi-DFA for {L1, L2, L3} to the multi-DFA for {L1, L2, L3, L2 ∪ L3}, shown
in Figure 7.3, and returns state 8. So Intersection(L2, L3) not only returns a state, but also has a
side effect on the multi-DFA underlying the operations.

136 CHAPTER 7. FINITE UNIVERSES

Given two fixed-length languages L1, L2 of the same length, we present an algorithm that re-
turns the state of the master automaton recognizing L1∩L2 (the algorithm for L1∪L2 is analogous).
The properties

• if L1 = ∅ or L2 = ∅, then L1 ∩ L2 = ∅;

• if L1 = {ε} and L2 = {ε}, then L1 ∩ L2 = {ε};

• if L1, L2 < {∅, {ε}}, then (L1 ∩ L2)a = La
1 ∩ La

2 for every a ∈ Σ;

lead to the recursive algorithm inter(q1, q2) shown in Table 7.1. Assume the states q1, q2 recognize
the languages L1, L2 of the same length. We say that q1, q2 have the same length. The algorithm
returns the state identifier qL1∩L2 . If q1 = q∅, then L1 = ∅, which implies L1 ∩ L2 = ∅. So the
algorithm returns the state identifier q∅. If q2 = q∅, the algorithm also returns q∅. If q1 = qε = q2,
the algorithm returns qε . This deals with all the cases in which q1, q2 ∈ {q∅, qε} (and some more,
which does no harm). If q1, q2 < {q∅, qε}, then the algorithm computes the state identifiers r1, . . . , rm

recognizing the languages (L1∩L2)a1 , . . . , (L1∩L2)am , and returns make(r1, . . . , rn) (creating a new
node if no node of T has (r1, . . . , rn) as successor tuple). But how does the algorithm compute the
state identifier of (L1 ∩ L2)ai? By equation (3) above, we have (L1 ∩ L2)ai = Lai

1 ∩ Lai
2 , and so the

algorithm computes the state identifier of Lai
1 ∩ Lai

2 by a recursive call inter(qai
1 , q

ai
2).

The only remaining point is the rôle of the table G. The algorithm uses memoization to avoid
recomputing the same object. The table G is initially empty. When inter(q1, q2) is computed for the
first time, the result is memoized in G(q1, q2). In any subsequent call the result is not recomputed,
but just read from G. For the complexity, let n1, n2 be the number of states of T reachable from the
state q1, q2. It is easy to see that every call to inter receives as arguments states reachable from q1
and q2, respectively. So inter is called with at most n1 · n2 possible arguments, and the complexity
is O(n1 · n2).

inter(q1, q2)
Input: states q1, q2 of the same length
Output: state recognizing L (q1) ∩ L (q2)

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 else if q1 = qε and q2 = qε then return qε
4 else /* q1, q2 < {q∅, qε} */

5 for all i = 1, . . . ,m do ri ← inter(qai
1 , q

ai
2)

6 G(q1, q2)← make(r1, . . . , rm)
7 return G(q1, q2)

Table 7.1: Algorithm inter

Algorithm inter is generic: in order to obtain an algorithm for another binary operator it suffices
to change lines 2 and 3. If we are only interested in intersection, then we can easily gain a more

7.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 137

efficient version. For instance, we know that inter(q1, q2) and inter(q2, q1) return the same state,
and so we can improve line 1 by checking not only if G(q1, q2) is nonempty, but also if G(q2, q1)
is. Also, inter(q, q) always returns q, no need to compute anything either.

Example 7.8 Consider the multi-DFA at the top of Figure 7.4, but without the blue states. State 0,
accepting the empty language, is again not shown. The tree at the bottom of the figure graphically
describes the run of inter(12, 13) (that is, we compute the node for the intersection of the languages
recognized from states 12 and 13). A node q, q′ 7→ q′′ of the tree stands for a recursive call to inter
with arguments q and q′ that returns q′′. For instance, the node 2,4 7→ 2 indicates that inter is called
with arguments 2 and 4 and the call returns state 2. Let us see why is this so. The call inter(2, 4)
produces two recursive calls, first inter(1, 1) (the a-successors of 2 and 4), and then inter(0, 1). The
first call returns 1, and the second 0. Therefore inter(2, 4) returns a state with 1 as a-successor and
0 as b-successor. Since this state already exists (it is state 2), inter(2, 4) returns 2. On the other
hand, inter(9,10) creates and returns a new state: its two “children calls” return 5 and 6, and so a
new state with state 5 and 6 as a- and b-successors must be created.

Pink nodes correspond to calls that have already been computed, and for which inter just looks
up the result in G. Green nodes correspond to calls that are computed by inter, but not by the
more efficient version. For instance, the result of inter(4,4) at the bottom right can be returned
immediately.

Fixed-length complement. Recall that if a set X ⊆ U is encoded by a language L of length n,
then the set U \X is encoded by the fixed-length complement Σn \ L, which we denote by L

n
. Since

the empty language has all lengths, we have e.g. ∅
2

= Σ2, but ∅
3

= Σ3 and ∅
0

= Σ0 = {ε}.
Given the state of the master automaton recognizing L, we compute the state recognizing L

n

with the help of these properties:

• If L has length 0 and L = ∅ then L
0

= {ε}.

• If L has length 0 and L = {ε}, then L
0

= ∅.

• If L has length n ≥ 1, then
(
L

n)a
= La (n−1)

.

(Observe that w ∈
(
L
)a

iff aw < L iff w < La iff w ∈ La.)

We obtain the algorithm of Table 7.9. If the master automaton has n states reachable from q, then
the operation has complexity O(n).

Example 7.9 Consider again the multi-DFA at the top of Figure 7.5 without the blue states. The
tree of recursive calls at the bottom of the figure graphically describes the run of comp(4, 12) (that
is, we compute the node for the complement of the language recognized from state 12, which has
length 4). For instance, comp(1,2) generates two recursive calls, first comp(0,1) (the a-successor of
2), and then comp(0,0). The calls returs 0 and 1, respectively, and so comp(1,2) returns 3. Observe

138 CHAPTER 7. FINITE UNIVERSES

1

4

765

98

15

32

1110

a b a, b

abba

a bb a, ba

b
a, ba

1312

b a

8, 11 7→ 8 9, 10 7→ 14

7, 6 7→ 60, 7 7→ 05, 7 7→ 5

2, 4 7→ 2 3, 4 7→ 3 4, 2 7→ 2 4, 4 7→ 4

1, 1 7→ 11, 1 7→ 11, 0 7→ 01, 1 7→ 11, 1 7→ 10, 1 7→ 00, 1 7→ 0

5, 7 7→ 5

12, 13 7→ 15

a
a

b14

ab

1, 1 7→ 1

Figure 7.4: An execution of inter.

7.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 139

comp(n, q)
Input: length n, state q of length n
Output: state recognizing L (q)

n

1 if G(n, q) is not empty then return G(n, q)
2 if n = 0 and q = q∅ then return qε
3 else if n = 0 and q = qε then return q∅
4 else / ∗ n ≥ 1 ∗ /
5 for all i = 1, . . . ,m do ri ← comp(n − 1, qai)
6 G(n, q)← make(r1, . . . , rm)
7 return G(n, q)

Table 7.2: Algorithm comp

how the call comp(2,0) returns 7, the state accepting {a, b}2. Pink nodes correspond again to calls
for which comp just looks up the result in G. Green nodes correspond to calls whose result is
directly computed by a more efficient version of comp that applies the following rule: if comp(i, j)
returns k, then comp(i, k) returns j.

Fixed-length emptiness. A fixed-language language is empty if and only if the node representing
it has q∅ as state identifier, and so emptiness can be checked in constant time..

Fixed-length universality. A language L of length n is fixed-length universal if L = Σn. The
universality of a language of length n recognized by a state q can be checked in time O(n). It
suffices to check for all states reachable from q, with the exception of q∅, that no transition leaving
them leads to q∅. More systematically, we use the properties

• if L = ∅, then L is not universal;

• if L = {ε}, then L is universal;

• if ∅ , L , {ε}, then L is universal iff La is universal for every a ∈ Σ;

that lead to the algorithm of Table 7.3. For a better algorithm see Exercise 85.

Fixed-length inclusion. Given two languages L1, L2 ⊆ Σn, in order to check L1 ⊆ L2 we compute
L1 ∩ L2 and check whether it is equal to L1 using the equality check shown next. The complexity
is dominated by the complexity of computing the intersection.

140 CHAPTER 7. FINITE UNIVERSES

1

4

765

98

14

15

32

1110

aa

bb a, b

b
a, ba

12

3: 8 7→ 15

13

2: 5 7→ 14

1: 2 7→ 3 1: 3 7→ 2

0: 1 7→ 0 0; 0 7→ 1

2: 7 7→ 02: 5 7→ 14

3: 9 7→ 16

2: 0 7→ 7

1: 0 7→ 4

0; 0 7→ 1 0; 0 7→ 1

b a

a

a

a

a
a bb a, ba

16

a

17

4: 12 7→ 17

1: 0 7→ 4

b a b

b

Figure 7.5: An execution of comp.

7.4. DETERMINIZATION AND MINIMIZATION 141

univ(q)
Input: state q
Output: true if L (q) is fixed-length universal,

false otherwise
1 if G(q) is not empty then return G(q)
2 if q = q∅ then return false
3 else if q = qε then return true
4 else / ∗ q , q∅ and q , qε ∗ /
5 G(q)← and(univ(qa1), . . . , univ(qam))
6 return G(q)

Table 7.3: Algorithm univ

Fixed-length equality. Since the minimal DFA recognizing a language is unique, two languages
are equal if and only if the nodes representing them have the same state identifier, leading to a
constant time algorithm. This solution, however, assumes that the two input nodes come from
the same table. If they come from two different tables T1,T2, then, since state identifiers can be
assigned in both tables in different ways, it is necessary to check if the DFA rooted at the states q1
and q2 are isomorphic. This is done by algorithm eq2 of Table 7.4, which assumes that qi belongs
to a table Ti, and that both tables assign state identifiers q∅1 and q∅2 to the empty language.

eq2(q1, q2)
Input: states q1, q2 of different tables, of the same length
Output: true if L (q1) = L (q2), false otherwise

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅1 and q2 = q∅2 then G(q1, q2)← true
3 else if q1 = q∅1 and q2 , q∅2 then G(q1, q2)← false
4 else if q1 , q∅1 and q2 = q∅2 then G(q1, q2)← false
5 else / ∗ q1 , q∅1 and q2 , q∅2 ∗ /
6 G(q1, q2)← and(eq(qa1

1 , q
a1
2), . . . , eq(qam

1 , qam
2))

7 return G(q1, q2)

Table 7.4: Algorithm eq2

7.4 Determinization and Minimization

Let L be a fixed-length language, and let A = (Q,Σ, δ,Q0, F) be a NFA recognizing L. The algo-
rithm det&min(A) shown in Table 7.5 returns the state of the master automaton recognizing L. In

142 CHAPTER 7. FINITE UNIVERSES

other words, det&min(A) simultaneously determinizes and minimizes A.
The algorithm actually solves a more general problem. Given a set S of states of A, all recog-

nizing languages of the same length, the language L (S) =
⋃

q∈S L (q) has also this common length.
The heart of the algorithm is a procedure state(S) that returns the state recognizing L (S). Since
L = L ({q0}), det&Min(A) just calls state({q0}).

We make the assumption that for every state q of A there is a path leading from q to some final
state. This assumption can be enforced by suitable preprocessing, but usually it is not necessary;
in applications, NFAs for fixed-length languages usually satisfy the property by construction. With
this assumption, L (S) satisfies:

• if S = ∅ then L (S) = ∅;

• if S ∩ F , ∅ then L (S) = {ε}

(since the states of S recognize fixed-length languages, the states of F necessarily recognize
{ε}; since all the states of S recognize languages of the same length and S ∩ F , ∅, we have
L (S) = {ε});

• if S , ∅ and S ∩ F = ∅, then L (S) =

n⋃
i=1

ai · L (S i), where S i = δ(S , ai).

These properties lead to the recursive algorithm of Table 7.5. The procedure state(S) uses a table
G of results, initially empty. When state(S) is computed for the first time, the result is memoized
in G(S), and any subsequent call directly reads the result from G. The algorithm has exponential
complexity, because, in the worst case, it may call state(S) for every set S ⊆ Q. To show that an
exponential blowup is unavoidable, consider the family {Ln}n≥0 of languages, where Ln = {ww′ |
w,w′ ∈ {0, 1}n and w , w′}. While Ln can be recognized be an NFAs of size O(n2), its minimal
DFA has O(2n) states: for every u, v ∈ Σn if u , v then Lu

n , Lv, because v ∈ Lu
n but v < Lv

n.

Example 7.10 Figure 7.6 shows a NFA (upper left) and the result of applying det&min to it. The
run of det&min is shown at the bottom of the figure, where, for the sake of readability, sets of
states are written without the usual parenthesis (e.g. β, γ instead of {β, γ}. Observe, for instance,
that the algorithm assigns to {γ} the same node as to {β, γ}, because both have the states 2 and 3 as
a-successor and b-successor, respectively.

7.5 Operations on Fixed-length Relations

Fixed-length relations can be manipulated very similarly to fixed-length languages. Boolean op-
erations are as for fixed-length languages. The projection, join, pre, and post operations can be
however implemented more efficiently as in Chapter 6.

We start with an observation on encodings. In Chapter 6 we assumed that if an element of X
is encoded by w ∈ Σ∗, then it is also encoded by w#, where # is the padding letter. This ensures
that every pair (x, y) ∈ X × X has an encoding (wx,wy) such that wx and wy have the same length.

7.5. OPERATIONS ON FIXED-LENGTH RELATIONS 143

θη

α 7→ 5

β, γ 7→ 4

5

a, b

4

a b

2 3

b a, b

1

εδ ζ

b

bb

α

b

b
b

β γ

a a, b

a a, b

a

ε 7→ 2 δ, ε, ζ 7→ 3

γ 7→ 4

ε, ζ 7→ 3

η, θ 7→ 1

ε 7→ 2

η, θ 7→ 1η 7→ 1 η 7→ 1 η 7→ 1∅ 7→ 0

Figure 7.6: Run of det&min on an NFA for a fixed-length language

144 CHAPTER 7. FINITE UNIVERSES

det&min(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: master state recognizing L (A)

1 return state(Q0)

state(S)
Input: set S ⊆ Q recognizing languages of the same length
Output: state recognizing L (S)

1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F , ∅ then return qε
4 else / ∗ S , ∅ and S ∩ F = ∅ ∗ /

5 for all i = 1, . . . ,m do S i ← δ(S , ai)
6 G(S)← make(state(S 1), . . . , state(S m));
7 return G(S)

Table 7.5: Algorithm det&min.

Since in the fixed-length case all shortest encodings have the same length, the padding symbol is
no longer necessary. So in this section we assume that each word or pair has exactly one encoding.

The basic definitions on fixed-length languages extend easily to fixed-length relations. A word
relation R ⊆ Σ∗ × Σ∗ has length n ≥ 0 if for all pairs (w1,w2) ∈ R the words w1 and w2 have length
n. If R has length n for some n ≥ 0, then we say that R has fixed-length

Recall that a transducer T accepts a pair (w1,w2) ∈ Σ∗ × Σ∗ if w1 = a1 . . . an, w2 = b1 . . . bn,
and T accepts the word (a1, b1) . . . (an, bn) ∈ Σ∗ × Σ∗. A fixed-length transducer accepts a relation
R ⊆ X × X if it recognizes the word relation {(wx,wy) | (x, y) ∈ R}.

Given a language R ⊆ Σ∗×Σ∗ and a, b ∈ Σ, we define R[a,b] = {(w1,w2) ∈ Σ∗×Σ∗ | (aw1, bw2) ∈
R}. Notice that in particular, ∅[a,b] = ∅, and that if R has fixed-length, then so does R[a,b]. The master
transducer over the alphabet Σ is the tuple MT = (QM,Σ×Σ, δM, FM), where QM is is the set of all
fixed-length relations, FM = {(ε, ε)}, and δM : QM × (Σ×Σ)→ QM is given by δM(R, [a, b]) = R[a,b]

for every q ∈ QM and a, b ∈ Σ. As in the language case, the minimal deterministic transducer
recognizing a fixed-length relation R is the fragment of the master transducer containing the states
reachable from R.

Like minimal DFA, minimal deterministic transducers are represented as tables of nodes. How-
ever, a remark is in order: since a state of a deterministic transducer has |Σ|2 successors, one for
each letter of Σ×Σ, a row of the table has |Σ|2 entries, too large when the table is only sparsely filled.
Sparse transducers over Σ × Σ are better encoded as NFAs over Σ by introducing auxiliary states: a

transition q
[a,b]
−−−−→ q′ of the transducer is “simulated” by two transitions q

a
−−→ r

b
−−→ q′, where r is an

auxiliary state with exactly one input and one output transition.

7.5. OPERATIONS ON FIXED-LENGTH RELATIONS 145

Fixed-length projection The implementation of the projection operation of Chapter 6 may yield
a nondterministic transducer, even if the initial transducer is deterministic. So we need a different
implementation. We observe that projection can be reduced to pre or post: the projection of a
binary relation R onto its first component is equal to preR(Σ∗), and the projection onto the second
component to postR(Σ∗). So we defer dealing with projection until the implementation of pre and
post have been discussed.

Fixed-length join. We give a recursive definition of R1 ◦ R2. Let [a, b] R = {(aw1, bw2) |
(w1,w2) ∈ R}. We have the following properties:

• ∅ ◦ R = R ◦ ∅ = ∅;

• { [ε, ε] } ◦ R = { [ε, ε] };

• R1 ◦ R2 =
⋃

a,b,c∈Σ

[a, b] ·
(
R[a,c]

1 ◦ R[c,b]
2

)
;

which lead to the algorithm of Figure 7.7, where union is defined similarly to inter. The complexity
is exponential in the worst case: if t(n) denotes the worst-case complexity for two states of length
n, then we have t(n) = O(t(n − 1)2), because union has quadratic worst-case complexity. This
exponential blowup is unavoidable. We prove it later for the projection operation (see Example
7.11), which is a special case of pre and post, which in turn can be seen as variants of join.

join(r1, r2)
Input: states r1, r2 of transducer table of the same length
Output: state recognizing L (r1) ◦ L (r2)

1 if G(r1, r2) is not empty then return G(r1, r2)
2 if r1 = q∅ or r2 = q∅ then return q∅
3 else if r1 = qε and r2 = qε then return qε
4 else / ∗ q∅ , r1 , qε and q∅ , r2 , qε ∗ /
5 for all (ai, a j) ∈ Σ × Σ do
6 ri, j ← union

(
join

(
r[ai,a1]

1 , r[a1,a j]
2

)
, . . . , join

(
r[ai,am]

1 , r[am,a j]
2

))
7 G(r1, r2) = make(r1,1, . . . , . . . , rm,m)
8 return G(r1, r2)

Figure 7.7: Algorithm join

Fixed-length pre and post. Recall that in the fixed-length case we do not need any padding
symbol. Then, given a fixed-length language L and a relation R, preR(L) admits an inductive
definition that we now derive. We have the following properties:

146 CHAPTER 7. FINITE UNIVERSES

• if R = ∅ or L = ∅, then preR(L) = ∅;

• if R = { [ε, ε] } and L = {ε}, then preR(L) = {ε};

• if ∅ , R , {[ε, ε]} and ∅ , L , {ε}, then preR(L) =
⋃

a,b∈Σ

a · preR[a,b](Lb),

where R[a,b] = {w ∈ (Σ × Σ)∗ | [a, b]w ∈ R}.

The first two properties are obvious. For the last one, observe that all pairs of R have length at
least one, and so every word of preR(L) also has length at least one. Now, given an arbitrary word
aw1 ∈ ΣΣ∗, we have

aw1 ∈ preR(L)
⇔ ∃bw2 ∈ L : [aw1, bw2] ∈ R
⇔ ∃b ∈ Σ ∃w2 ∈ Lb : [w1,w2] ∈ R[a,b]

⇔ ∃b ∈ Σ : w1 ∈ preR[a,b](Lb)
⇔ aw1 ∈

⋃
b∈Σ

a · preR[a,b](Lb)

and so preR(L) =
⋃

a,b∈Σ

a · preR[a,b](Lb) These properties lead to the recursive algorithm of Table 7.5,

which accepts as inputs a state of the transducer table for a relation R and a state of the automaton
table for a language L, and returns the state of the automaton table recognizing preR(L). The
transducer table is not changed by the algorithm.

pre(r, q)
Input: state r of transducer table and state q of automaton table,
of the same length
Output: state recognizing preL(r)(L (q))

1 if G(r, q) is not empty then return G(r, q)
2 if r = r∅ or q = q∅ then return q∅
3 else if r = rε and q = qε then return qε
4 else
5 for all ai ∈ Σ do
6 q′i ← union

(
pre

(
r[ai,a1], qa1

)
, . . . , pre

(
r[ai,am], qam

))
7 G(q, r)← make(q′1, . . . , q

′
m)

8 return G(q, r)

Table 7.6: Algorithm pre.

As promised, we can now give an implementation of the operation that projects a relation R
onto its first component. It suffices to give a dedicated algorithm for preR(Σ∗), shown in Table 7.5.

7.6. DECISION DIAGRAMS 147

pro1(r)
Input: state r of transducer table
Output: state recognizing proj1(L(r))

1 if G(r) is not empty then return G(r)
2 if r = r∅ then return q∅
3 else if r = rε then return qε
4 else
5 for all ai ∈ Σ do
6 q′i ← union

(
pro1

(
r[ai,a1]

)
, . . . , pro1

(
r[ai,am]

))
7 G(r)← make(q′1, . . . , q

′
m)

8 return G(r)

Table 7.7: Algorithm pro1.

Algorithm pro1 has exponential worst-case complexity. As in the case of join, the reason is the
quadratic blowup introduced by union when the recursion depth increases by one. The next exam-
ple shows that projection is inherently exponential.

Example 7.11 Consider the relation R ⊆ Σ2n × Σ2n given by

R =
{(

w1xw2yw3, 0|w1 |10|w2 |10|w3 |
)
| x , y, |w2| = n and |w1w3| = n − 2

}
.

That is, R contains all pairs of words of length 2n whose first word has a position i ≤ n such that
the letters at positions i and i + n are distinct, and whose second word contains only 0’s but for two
1’s at the same two positions. It is easy to see that the minimal deterministic transducer for R has
O(n2) states (intuitively, it memorizes the letter x above the first 1, reads n − 1 letters of the form
(z, 0), and then reads (y, 1), where y , x). On the other hand, we have

proj1(R) = {ww′ | w,w′ ∈ Σn and w , w′} ,

whose minimal DFA, as shown when discussing det&min, has O(2n) states. So any algorithm for
projection has Ω(2

√
n) complexity.

Slight modifications of this example show that join, pre, and post are inherently exponential as
well.

7.6 Decision Diagrams

Binary Decision Diagrams, BDDs for short, are a very popular data structure for the representation
and manipulation of boolean functions. In this section we show that they can be seen as minimal
automata of a certain kind.

148 CHAPTER 7. FINITE UNIVERSES

Given a boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1}, let L f denote the set of strings
b1b2 . . . bn ∈ {0, 1}n such that f (b1, . . . bn) = 1. The minimal DFA recognizing L f is very similar to
the BDD representing f , but not completely equal. We modify the constructions of the last section
to obtain an exact match.

Consider the following minimal DFA for a language of length four:

q0

q1

q2

q3

q4

q5

q6

q7

a

a

b

a

b
a

b

b

a

b

a

b

b

Its language can be described as follows: after reading an a, accept any word of length three; after
reading ba, accept any word of length 2; after reading bb, accept any two-letter word whose last
letter is a b. Following this description, the language can also be more compactly described by an
automaton with regular expressions as transitions:

r0

r1 r2

r3

b

a · Σ3

a · Σ2

b · Σ

b

We call such an automaton a decision diagram (DD). The intuition behind this name is that, if
we view states as points at which a decision is made, namely which should be the next state, then
states q1, q3, q4, q6 do not correspond to any real decision; whatever the next letter, the next state is
the same. As we shall see, the states of minimal DD will always correspond to “real” decisions.

Section 7.6.1 shows that the minimal DD for a fixed-length language is unique, and can be
obtained by repeatedly applying to the minimal DFA the following reduction rule:

q

q1

qn

r

l1

l2

a1

am

• • • • • • {

q1

qn

r

l1 · Σ

l2 · Σ

• • •

The converse direction also works: the minimal DFA can be recovered from the minimal DD
by “reversing” the rule. This already allows us to use DDs as a data structure for fixed-length
languages, but only through conversion to minimal DFAs: to compute an operation using minimal
DDs, expand them to minimal DFAs, conduct the operation, and convert the result back. Section

7.6. DECISION DIAGRAMS 149

7.6.2 shows how to do better by directly defining the operations on minimal DDs, bypassing the
minimal DFAs.

7.6.1 Decision Diagrams and Kernels

A decision diagram (DD) is an automaton A = (Q,Σ, δ,Q0, F) whose transitions are labelled by
regular expressions of the form

aΣn = a ΣΣΣ . . .ΣΣ︸ ︷︷ ︸
n

and satisfies the following determinacy condition: for every q ∈ Q and a ∈ Σ there is exactly one
k ∈ N such that δ(q, aΣk) , ∅, and for this k there is a state q′ such that δ(q, aΣk) = {q′}. Observe
that DFAs are special DDs in which k = 0 for every state and every letter.

We introduce the notion of kernel, and kernel of a fixed-length language.

Definition 7.12 A fixed-length language L over an alphabet Σ is a kernel if L = ∅, L = ε, or there
are a, b ∈ Σ such that La , Lb. The kernel of a fixed-length language L, denoted by 〈L〉, is the
unique kernel satisfying L = Σk 〈L〉 for some k ≥ 0.

Observe that the number k is also unique for every language but ∅. Indeed, for the empty
language we have 〈∅〉 = ∅ and so ∅ = Σk 〈∅〉 for every k ≥ 0.

Example 7.13 Let Σ = {a, b, c}. L1 = {aab, abb, bab, cab} is a kernel because La
1 = {ab, bb} ,

{ab} = Lb
1, and 〈L1〉 = L1; the language L2 = {aa, ba} is also a kernel because La

2 = {a} , ∅ = Lc
2.

However, if we change the alphabet to Σ′ = {a, b} then L2 is no longer a kernel, and we have
〈L2〉 = {a}. For the language L3 = {aa, ab, ba, bb} over Σ′ we have L3 = (Σ′)2, and so k = 2 and
〈L3〉 = {ε}.

The mapping that assigns to ever nonempty, fixed-length language L the pair (k, 〈L〉) is a bi-
jection. In other words, L is completely determined by k and 〈L〉. So a representation of kernels
can be extended to a representation of all fixed-length languages. Let us now see how to represent
kernels.

The master decision diagram (we call it just “the master”) has the set of all kernels as states,
the kernel {ε} as unique final state, and a transition (K, aΣk, 〈Ka〉) for every kernel K and a ∈ Σ,
where k is equal to the length of Ka minus the length of 〈Ka〉. (For K = ∅, which has all lengths,
we take k = 0.)

Example 7.14 Figure 7.8 shows a fragment of the master for the alphabet {a, b} (compare with
Figure 7.1). The languages {a, b}, {aa, ab, ba, bb}, and {ab, bb} of Figure 7.1 are not kernels, and so
they are not states of the master either.

150 CHAPTER 7. FINITE UNIVERSES

{ε}

{b}{a}

{aa, ab, bb}{aa, ab, ba}

{aab, abb, baa, bab, bbb}

a, b

∅
a, b

a b
aΣbΣ2

b

a b a

b

b
aΣ aΣ

{aaa, aab, aba, baa, bab, bba, bbb}

Figure 7.8: A fragment of the master decision diagram

The DD AK for a kernel K is the fragment of the master containing the states reachable from
K. It is easy to see that AK recognizes K. A DD is minimal if no other DD for the same language
has fewer states. Observe that, since every DFA is also a DD, the minimal DD for a language has
at most as many states as its minimal DD.

The following proposition shows that the minimal DD of a kernel has very similar properties
to the minimal DFAs of a regular language. In particular, AK is always a minimal DD for the
kernel K. However, because of a technical detail, it is not the unique minimal DD: The label of the
transitions of the master leading to ∅ can be changed from a to aΣk for any k ≥ 0, and from b to
bΣk for any k ≥ 0, without changing the language. To recover unicity, we redefine minimality: A
DD is minimal no other DD for the same language has fewer states, and every transition leading to
a state from which no word is accepted is labeled by a or b.

Proposition 7.15 (1) Let A be a DD such that L(A) is a kernel. A is minimal if and only if (i)
every state of A recognizes a kernel, and (ii) distinct states of A recognize distinct kernels.

(2) For every K , ∅, AK is the unique minimal DD recognizing K.

(3) The result of exhaustively applying the reduction rule to the minimal DFA recognizing a
fixed-length language L is the minimal DD recognizing 〈L〉.

7.6. DECISION DIAGRAMS 151

Proof: (1 ⇒): For (i), assume A contains a state q such that L (q) is not a kernel. We prove
that A is not minimal. Since L(A) is a kernel, q is neither initial nor final. Let k be the smallest
number such that A contains a transition (q, aΣk, q′) for some letter a and some state q′. Then
L (q)a = ΣkL(q′), and, since L (q) is not a kernel, L (q)a = L (q)b for every b ∈ Σ. So we have
L (q) =

⋃
a∈Σ a ΣkL(q′) = Σk+1 L (q′). Now we perform the following two operations: first, we

replace every transition (q′′, bΣl, q) of A by a transition (q′′, bΣl+k+1, q′); then, we remove q and
any other state no longer reachable from the initial state (recall that q is neither initial nor final).
The resulting DD recognizes the same language as A, and has at least one state less. So A is not
minimal.

For (ii), observe that the quotienting operation can be defined for DDs as for DFAs, and so
we can merge states that recognize the same kernel without changing the language. If two distinct
states of A recognize the same kernel then the quotient has fewer states than A, and so A is not
minimal.

(1⇐): We show that two DDs A and A′ that satisfy (i) and (ii) and recognize the same language
are isomorphic, which, together with (1⇒), proves that they are minimal. It suffices to prove that
if two states q, q′ of A and A′ satisfy L (q) = L (q′), then for every a ∈ Σ the (unique) transitions
(q, aΣk, r) and (q′, aΣk′ , r′) satisfy k = k′ and L (r) = L (r′). Let L (q) = K = L (q′). By (1 ⇒),
both L (r) and L (r′) are kernels. But then we necessarily have L (r) = 〈Ka〉 = L (q′), because the
only solution to the equation K = aΣlK′, where l and K′ are unknowns and K′ must be a kernel, is
K′ = 〈Ka〉.

(2) AK recognizes K and it satisfies conditions (a) and (b) of part (1) by definition. So it is a
minimal DD. Uniqueness follows from the proof of (1⇐).

(3) Let B be a DD obtained by exhaustively applying the reduction rule to A. By (1), it suffices
to prove that B satisfies (i) and (ii). For (ii) observe that, since every state of A recognizes a different
language, so does every state of B (the reduction rule preserves the recognized languages). For (i),
assume that some state q does not recognize a kernel. Without loss of generality, we can choose
L (q) of minimal length, and therefore the target states of all outgoing transitions of q recognize
kernels. It follows that all of them necessarily recognize 〈L (q)〉. Since B contains at most one state
recognizing 〈L (q)〉, all outgoing transitions of q have the same target, and so the reduction rule can
be applied to q, contradicting the hypothesis that it has been applied exhaustively.

7.6.2 Operations on Kernels

We use multi-DDs to represent sets of fixed-length languages of the same length. A set L =

{L1, . . . , Lm} is represented by the states of the master recognizing 〈L1〉, . . . , 〈Lm〉 and by the com-
mon length of L1, . . . , Lm. Observe that the states and the length completely determine L.

Example 7.16 Figure 7.9 shows the multi-DD for the set {L1, L2, L3} of Example 7.7. Recall that
L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}. The multi-DD is the result of applying the
reduction rule to the multi-automaton of Figure 7.2. We represent the set by the multi-DD and the

152 CHAPTER 7. FINITE UNIVERSES

1

L3

6

2

L2

a b

L1

4bΣ

a

Figure 7.9: The multi-zDFA for {L1, L2, L3} with L1 = {aa}, L2 = {aa, bb}, and L3 = {aa, ab}.

number 2, the length of L1, L2, L3. Observe that, while L1, L2 and L3 have the same length, 〈L2〉

has a different length than 〈L1〉 and 〈L3〉.

Multi-DDs are represented as a table of kernodes. A kernode is a triple 〈q, l, s〉, where q is a
state identifier, l is a length, and s = (q1, . . . , qm) is the successor tuple of the kernode. The table
for the multi-DD of Figure 7.9 is:

Ident. Length a-succ b-succ
2 1 1 0
4 1 0 1
6 2 2 1

This example explains the role of the new length field. If we only now that the a- and b-successors
of, say, state 6 are states 2 and 1, we cannot infer which expressions label the transitions from 6 to
2 and from 6 to 1: they could be a and bΣ, or aΣ and bΣ2, or aΣn and bΣn+1 for any n ≥ 0. However,
once we know that state 6 accepts a language of length 2, we can deduce the correct labels: since
states 2 and 1 accept languages of length 1 and 0, respectively, the labels are a and bΣ.

The procedure kmake(l, s). All algorithms call a procedure kmake(l, s) with the following
specification. Let Ki be the kernel recognized by the i-th component of s. Then kmake(l, s)
returns the kernode for 〈L〉, where L is the unique language of length l such that 〈Lai〉 = Ki for
every ai ∈ Σ.

If Ki , K j for some i, j, then kmake(l, s) behaves like make(s): if the current table al-
ready contains a kernode 〈q, l, s〉, then kmake(l, s) returns q; and, if no such kernode exists, then
kmake(l, s) creates a new kernode 〈q, l, s〉 with a fresh identifier q, and returns q.

7.6. DECISION DIAGRAMS 153

If K1, . . . ,Km are all equal to some kernel K, then we have L =
⋃m

i=1 ai Σk K for some k, and
therefore 〈L〉 = 〈Σl+1 K〉 = K. So kmake(l, t) returns the kernode for K. For instance, if T is
the table above, then kmake(3, (2, 2)) returns 3, while make(2, 2) creates a new node having 2 as
a-successor and b-successor.

Algorithms. The algorithms for operations on kernels are modifications of the algorithms of the
previous section. We show how to modify the algorithms for intersection, complement, and for
simultaneous determinization and minimization. In the previous section, the state of the master
automaton for a language L was the language L itself, and was obtained by recursively computing
the states for La1 , . . . , Lam and then applying make. Now, the state of the master DD for L is 〈L〉,
and can be obtained by recursively computing states for 〈La1〉, . . . , 〈Lam〉 and applying kmake.

Fixed-length intersection. Given kernels K1,K2 of languages L1, L2, we compute the state rec-

ognizing K1 u K2
def
= 〈L1 ∩ L2〉. 2 We have the obvious property

• if K1 = ∅ or K2 = ∅, then K1 u K2 = ∅.

Assume now K1 , ∅ , K2. If the lengths of K1 and K2 are l1, l2, then since 〈ΣkL〉 = 〈L〉 holds for
every k, L we have

K1 u K2 =


〈Σl2−l1 K1 ∩ K2〉 if l1 < l2
〈K1 ∩ Σl1−l2 K2〉 if l1 > l2
〈K1 ∩ K2〉 if l1 = l2

which allows us to obtain the state for K1 u K2 by computing states for

〈 (Σl1−l2 K1 ∩ K2)a 〉 , 〈 (K1 ∩ Σl2−l1 K2)a 〉 or 〈 (K1 ∩ K2)a 〉

for every a ∈ Σ, and applying kmake. These states can be computed recursively by means of:

• if l1 < l2 then 〈 (Σl2−l1 K1 ∩ K2)a 〉 = 〈 Σl2−l1−1K1 ∩ Ka
2 〉 = K1 u 〈Ka

2〉 ;
• if l1 > l2 then 〈 (K1 ∩ Σl1−l2 K2)a 〉 = 〈 Ka

1 ∩ Σl1−l2−1K2 〉 = 〈Ka
1〉 u K2 ;

• if l1 = l2 then 〈 (K1 ∩ K2)a 〉 = 〈 Ka
1 ∩ Ka

2 〉 = 〈Ka
1〉 u 〈K

a
2〉 ;

which leads to the algorithm of Table 7.8.

Example 7.17 Example 7.8 shows a run of inter on the two languages represented by the multi-
DFA at the top of Figure 7.4. The multi-DD for the same languages is shown at the top of Fig-
ure 7.10, and the rest of the figure describes the run of kinter on it. Recall that pink nodes corre-
spond to calls whose result has already been memoized, and need not be executed. The meaning
of the green nodes is explained below.

The algorithm can be improved by observing that two further properties hold:
2u is well defined because 〈L1〉 = 〈L′1〉 and 〈L2〉 = 〈L′2〉 implies 〈L1 ∩ L2〉 = 〈L′1 ∩ L′2〉.

154 CHAPTER 7. FINITE UNIVERSES

1

65

98

15

32

10

a b

a

ab

a

1312

8, 1 7→ 8 9, 10 7→ 14

1, 6 7→ 60, 1 7→ 05, 1 7→ 5

2, 1 7→ 2 3, 1 7→ 3 1, 2 7→ 2 1, 1 7→ 1

0, 1 7→ 01, 1 7→ 11, 1 7→ 10, 1 7→ 0

5, 1 7→ 5

12, 13 7→ 15

a

14

b

bΣ2

aΣ3

aΣ2

bΣ

0, 1 7→ 0

0, 0 7→ 0 0, 0 7→ 0

1, 1 7→ 1

a

a

b

b b

a

b

Figure 7.10: An execution of kinter.

7.6. DECISION DIAGRAMS 155

kinter(q1, q2)
Input: states q1, q2 recognizing 〈L1〉, 〈L2〉

Output: state recognizing 〈L1 ∩ L2〉

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 if q1 , q∅ and q2 , q∅ then
4 if l1 < l2 /* lengths of the kernodes for q1, q2 */ then
5 for all i = 1, . . . ,m do ri ← kinter(q1, q

ai
2)

6 G(q1, q2)← kmake(l2, r1, . . . , rm)
7 else if l1 l2 then
8 for all i = 1, . . . ,m do ri ← kinter(qai

1 , q2)
9 G(q1, q2)← kmake(l1, r1, . . . , rm)

10 else /* l1 = l2 */

11 for all i = 1, . . . ,m do ri ← kinter(qai
1 , q

ai
2)

12 G(q1, q2)← kmake(l1, r1, . . . , rm)
13 return G(q1, q2)

Table 7.8: Algorithm kinter

• if K1 = {ε} then L1 ∩ L2 = L1, and so K1 u K2 = K1, and if K2 = {ε} then L1 ∩ L2 = L2, and
so K1 u K2 = K2.

These properties imply that kinter(qε , q) = q = kinter(q, qε) for every state q. So we can improve
kinter by explicitly checking if one of the arguments is qε . The green nodes in Figure 7.10 corre-
spond to calls whose result is immediately returned with the help of this check. Observe how this
improvement has a substantial effect, reducing the number of calls from 19 to only 5.

Fixed-length complement. Given the kernel K of a fixed-language L of length n, we wish to
compute the master state recognizing 〈L

n
〉, where n is the length of L. The subscript n is only

necessary because ∅ has all possible lengths, and so ∅
n

= Σn , Σm = L
m

for n , m. Now we have
〈∅

n
〉 = {ε} for every n ≥ 0, and so the subscript is not needed anymore. We define the operator̂ on kernels by K̂ = 〈L〉.3 We obtain the state for K̂ by recursively computing states for 〈K̂a〉 by

means of the properties

• if K = ∅ then K̂ = {ε}, and if K = {ε}, then K̂ = ∅;

• if ∅ , K , {ε} then 〈K̂a〉 = K̂a;

which lead to the algorithm of Table 7.9.

3The operator is well defined because 〈L〉 = 〈L′〉 implies 〈L〉 = 〈L′〉.

156 CHAPTER 7. FINITE UNIVERSES

kcomp(q)
Input: state q recognizing a kernel K
Output: state recognizing K̂

1 if G(q) is not empty then return G(q)
2 if q = q∅ then return qε
3 else if q = qε then return q∅
4 else
5 for all i = 1, . . . ,m do ri ← kcomp(qai)
6 G(q)← kmake(r1, . . . , rm)
7 return G(q)

Table 7.9: Algorithm kcomp

Determinization and Minimization.

The algorithm kdet&min that converts a NFA recognizing a fixed-language L into the minimal DD
recognizing 〈L〉 differs from det&min essentially in one letter: it uses kmake instead of make. It is
shown in Table 7.10.

kdet&min(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: state of a multi-DFA recognizing L (A)

1 return state[A](Q0)

kstate(S)
Input: set S of states of length l
Output: state recognizing L (R)

1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F , ∅ then return qε
4 else / ∗ S , ∅ and S ∩ F = ∅ ∗ /

5 for all i = 1, . . . ,m do S i ← δ(S , ai)
6 G(S)← kmake(l, kstate(S 1), . . . , kstate(S m));
7 return G(S)

Table 7.10: The algorithm kdet&min(A).

Example 7.18 Figure 7.11 shows again the NFA of Figure 7.6, and the minimal DD for the kernel
of its language. The run of kdet&min(A) is shown at the bottom of the figure. For the difference

7.6. DECISION DIAGRAMS 157

with det&min(A), consider the call kstate({δ, ε, ζ}). Since the two recursive calls kstate({η}) and
kstate({η, θ}) return both state 1 with length 1, kmake(1, 1) does not create a new state, as make(1, 1)
would do it returns state 1. The same occurs at the top call kstate({α}).

Exercises

Exercise 83 Prove that the minimal DFA for a language of length 4 over a two-letter alphabet has
at most 12 states, and give a language for which the minimal DFA has exactly 12 states.

Exercise 84 Give an efficient algorithm that receives as input the minimal DFA of a fixed-length
language and returns the number of words it contains.

Exercise 85 The algorithm for fixed-length universality in Table 7.3 has a best-case runtime equal
to the length of the input state q. Give an improved algorithm that only needs O(|Σ|) time for inputs
q such that L (q) is not fixed-size universal.

Exercise 86 Let Σ = {0, 1}. Consider the boolean function f : Σ6 → Σ defined by

f (x1, x2, . . . , x6) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6)

(a) Construct the minimal DFA recognizing {x1 · · · x6 ∈ Σ6 | f (x1, . . . , x6) = 1}.
(For instance, the DFA accepts 111000 because f (1, 1, 1, 0, 0, 0) = 1, but not 101010, be-
cause f (1, 0, 1, 0, 1, 0) = 0.)

(b) Show that the minimal DFA recognizing {x1x3x5x2x4x6 | f (x1, . . . x6) = 1} has at least 15
states.
(Notice the different order! Now the DFA accepts neither 111000, because f (1, 0, 1, 0, 1, 0) =

0, nor 101010, because f (1, 0, 0, 1, 1, 0) = 0.)

(c) More generally, consider the function

f (x1, . . . , x2n) =
∨

1≤k≤n

(x2k−1 ∧ x2k)

and the languages {x1x2 . . . x2n−1x2n | f (x1, . . . , x2n) = 1} and {x1x3 . . . x2n−1x2x4 . . . x2n |

f (x1, . . . , x2n) = 1}.
Show that the size of the minimal DFA grows linearly in n for the first language, and expo-
nentially in n for the second language.

Exercise 87 Let val : {0, 1}∗ → N be such that val(w) is the number represented by w with the
“least significant bit first” encoding.

1. Give a transducer that doubles numbers, i.e. a transducer accepting

L1 =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = 2 · val(x)

}
.

158 CHAPTER 7. FINITE UNIVERSES

θη

3

a

2

b

1

εδ ζ

b

bb

α

b

b
b

β γ

a a, b

a a, b

a

ε 7→ 2 δ, ε, ζ 7→ 1

γ 7→ 3

ε, ζ 7→ 1

η, θ 7→ 1

ε 7→ 2

η, θ 7→ 1η 7→ 1 η 7→ 1 η 7→ 1∅ 7→ 0

β, γ 7→ 3

α 7→ 3

bΣ

Figure 7.11:

7.6. DECISION DIAGRAMS 159

2. Give an algorithm that takes k ∈ N as input, and that produces a transducer Ak accepting

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = 2k · val(x)

}
.

(Hint: use (a) and consider operations seen in class.)

3. Give a transducer for the addition of two numbers, i.e. a transducer accepting{
[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ : val(z) = val(x) + val(y)

}
.

4. For every k ∈ N>0, let

Xk =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = k · val(x)

}
.

Suppose you are given transducers A and B accepting respectively Xa and Xb for some a, b ∈
N>0. Sketch an algorithm that builds a transducer C accepting Xa+b. (Hint: use (b) and (c).)

5. Let k ∈ N>0. Using (b) and (d), how can you build a transducer accepting Xk?

6. Show that the following language has infinitely many residuals, and hence that it is not
regular: {

[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = val(x)2
}
.

Exercise 88 Let L1 = {abb, bba, bbb} and L2 = {aba, bbb}.

1. Suppose you are given a fixed-length language L described explicitely by a set instead of an
automaton. Give an algorithm that ouputs the state q of the master automaton for L.

2. Use the previous algorithm to build the states of the master automaton for L1 and L2.

3. Compute the state of the master automaton representing L1 ∪ L2.

4. Identify the kernels 〈L1〉, 〈L2〉, and 〈L1 ∪ L2〉.

Exercise 89 1. Give an algorithm to compute L(p) · L(q) given states p and q of the master
automaton.

2. Give an algorithm to compute both the length and size of L(q) given a state q of the master
automaton.

3. The length and size of L(q) could be obtained in constant time if they were simply stored in
the master automaton table. Give a new implementation of make for this representation.

Exercise 90 Let k ∈ N>0. Let flip : {0, 1}k → {0, 1}k be the function that inverts the bits of its
input, e.g. flip(010) = 101. Let val : {0, 1}k → N be such that val(w) is the number represented by
w with the “least significant bit first” encoding.

160 CHAPTER 7. FINITE UNIVERSES

1. Describe the minimal transducer that accepts

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})k : val(y) = val(flip(x)) + 1 mod 2k

}
.

2. Build the state r of the master transducer for L3, and the state q of the master automaton for
{010, 110}.

3. Adapt the algorithm pre seen in class to compute post(r, q).

Exercise 91 Given a boolean formula over variables x1, . . . , xn, we define the language of φ, de-
noted by L(φ), as follows:

L(φ) = {a1a2 · · · an | the assignment x1 7→ a1, . . . , xn 7→ an satisfies φ}

(a) Give a polynomial algorithm that takes a DFA A recognizing a language of length n as input,
and returns a boolean formula φ such that L(φ) = L(A).

(b) Give an exponential algorithm that takes a boolean formula φ as input, and returns a DFA A
recognizing L(φ).

Exercise 92 Recall the definition of language of a boolean formula over variables x1, . . . , xn given
in Exercise 91. Prove that the following problem is NP-hard:

Given: A boolean formula φ in conjunctive normal form, a number k ≥ 1.
Decide: Does the minimal DFA for L(φ) have at most 1 state?

Exercise 93 Given X ⊂ {0, 1, . . . , 2k −1}, where k ≥ 1, let AX be the minimal DFA recognizing the
LSBF-encodings of length k of the elements of X.

(1) Define X +1 by X +1 = {x+1 mod 2k | x ∈ X}. Give an algorithm that on input AX produces
AX+1 as output.

(2) Let AX = (Q, {0, 1}, δ, q0, F). Which is the set of numbers recognized by the automaton
A′ = (Q, {0, 1}, δ′, q0, F), where δ′(q, b) = δ(q, 1 − b)?

Exercise 94 Recall the definition of DFAs with negative transitions (DFA-nt’s) introduced in Exer-
cise 38, and consider the alphabet {0, 1}. Show that if only transitions labeled by 1 can be negative,
then every regular language over {0, 1} has a unique minimal DFA-nt.

Chapter 8

Applications II: Verification

One of the main applications of automata theory is the automatic verification or falsification of
correctness properties of hardware or software systems. Given a system (like a hardware circuit,
a program, or a communication protocol), and a property (like“after termination the values of the
variables x and y are equal” or “every sent message is eventually received”), we wish to automati-
cally determine whether the system satisfies the property or not.

8.1 The Automata-Theoretic Approach to Verification

We consider discrete systems for which a notion of configuration can be defined1. The system is
always at a certain configuration, with instantaneous moves from one configuration to the next de-
termined by the system dynamics. If the semantics allows a move from a configuration c to another
one c′, then we say that c′ is a legal successor of c. A configuration may have several successors,
in which case the system is nondeterministic. There is a distinguished set of initial configurations.
An execution is a sequence of configurations (finite or infinite) starting at some initial configura-
tion, and in which every other configuration is a legal successor of its predecessor in the sequence.
A full execution is either an infinite execution, or an execution whose last configuration has no
successors.

In this chapter we are only interested in finite executions. The set of executions can then be
seen as a language E ⊆ C∗, where the alphabet C is the set of possible configurations of the system.
We call C∗ the potential executions of the system.

Example 8.1 As an example of a system, consider the following program with two boolean vari-
ables x, y:

1We speak of the configurations of a system, and not of its states, in order to avoid confusion with the states of
automata.

161

162 CHAPTER 8. APPLICATIONS II: VERIFICATION

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

A configuration of the program is a triple [`, nx, ny], where ` ∈ {1, 2, 3, 4, 5} is the current
value of the program counter, and nx, ny ∈ {0, 1} are the current values of x and y. So the set
C of configurations contains in this case 5 × 2 × 2 = 20 elements. The initial configurations are
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], i.e., all configurations in which control is at line 1. The sequence

[1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]

is a full execution, while
[1, 1, 0] [2, 1, 0] [4, 1, 0] [1, 1, 0]

is also an execution, but not a full one. In fact, all the words of

([1, 1, 0] [2, 1, 0] [4, 1, 0])∗

are executions, and so the language E of all executions is infinite.

Assume we wish to determine whether the system has an execution satisfying some property of
interest. If both the language E ⊆ C∗ of executions and the language P ⊆ C∗ of potential executions
that satisfy the property are regular, and we can construct automata recognizing them, then we can
solve the problem by checking whether the language E ∩ P is empty, which can be decided using
the algorithms of Chapter 4. This is the main insight behind the automata-theoretic approach to
verification.

The requirement that the language E of executions is regular is satisfied by all systems with
finitely many reachable configurations (i.e., finitely many configurations c such that some execution
leads from some initial configuration to c). A system automaton recognizing the executions of
the system can be easily obtained from the configuration graph: the graph having the reachable
configurations as nodes, and arcs from each configuration to its successors. There are two possible
constructions, both very simple.

• In the first construction, the states are the reachable configurations of the program plus a new
state i, which is also the initial state. All states are final. For every transition c → c′ of the

graph there is a transition c
c′
−−→ c′ in the system automaton. Moreover, there is a transition

i
c
−−→ c for every initial configuration.

It is easy to see that this construction produces a minimal deterministic automaton. Since

the label of a transition is also its target state, for any two transitions c
c′
−−→ c1 and c

c′
−−→ c2

we necesarily have c1 = c′ = c2, and so the automaton is deterministic. To show that it
is minimal, observe that all words accepted from state c start with c, and so the languages
accepted by different states are also different (in fact, they are even disjoint).

8.2. PROGRAMS AS NETWORKS OF AUTOMATA 163

• In the second construction, the states are the reachable configurations of the program plus a
new state f . The initial states are all the initial configurations, and all states are final. For
every transition c → c′ of the graph there is a transition c

c
−−→ c′ in the system automaton.

Moreover, there is a transition c
c
−−→ f for every configuration c having no successor.

Example 8.2 Figure 8.1 shows the configuration graph of the program of Example 8.1, and the
system automata produced by the two constructions above. We wish to algorithmically decide if
the system has a full execution such that initially y = 1, finally y = 0, and y never increases. Let
[`, x, 0], [`, x, 1] stand for the sets of configurations where y = 0 and y = 1, respectively, but the
values of ` and x are arbitrary. Similarly, let [5, x, 0] stand for the set of configurations with ` = 5
and y = 0, but x arbitrary. The set of potential executions satisfying the property is given by the
regular expression

[`, x, 1] [`, x, 1]∗ [`, x, 0]∗ [5, x, 0]

which is recognized by the property automaton at the top of Figure 8.2. Its intersection with the
system automaton in the middle of Figure 8.1 (we could also use the one at the bottom) is shown at
the bottom of Figure 8.2. A light pink state of the pairing labeled by [`, x, y] is the result of pairing
the light pink state of the property NFA and the state [`, x, y] of the system DFA. Since labels of
the transitions of the pairing are always equal to the target state, they are omitted for the sake of
readability.

Since no state of the intersection has a dark pink color, the intersection is empty, and so the
program has no execution satisfying the property.

Example 8.3 We wish now to automatically determine whether the assignment y ← 1 − x in
line 4 of the program of Example 8.1 is redundant and can be safely removed. This is the case if
the assignment never changes the value of y. The potential executions of the program in which the
assignment changes the value of y at some point correspond to the regular expression

[`, x, y]∗ ([4, x, 0] [1, x, 1] + [4, x, 1] [1, x, 0]) [`, x, y]∗ .

A property automaton for this expression can be easily constructed, and its intersection with the
system automaton is again empty. So the property holds, and the assignment is indeed redundant.

8.2 Programs as Networks of Automata

We can also model the program of Example 8.1 as a network of communicating automata. The key
idea is to model the two variables x and y and the control flow of the program as three independent
processes. The processes for x and y maintain their current value, and control flow process main-
tains the current value of the program counter. The execution of, say, the assignment x ← 0 in
line 3 of the program is modeled as the execution of a joint action between the control flow process

164 CHAPTER 8. APPLICATIONS II: VERIFICATION

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

i

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

4, 0, 1

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1 4, 0, 1

[5, 0, 0]

[1, 0, 0]

[4, 1, 0]

[2, 1, 0][1, 1, 0]

[5, 0, 1]
[1, 0, 1]

[4, 0, 1]

[3, 1, 1][2, 1, 1][1, 1, 1]

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[3, 1, 1][2, 1, 1]

[1, 1, 0]
[1, 0, 1]

[1, 1, 1]

[1, 0, 0]

i

4, 0, 1

[1, 0, 1]

[4, 0, 1]

Figure 8.1: Configuration graph and system automata of the program of Example 8.1

8.2. PROGRAMS AS NETWORKS OF AUTOMATA 165

2, 1, 1 4, 0, 13, 1, 11, 1, 1

i

[`, x, 1]

[`, x, 1] [`, x, 0]

[5, x, 0]

1, 0, 1 5, 0, 1

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

Figure 8.2: Property automaton and product automaton

and the process for variable x: the control flow process updates the current control position to 4,
and simultaneously the process for x updates the current value of x to 0.

The processes for variables and control-flow are represented by finite automata where all states
are final. The three automata for the program of Example 8.1 are shown in Figure 8.3. Since all
states are final, we do not use the graphical representation with a double circle. The automata for x
and y have two states, one for each for possible value.The control-flow automaton has 5 states, one
for each control location. The alphabet of the automata for x and y correspond to the assignments or
boolean conditions of the program that involve x or y, respectively. However, one single assignment
may produce several alphabet letters. For instance, the assignment y←1− x at line 4 produces two
alphabet letters, corresponding to two possible actions: if the automaton for x is currently at state
0 (that is, if x currently has value 0), then the automaton for y must move to state 1, otherwise to
state 0. (The same occurs with the assignment x ←1− x.) We denote these two alphabet letters as
x = 0 ⇒ y ← 1 and x = 1 ⇒ y ← 0. Observe also that the execution of y ← 1− x is modeled as
a joint action of all three automata: intuitively, the action x = 0 ⇒ y ← 1 can be jointly executed
only if the automaton for x is currently at state 0 and the control-flow automaton is currently at
state 4.

We now give a formal definition of a network of automata. In the definition we do not require
all states to be final, because, as we shall see later, a more general definition proves to be useful.

Definition 8.4 A network of automata is a tuple A = 〈A1, . . . , An〉 of NFAs (not necessarily over
the same alphabet). Let Ai = (Qi,Σi, δi,Q0i, Fi) for every i = 1, . . . , n. A letter of Σ = Σ1 ∪ · · · ∪ Σn

is called an action. A configuration of A is a tuple [q1, . . . , qn] of states, where qi ∈ Qi for every
i ∈ {1, . . . , n}. A configuration is initial if qi ∈ Q0i for every i ∈ {1, . . . , n}, and final if qi ∈ Fi for
every i ∈ {1, . . . , n}.

166 CHAPTER 8. APPLICATIONS II: VERIFICATION

1 4

5

2

3

x , 1

x← 0
y , 1

x = 1⇒ y← 0 ,
x = 0⇒ y← 1

x = 1

y = 1

0 1
x← 0

x = 1
x← 0 ,
x , 1

x = 0⇒ y← 1 ,
x = 1⇒ y← 0 ,

10

x = 1⇒ y← 0

x = 0⇒ y← 1

x = 0⇒ y← 1 ,
y = 1

x = 1⇒ y← 0 ,
y , 1

Figure 8.3: A network of three automata modeling the program of Example 8.1. All states are final,
and so the double circles are drawn as simple circles for clarity.

Observe that each NFA of a network has its own alphabet Σi. The alphabets Σ1, . . . ,Σn are not
necessarily pairwise disjoint, in fact usually they are not. We define when is an action enabled at a
configuration, and what happens when it occurs.

Definition 8.5 Let A = 〈A1, . . . , An〉 be a network of automata, where Ai = (Qi,Σi, δi,Q0i, Fi).
Given an action a, we say that Ai participates in a if a ∈ Σi. An action a is enabled at a configuration
[q1, . . . , qn] if δi(qi, a) , ∅ for every i ∈ {1, . . . , n} such that Ai participates in a. If a is enabled,
then it can occur, and its occurrence can lead to any element of the cartesian product Q′1×· · ·×Q′n,
where

Q′i =

δ(qi, a) if Ai participates in a
{qi} otherwise

We call Q′1 × · · · ×Q′n the set of successor configurations of [q1, . . . , qn] with respect to action a. We

write [q1, . . . , qn]
a
−−→[q′′1 , . . . , q

′′
n] to denote that [q′′1 , . . . , q

′′
n] belongs to this set.

The notion of language accepted by a network of automata is defined in the standard way:

Definition 8.6 A run of A on input a0a1 . . . an−1 is a sequence c0
a0
−−−→ c1

a1
−−−→ c2 . . .

an−1
−−−−→ cn such

that ci is a configuration for every 0 ≤ i ≤ n, the configuration c0 is initial, and δ(qi, ai) = qi+1 for
every 0 ≤ i ≤ n − 1. A run is accepting if cn is a final configuration. A accepts w ∈ Σ∗ if it has an

8.2. PROGRAMS AS NETWORKS OF AUTOMATA 167

accepting run on input w. The language recognized by A, denoted by L(A) is the set of words of
accepted by A.

Example 8.7 Let Ax, Ay, and AP be the three automata of Example 8.1 for the variables x and y
and the control, respectively. We have

Σx = {x = 1 , x , 1 , x← 0 , (x = 0⇒ y← 1) , (x = 1⇒ y← 0) }

Σy = {y = 1 , y , 1 , (x = 0⇒ y← 1) , (x = 1⇒ y← 0) }

ΣP = Σx ∪ Σy

The automata participating in, say, the action x = 0 are AP and Ax, and all three automata participate
in (x = 1⇒ y← 0). Observe that AP participates in all actions. If we define A = 〈AP, Ax, Ay〉, then
the configurations of A are the configurations of the program of Example 8.1. The configuration

[3, 1, 0] enables the action x← 0, and we have [3, 1, 0]
x←0
−−−−→[4, 0, 0]. One of the runs of A is

[1, 1, 1]
x=1
−−−−→[2, 1, 1]

y=1
−−−−→[3, 1, 1]

x←0
−−−−→[1, 0, 1]

x,1
−−−−→[5, 0, 1]

and so the word (x = 1) (y = 1) (x← 0) (x , 1) belongs to L(A).

8.2.1 Parallel Composition

The language of a network of automata admits a useful characterization. Given languages L1 ⊆

Σ∗1, . . . , Ln ⊆ Σ∗n, the parallel composition of L1, . . . , Ln is the language L1 ‖ L2 ‖ · · · ‖ Ln ⊆

(Σ1 ∪ · · · ∪ Σn)∗ defined as follows: w ∈ L1 ‖ · · · ‖ Ln iff projΣi
(w) ∈ Li for every 1 ≤ i ≤ n.

Notice that, strictly speaking, parallel composition is an operation that depends not only on the
languages L1, . . . , Ln, but also on their alphabets. Take for example L1 = {a} and L2 = {ab}. If we
look at them as languages over the alphabet {a, b}, then L1 ‖ L2 = ∅; if we look at L1 as a language
over {a}, and L2 as a languge over {a, b}, then L1 ‖ L2 = {ab}. So the correct notation would be
L1 ‖Σ1,Σ2 L2, but we abuse language, and assume that when a language is defined we specify its
alphabet.

Proposition 8.8 (1) Parallel composition is associative, commutative, and idempotent. That is:
(L1 ‖ L2) ‖ L3 = L1 ‖ (L2 ‖ L3) (associativity); L1 ‖ L2 = L2 ‖ L1 (commutativity), and
L ‖ L = L (idempotence).

(2) If L1, L2 ⊆ Σ∗, then L1 ‖ L2 = L1 ∩ L2.

(3) Let A = 〈A1, . . . ,An〉 be a network of automata. Then L(A) = L(A1) ‖ · · · ‖ L(An).

Proof: See Exercise 97.

168 CHAPTER 8. APPLICATIONS II: VERIFICATION

Combining (2) and (3) we obtain that two automata A1, A2 over the same alphabet satisfy
L(A1 ⊗ A2) = L(A1) ∩ L(A2). Intuitively, in this case every step must be jointly executed by A1
and A2, or, in other words, the machines move in lockstep. At the other extreme, if the input
alphabets are pairwise disjoint, then, intuitively, the automata do not communicate at all, and move
independently of each other.

8.2.2 Asynchonous Product

Given a network of automata A = 〈A1, . . . An〉, we can compute a NFA recognizing the same lan-
guage. We call it the asynchronous product of A, and denote itby A1 ⊗ · · · ⊗ An. The NFA is
computed by algorithm AsyncProduct in Table 8.1. The algorithm follows easily from Definitions
8.5 and 8.6. Starting at the initial configurations, the algorithm repeatedly picks a configuration
from the workset, stores it, constructs its successors, and adds them (if not yet stored) to the
workset. Line 10 is the most important one. Assume we are in the midlle of the execution of
AsyncProduct(A1, A2), currently processing a configuration [q1, q2] and an action a at line 8.

• Assume that a belongs to Σ1∩Σ2, and the a-transitions leaving q1 and q2 are q1
a
−−→ q′1, q1

a
−−→ q′′1

and q2
a
−−→ q′2, q1

a
−−→ q′′2 . Then we obtain Q′1 = {q′1, q

′′
1 } and Q′2 = {q′2, q

′′
2 }, and the loop at

lines 11-13 adds four transitions: [q1, q2]
a
−−→[q′1, q

′
2], [q1, q2]

a
−−→[q′′1 , q

′
2], [q1, q2]

a
−−→[q′1, q

′′
2],

and [q1, q2]
a
−−→[q′′1 , q

′′
2], which correspond to the four possible “joint a-moves” that A1 and

A2 can execute from [q1, q2].

• Assume now that a only belongs to Σ1, the a-transitions leaving q1 are as before, and, since
a < Σ2, there are no a-transitions leaving q2. Then Q′1 = {q′1, q

′′
1 }, Q′2 = {q2}, and the

loop adds transitions [q1, q2]
a
−−→[q′1, q2], [q1, q2]

a
−−→[q′′1 , q2], which correspond to A1 making

a move while A2 stays put.

• Assume finally that a belongs to Σ1 ∩Σ2, the a-transitions leaving q1 are as before, and there
are no a-transitions leaving q2 (which is possible even if a ∈ Σ2, because A2 is a NFA). Then
Q′1 = {q′1, q

′′
1 }, Q′2 = ∅, and the loop adds no transitions. This corresponds to the fact that,

since a-moves must be jointly executed by A1 and A2, and A2 is not currently able to do any
a-move, no joint a-move can happen.

Example 8.9 The NFA AsyncProduct(AP, Ax, Ay) is shown in Figure 8.4. Its states are the reach-
able configurations of the program. Again, since all states are final, we draw all states as simple
cycles.

Finally, observe that we have defined the asynchronous product of A1⊗· · ·⊗An as an automaton
over the alphabet Σ = Σ1 ∪ · · · ∪ Σn, but the algorithm can be easily modified to return a system
automaton having the set of configurations as alphabet (see Exercise 96).

8.2. PROGRAMS AS NETWORKS OF AUTOMATA 169

AsyncProduct(A1, . . . , An)
Input: a network of automata A = 〈A1, . . . , An〉, where
Ai = (Qi,Σi, δi,Q0i, Fi) for every i = 1, . . . n.
Output: NFA A1 ⊗ · · · ⊗ An = (Q,Σ, δ,Q0, F) recognizing L(A).

1 Q, δ, F ← ∅
2 Q0 ← Q01 × · · · × Q0n

3 W ← Q0

4 while W , ∅ do
5 pick [q1, . . . , qn] from W
6 add [q1, . . . , qn] to Q
7 if

∧n
i=1 qi ∈ Fi then add [q1, . . . , qn] to F

8 for all a ∈ Σ1 ∪ . . . ∪ Σn do
9 for all i ∈ [1..n] do

10 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}

11 for all [q′1, . . . , q
′
n] ∈ Q′1 × . . . × Q′n do

12 if [q′1, . . . , q
′
n] < Q then add [q′1, . . . , q

′
n] to W

13 add ([q1, . . . , qn], a, [q′1, . . . , q
′
n]) to δ

14 return (Q,Σ, δ,Q0, F)

Table 8.1: Asynchronous product of a network of automata.

8.2.3 State- and event-based properties.

Properties of the sequence of configurations visited by the program are often called state-based
properties (program configurations are often called program states, we use program configuration
because of the possible confusion between program states and automaton states). If we we wish to
check such properties, we construct a system automaton as shown in Exercise 96.

Properties of the sequence of instructions executed by the program can be directly checked
using the asynchronous product. For instance, consider the property: no terminating execution
of the program contains an occurrence of the action (x = 0 ⇒ y ← 1). The property can be
reformulated as: no execution of program belongs to the regular language

Σ∗P (x = 0⇒ y← 1) Σ∗P (x , 1)

for which we can easily find a property automaton Aϕ. We can check the property by checking
emptiness of an automaton for the intersection of AsyncProduct(AP, Ax, Ay) and Aϕ. This verifica-
tion style is often called event-based verification (Occurrences of program actions are often called
events; an execution may contain many events corresponding to the same action).

170 CHAPTER 8. APPLICATIONS II: VERIFICATION

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 0, 1 5, 0, 1

4, 0, 1

x , 1

x , 1

x = 0⇒ y← 1

3, 1, 1

1, 1, 0 2, 1, 0 4, 1, 0
y , 1x = 1

x = 1⇒ y← 0

x← 0y = 1x = 1

Figure 8.4: Asynchronous product of the automata of Figure 8.3.

8.3 Concurrent Programs

Networks of automata can also elegantly model concurrent programs, that is, programs consisting
of a number of sequential programs communicating in some way. These sequential programs
are often called processes. A popular communication mechanism between processes are shared
variables, where a process can communicate with another by writing a value to a variable, which is
then read by the other process. As an example, we consider the Lamport-Burns mutual exclusion
algorithm for two processes2. It has the following code.

repeat
nc0 : b0 ← 1
t0 : while b1 = 1 do skip
c0 : b0 ← 0

forever

repeat
nc1 : b1 ← 1
t1 : if b0 = 1 then
q1 : b1 ← 0
q′1 : while b0 = 1 do skip

goto nc1
c1 : b1 ← 0

forever

In the algorithm, process 0 and process 1 communicate through two shared boolean variables, b0
and b1, which initially have the value 0. Process i reads and writes variable bi and reads variable
b(1−i). The algorithm should guarantee that the processes 0 and 1 never are simultaneously at con-
trol points c0 and c1 (their critical sections), and that the two processes will not reach a deadlock.
Other properties the algorithm should satisfy are discussed later. Initially, process 0 is in its non-
critical section (local state nc0); it can also be trying to enter its critical section (t0), or be already
in its critical section (c0). It can move from nc0 to t0 at any time by setting b0 to 1; it can move

2L. Lamport: The mutual exclusion problem: part II-statements and solutions. JACM 1986

8.3. CONCURRENT PROGRAMS 171

from t0 to c0 if the current value of b1 is 0; finally, it can move from c0 to nc0 at any time by setting
b0 to 0.

Process 1 is a bit more complicated. While nc1, t1, and c1 play the same rôle as in process 0,
the local states q1 and q′1 model a “polite” behavior: Intuitively, if process 1 sees that process 0 is
either trying to enter or in the critical section, it moves to an “after you” local state q1, and then
sets b1 to 0 to signal that it is no longer trying to enter its critical section (local state q′1). It can then
return to the non-critical section if the value of b0 is 0.

A configuration of this program is a tuple [nb0 , nb1 , `0, `1], where nb0 , nb1 ∈ {0, 1}, `0 ∈ {nc0, t0, c0},
and `1 ∈ {nc1, t1, q1, q′1, c1}. We define executions of the program by interleaving. We assume that,
if at the current configuration both processes can do an action, then the actions will not happen at
the same time, one of the two will take place before the other. However, the actions can occur in any
order. So, loosely speaking, if two processes can execute two sequences of actions independently
of each other (because, say, they involve disjoint sets of variables), then the sequences of actions
of the two processes running in parallel are the interleaving of the sequences of the processes.

For example, at the initial configuration [0, 0, nc0, nc1] both processes can set their variables to
1. So we assume that there are two transitions [0, 0, nc0, nc1]→ [1, 0, t0, nc1] and [0, 0, nc0, nc1]→
[0, 1, nc0, t1]. Since the other process can still set its variable, we also have transitions [1, 0, t0, nc1]→
[1, 1, t0, t1] and [1, 0, t0, nc1]→ [1, 1, t0, t1]

In order to model a shared-variable program as a network of automata we just model each
process and each variable by an automaton. The network of automata modelling the Lamport-
Burns algorithm is shown in Figure 8.5, and its asynchronous product in Figure 8.6.

8.3.1 Expressing and Checking Properties

We use the Lamport-Burns algorithm to present some more examples of properties and how to
check them automatically.

The mutual exclusion property can be easily formalized: it holds if the asynchronous product
does not contain any configuration of the form [v0, v1, c0, c1], where v0, v1 ∈ {0, 1}. The property
can be easily checked on-the-fly while constructing the asynchronous product, and a quick inspec-
tion of Figure 8.6 shows that it holds. Notice that in this case we do not need to construct the NFA
for the executions of the program. This is always the case if we only wish to check the reachability
of a configuration or set of configurations. Other properties of interest for the algorithm are:

• Deadlock freedom. The algorithm is deadlock-free if every configuration of the asyn-
chronous product has at least one successor. Again, the property can be checked on the
fly, and it holds for Lamport’s algorithm.

• Bounded overtaking. After process 0 signals its interest in accessing the critical section
(by moving to state t0), process 1 can enter the critical section at most once before process 0
enters the critical section.
This property can be checked using the NFA E recognizing the executions of the network,
obtained as explained above by renaming the labels of the transitions of the asynchronous

172 CHAPTER 8. APPLICATIONS II: VERIFICATION

nc0 t0 c0

b1 = 1

b0 ← 0

b0 ← 1 b1 = 0

nc1 t1 c1

q′1 q1

b0 = 0 b0 = 1

b1 ← 0

b1 ← 1 b0 = 0

b0 = 1

b1 ← 0

b0 := 1

b0 := 0

0 1

b0 := 0
b0 = 0

b0 := 1
b0 = 1

b1 := 1

b1 := 0

0 1

b1 := 0
b1 = 0

b1 := 1
b1 = 1

Figure 8.5: A network of four automata modeling the Lamport-Bruns mutex algorithm for two
processes. The automata on the left model the control flow of the processes, and the automata on
the right the two shared variables. All states are final.

product. Let NCi,Ti,Ci be the sets of configurations in which process i is in its non-critical
section, is trying to access its critical section, or is in its critical section, respectively. Let Σ

stand for the set of all configurations. The regular expression

r = Σ∗ T0 (Σ \C0)∗ C1 (Σ \C0)∗ NC1 (Σ \C0)∗ C1 Σ∗

represents all the possible executions that violate the property.

8.4 Coping with the State-Explosion Problem

The key problem of this approach is that the number of states of E can be as high as the product of
the number of states of the the components A1, . . . , An, which can easily exceed the available mem-
ory. This is called the state-explosion problem, and the literature contains a wealth of proposals to
deal with it. We conclude the section with a first easy step towards palliating this problem. A more
in depth discussion can be found in the next section.

The automata-theoretic approach constructs an NFA V recognizing the potential executions of
the system that violate the property one is interested in, and checks whether the automaton E∩V is
empty, where E is an NFA recognizing the executions of the system. This is done by constructing
the set of states of E ∩ V , while simultaneously checking if any of them is final.

8.4. COPING WITH THE STATE-EXPLOSION PROBLEM 173

0, 0, nc0, nc1

1, 0, t0, nc1

0, 1, nc0, t1

1, 1, t0, t1

1, 1, c0, q1

0, 0, nc0, q′1

1, 0, c0, q′1

0, 1, nc0, q1

1, 1, t0, q1 1, 0, t0, q′1

b0 ← 1

b1 ← 1

b0 = 1
b1 = 1

1, 1, c0, t1

b0 ← 0

b1 ← 1 b0 ← 0

b1 ← 1

b1 ← 0

b1 = 1

b1 ← 0

b0 ← 0
b1 ← 0

b1 = 1

b1 = 1

b1 = 0

b0 ← 1

b0 ← 0

b1 = 0

b0 = 0

b0 = 1
b1 = 1

b1 = 1

b1 ← 0

b1 = 0
b1 ← 0

b1 = 0

b0 ← 1

b0 ← 0

b0 = 1

1, 0, c0, nc1

1, 1, t0, c1

0, 1, nc0, c1

Figure 8.6: Asynchronous product of the network of Figure 8.5.

The number of states of E can be very high. If we model E as a network of automata, the
number can be as high as the product of the number of states of all the components of the network.
So the approach has exponential worst-case complexity. The following result shows that this cannot
be avoided unless P=PSPACE.

Theorem 8.10 The following problem is PSPACE-complete.
Given: A network of automata A1, . . . , An over alphabets Σ1, . . . ,Σn, a NFA V over Σ1 ∪ . . . ∪ Σn.
Decide: if L (A1 ⊗ · · · ⊗ An ⊗ V) , ∅.

Proof: We only give a high-level sketch of the proof. To prove that the problem is in PSPACE,
we show that it belongs to NPSPACE and apply Savitch’s theorem. The polynomial-space nonde-
terministic algorithm just guesses an execution of the product, one configuration at a time, leading
to a final configuration. Notice that storing a configuration requires linear space.

PSPACE-hardness is proven by reduction from the acceptance problem for linearly bounded
automata. A linearly bounded automaton (LBA) is a deterministic Turing machine that always

174 CHAPTER 8. APPLICATIONS II: VERIFICATION

halts and only uses the part of the tape containing the input. Given an LBA A, we construct in
linear time a network of automata that “simulates” A. The network has one component modeling
the control of A (notice that the control is essentially a DFA), and one component for each tape cell
used by the input. The states of the control component are pairs (q, k), where q is a control state
of A, and k is a head position. The states of a cell-component are the possible tape symbols. The
transitions correspond to the possible moves of A according to its transition table. Acceptance of A
corresponds to reachability of certain configurations in the network, which can be easily encoded
as an emptiness problem.

8.4.1 On-the-fly verification.

Recall that, given a program with a set E of executions, and given a regular expression describ-
ing the set of potential executions V violating a property, we have the following four-step tech-
nique to check if the program satisfis the property, i.e., to check if E ∩ V = ∅: (1) transform
the regular expression into an NFA AV (V for “violations”) using the algorithm of Section 2.4.1;
(2) model the program as a network of automata 〈A1, . . . , An〉, and construct the NFA AE =

AsyncProd(A1, . . . , An) recognizing E; (3) construct an NFA AE ∩ AV for E ∩ V using algorithm
intersNFA; (4) check emptiness of AE ∩ AV using algorithm empty.

Observe that AE may have more states than AE ∩ AV : if a state of AE is not reachable by any
word of V , then the state does not appear in AE ∩ AV . The difference in size between the NFAs can
be considerable, and so it is better to directly construct AE ∩ AV , bypassing the construction of AE .
Further, it is inefficient to first construct AE ∩AV and then check for emptiness. It is better to check
for emptines while constructing AE ∩ AV , interrupting the algorithm the moment it constructs a
final state. So, loosely speaking, we look for an algorithm that constructs the intersection with AV

and checks for emptiness on the fly, while computing AE .
This is easily achieved by means of the observation above: the intersection A1∩A2 of two NFAs

A1, A2 corresponds to the particular case of the asynchronous product in which Σ1 ⊆ Σ2 (or vice
versa): if Σ1 ⊆ Σ2, then A2 participates in every action, and the NFAs A1⊗A2 and A1∩A2 coincide.
More generally, if Σ1∪· · ·∪Σn ⊆ Σn+1, then L(A1⊗· · ·⊗An+1) = L(A1⊗· · ·⊗An))∩L(An+1). So, if the
alphabet of V is the union of the alphabets of A1, . . . , An, we have L(A)∩L(V) = L(A1⊗· · ·⊗An⊗Av),
and we can check emptiness by means of the algorithm CheckViol shown in Table 8.2.

Looking at AV as just another component of the asynchronous product, as in Algorithm Check-
Viol, also has another small advantage. Consider again the language V

Σ∗P (x = 0⇒ y← 1) Σ∗P (x , 1)

Actually, we are only interested in the subset of actions Σ′ = {(x = 0⇒ y← 1), (x , 1)}. So we can
replace AV by an automaton A′V over Σ′ recognizing only the sequence (x = 0 ⇒ y ← 1) (x , 1).
That is, this automaton participates in all occurrences of these actions, ignoring the rest. Intuitively,
we can think of A′V as an observer of the network 〈A1⊗· · ·⊗An〉 that is only interested in observing
the actions of Σ′.

8.4. COPING WITH THE STATE-EXPLOSION PROBLEM 175

CheckViol(A1, . . . , An,V)
Input: a network A = 〈A1, . . . An〉, where Ai = (Qi,Σi, δi,Q0i, Fi) for 1 ≤ i ≤ n;

an NFA V = (QV ,ΣV , δV ,Q0v, Fv).
Output: true if L(A1 ⊗ · · · ⊗ An ⊗ V) is nonempty, false otherwise.

1 Q← ∅; Q0 ← Q01 × · · · × Q0n × Q0v

2 W ← Q0

3 while W , ∅ do
4 pick [q1, . . . , qn, q] from W
5 add [q1, . . . , qn, q] to Q
6 for all a ∈ Σ1 ∪ . . . ∪ Σn do
7 for all i ∈ [1..n] do
8 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}

9 Q′ ← δV (q, a)
10 for all [q′1, . . . , q

′
n, q
′] ∈ Q′1 × . . . × Q′n × Q′ do

11 if
∧n

i=1 q′i ∈ Fi and q ∈ Fv then return true
12 if [q′1, . . . , q

′
n, q
′] < Q then add [q′1, . . . , q

′
n, q
′] to W

13 return false

Table 8.2: Algorithm to check violation of a property.

8.4.2 Compositional Verification

Consider the asynchronous product A1⊗A2 of two NFAs over alphabets Σ1,Σ2. Intuitively, A2 does
not observe the actions of Σ1 \ Σ2: they are “internal” actions of A1. Therefore, A1 can be replaced
by any other automaton A′1 satisfying L(A′1) = projΣ2

(L(A1)) without Σ2 “noticing”, meaning that
the sequences of actions that A2 can execute with A1 and A′1 as partners are the same, or, formally,

projΣ2
(A1 ⊗ A2) = projΣ2

(A′1 ⊗ A2) .

In particular, we then have L(A1 ⊗ A2) , ∅ if and only if L(A′1 ⊗ A2) , ∅, and so checking
emptiness of A1 ⊗ A2 can be replaced by checking emptiness of A′1 ⊗ A2. It is easy to construct
an automaton recognizing projΣ2

(L(A1)): just replace all transitions of A1 labeled with letters of
Σ1 \Σ2 by ε-transitions. This automaton has the same size as A1, and so subsituting it for A1 has no
immediate advantage. However, after removing the ε-transitions, and reducing the resulting NFA,
we may obtain an automaton A′1 smaller than A1.

This idea can be extended to the problem of checking emptiness of a product A1 ⊗ · · · ⊗ An

with an arbitrary number of components. Exploting the associativity of ⊗, we rewrite the product
as A1 ⊗ (A2 ⊗ · · · ⊗ An), and replace A1 by a hopefully smaller automaton A′1 over the alphabet
Σ2 ∪ · · · ∪ Σn. In a second step we rewrite A′1 ⊗ A2 ⊗ A3 ⊗ · · · ⊗ An as (A′1 ⊗ A2) ⊗ (A3 ⊗ · · · ⊗ An),
and, applying again the same procedure, replace A′1 ⊗ A2 by a new automaton A′2 over the alphabet

176 CHAPTER 8. APPLICATIONS II: VERIFICATION

Σ3 ∪ · · · ∪ Σn. The procedure continues until we are left with one single automaton A′n over Σn,
whose emptiness can be checked directly on-the-fly.

To see this idea in action, consider the network of automata in The upper part of Figure 8.8. It
models a 3-bit counter consisting of an array of three 1-bit counters, where each counter commu-
nicates with its neighbours.

We call the components of the network A0, A1, A2 instead of A1, A2, A3 to better reflect their
meaning: Ai stands for the i-th bit. Each NFA but the last one has three states, two of which are
marked with 0 and 1. The alphabets are

Σ0 = {inc, inc1, 0, . . . , 7} Σ1 = {inc1, inc2, 0, . . . , 7} Σ2 = {inc2, 0, . . . , 7}

Intuitively, the system interacts with its environment by means of the “visible” actions Vis =

{inc, 0, 1, . . . , 7}. More precisely, inc models a request of the environment to increase the counter
by 1, and i ∈ {0, 1, . . . , 7} models a query of the environment asking if i is the current value of
the counter. A configuration of the form [b2, b1, b0], where b2, b1, b0 ∈ {0, 1}, indicates that the
current value of the counter is 4b2 + 2b1 + b0 (configurations are represented as triples of states of
A2, A1, A0, in that order).

For example, here is a run of the network, starting an ending at configuration [0, 0, 0].

[0, 0, 0]
inc
−−−→ [0, 0, 1]

inc
−−−→ [0, 0, aux0]

inc1
−−−−→ [0, 1, 0]

inc
−−−→ [0, 1, 1]

inc
−−−→ [0, 1, aux0]

inc1
−−−−→ [0, aux1, 0]

inc2
−−−−→ [1, 0, 0]

inc
−−−→ [1, 0, 1]

inc
−−−→ [1, 0, aux0]

inc1
−−−−→ [1, 1, 0]

inc
−−−→ [1, 1, 1]

inc
−−−→ [1, 1, aux0]

inc1
−−−−→ [1, aux1, 0]

inc2
−−−−→ [0, 0, 0] . . .

The bottom part of Figure 8.8 shows the asynchronous product of the network. (All states are
final, but we have drawn them as simple instead of double ellipses for simplicity. The product has
18 states.

Assume we wish to check some property whose violations are given by the language of an
automaton AV over the alphabet Vis of visible actions. The specific shape of AV is not relevant for
the discussion above. Important is only that, instead of checking emptiness of A2⊗A1⊗A0⊗AV , we
can also construct an automaton A′0 such that L(A′0) = projVis(L(A2⊗A1⊗A0)), and check emptiness
of A′0 ⊗ AV . If we compute A′0 be first computing the asynchronous product A2 ⊗ A1 ⊗ A0, and
then removing invisible actions and reducing, then the maximum size of all intermediate automata
involved is at least 18.

Let us now apply the procedure above, starting with A2. Since Σ2 ⊆ (Σ1 ∩ Σ0), the automaton
A2 cannot execute any moves hidden from A1 and A0, and so A′2 = A2. In the next step we compute

8.4. COPING WITH THE STATE-EXPLOSION PROBLEM 177

00

1 1 1

0

inc2 inc2

4, 5, 6, 7 2, 3, 6, 7 1, 3, 5, 7

0, 2, 4, 60, 1, 4, 50, 1, 2, 3

inc1

inc2

inc

inc1

incinc1

A2 A1 A0

1, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 1, 0

1, 1, 1

3

4

5

2

inc

inc1

0, 0, aux

0, 1, aux

0, aux, 0

0, aux, 1

inc1

inc

inc2

inc2

0, aux, aux

6

7

inc

1, 0, aux

1, 1, aux

inc1

inc

0, 0, 0

1

1, aux, 0

1, aux, 1
inc2

inc2

0, 0, 1

0

1, aux, aux

inc2

inc1

inc

inc

inc inc

inc

incinc

inc

inc2

Figure 8.7: A network modeling a 3-bit counter and its asynchronous product.

178 CHAPTER 8. APPLICATIONS II: VERIFICATION

the product A2 ⊗ A1 shown in Figure 8.8, on the left. Now inc2 is an internal action of A1 ⊗ A2,
because it belongs neither to the alphabet of A0 nor to the alphabet of AV . The result of eliminating
ε-transitions and reducing is shown on the right of the figure.

2, 3

4, 5

6, 7

0.1

inc1

inc1

0, 0

0, 1

1, 0

1, 1

0, 0

2, 3 0, 1

0, 1

inc1

6, 7

4, 5

inc1

0, aux

0, 1, aux

inc2

inc1

1, 0

1, 1

inc1 inc2 inc1inc1

Figure 8.8: The asynchronous product A2 ⊗ A1, and the reduced automaton A′1.

In the next step we construct A′1⊗A0, with inc1 as new internal action, not present in the alphabet
of AV , and reduce the automaton again. The results are shown in Figure 8.9. The important fact is
that we have never had to construct an automaton with more than 12 states, a saving of six states
with respect to the method that directly computes A2⊗A1⊗A0. While saving six states is of course
irrelevant in practice, in larger examples the savings can be significant.

8.4.3 Symbolic State-space Exploration

Figure 8.10 shows again the program of Example 8.1, and its flowgraph. An edge of the flowgraph
leading from node ` to node `′ can be associated a step relation S `,`′ containing all pairs of config-
urations

(
[`, x0, y0], [`′, x′0, y

′
0]
)

such that if at control point ` the current values of the variables are
x0, y0, then the program can take a step after which the new control point is `′, and the new values
are x′0, y

′
0. For instance, for the edge leading from node 4 to node 1 we have

S 4,1 =
{ (

[4, x0, y0], [1, x′0, y
′
0]

)
| x′0 = x0, y′0 = 1 − x0

}
and for the edge leading from 1 to 2

S 1,2 =
{ (

[1, x0, y0], [2, x′0, y
′
0]

)
| x0 = 1 = x′0, y

′
0 = y0

}
It is convenient to assign a relation to every pair of nodes of the control graph, even to those not
connected by any edge. If no edge leads from a to b, then we define Ra,b = ∅. The complete
program is then described by the global step relation

8.4. COPING WITH THE STATE-EXPLOSION PROBLEM 179

1, 0, 1

0, 1, 0

1, 1, 0

1, 1, 1

inc

inc

1, 0, 0

0, 1, 1

inc

1, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 1, 0

1, 1, 1

0, 0, 0

1 0, 0, 1

0

inc

3

4

5

2

inc

6

7

inc

inc

inc

0, 0, 0

1 0, 0, 1

0

inc

3

4

5

2

inc

0, 0, aux

0, 1, aux

inc1

inc

inc

6

7

inc

1, 0, aux

1, 1, aux

inc1

inc

inc

inc1

inc

inc1

Figure 8.9: The asynchronous product A′1 ⊗ A0, and the reduced automaton A′0.

180 CHAPTER 8. APPLICATIONS II: VERIFICATION

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

1

2

3 4

5

x , 1x = 1

y = 1

x← 0

y , 1 y← 1 − x

Figure 8.10: Flowgraph of the program of Example 8.1

S =
⋃

a,b∈C

S a,b

where C is the set of control points.
Given a set I of initial configurations, the set of configurations reachable from I can be com-

puted by the following algorithm, which repeatedly applies the Post operation:

Reach(I,R)
Input: set I of initial configurations; relation R
Output: set of configurations reachable form I

1 OldP← ∅; P← I
2 while P , OldP do
3 OldP← P
4 P← Union(P,Post(P, S))
5 return P

The algorithm can be implemented using different data structures. The verification community
distinguishes between explicit and symbolic data structures. Explicit data structures store separately
each of the configurations of P, and the pairs of configurations of S ; typical examples are lists and
hash tables. Their distinctive feature is that the memory needed to store a set is proportional to the
number of its elements. Symbolic data structures, on the contrary, do not store a set by storing each
of its elements; they store a representation of the set itself. A prominent example of a symbolic data
structure are finite automata and transducers: Given an encoding of configurations as words over
some alphabet Σ, the set P and the step relation S are represented by an automaton and a transducer,
respectively, recognizing the encodings of its elements. Their sizes can be much smaller than the
sizes of P or S . For instance, if P is the set of all possible configurations then its encoding is usually
Σ∗, which is encoded by a very small automaton.

Symbolic data structures are only useful if all the operations required by the algorithm can be
implemented without having to switch to an explicit data structure. This is the case of automata and

8.4. COPING WITH THE STATE-EXPLOSION PROBLEM 181

transducers: Union, Post, and the equality check in the condition of the while loop operation are
implemented by the algorithms of Chapters 4 and 6, or, if they are fixed-length, by the algorithms
of Chapter 7.

Symbolic data structures are interesting when the set of reachable configurations can be very
large, or even infinite. When the set is small, the overhead of symbolic data structures usually
offsets the advantage of a compact representation. Despite this, and in order to illustrate the method,
we apply it to the five-line program of Figure 8.10. The fixed-length transducer for the step relation
S is shown in Figure 8.11; a configuration [`, x0, y0] is encoded by the word `x0y0 of length 3.

Consider for instance the transition labeled by
[
4
1

]
. Using it the transducer can recognize four pairs,

[
1
5

]
[
1
2

]

[
2
4

]

[
3
4

]

[
1
1

]
[
0
0

]
[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
[
2
3

]
[
4
1

]

[
1
1

]
[
0
0

]
[
0
0

]
,

[
1
0

] [
0
0

]
,

[
1
1

]
[
0
1

]
,

[
1
1

][
0
0

]

[
1
1

]

[
0
0

]
,

[
1
1

]

Figure 8.11: Transducer for the program of Figure 8.10

which describe the action of the instruction y← 1 − x , namely

[
400
101

] [
401
101

] [
410
110

] [
411
110

]
.

Figure 8.12 shows minimal DFAs for the set I and for the sets obtained after each iteration of the
while loop.

182 CHAPTER 8. APPLICATIONS II: VERIFICATION

Variable orders.

We have defined a configuration of the program of Example 8.1 as a triple [`, nx, ny], and we have
encoded it as the word ` nx ny. We could have also encoded it as the word nx ` ny, ny ` nx, or as any
other permutation, since in all cases the information content is the same. Of course, when encoding
a set of configurations all the configurations must be encoded using the same variable order.

While the information content is independent of the variable order, the size of the automaton
encoding a set is not. An extreme case is given by the following example.

Example 8.11 Consider the set of tuples X = {[x1, x2, . . . , x2k] | x1, . . . , x2k ∈ {0, 1}}, and the
subset Y ⊆ X of tuples satisfying x1 = xk, x2 = xk+1, . . . , xk = x2k. Consider two possible encodings
of a tuple [x1, x2, . . . , x2k]: by the word x1x2 . . . x2k, and by the word x1xk+1x2xk+2 . . . xkx2k. In the
first case, the encoding of Y for k = 3 is the language

L1 = {000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111}

and in the second the language

L2 = {000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111}

Figure 8.13 shows the minimal DFAs for the languages L1 and L2. It is easy to see that the minimal
DFA for L1 has at least 2k states: since for every word w ∈ {0, 1}k the residual Lw

1 is equal to {w},
the language L1 has a different residual for each word of length k, and so the minimal DFA has
at least 2k states (the exact number is 2k+1 + 2k − 2). On the other hand, it is easy to see that the
minimal DFA for L2 has only 3k + 1 states. So a good variable order can lead to a exponentially
more compact representation.

We can also appreciate the effect of the variable order in Lamport’s algorithm. The set of
reachable configurations, sorted according to the state of the first process and then to the state of
the second process, is

〈nc0, nc1, 0, 0〉 〈t0, nc1, 1, 0〉 〈c0, nc1, 1, 0〉
〈nc0, t1, 0, 1〉 〈t0, t1, 1, 1〉 〈c0, t1, 1, 1〉
〈nc0, c1, 0, 1〉 〈t0, c1, 1, 1〉
〈nc0, q1, 0, 1〉 〈t0, q1, 1, 1〉 〈c0, q1, 1, 1〉
〈nc0, q′1, 0, 0〉 〈t0, q′1, 1, 0〉 〈c0, q′1, 1, 0〉

If we encode a tuple 〈s0, s1, v0, v1〉 by the word v0s0s1v1, the set of reachable configurations is
recognized by the minimal DFA on the left of Figure 8.14. However, if we encode by the word
v1s1s0v0 we get the minimal DFA on the right. The same example can be used to visualize how by
adding configurations to a set the size of its minimal DFA can decrease. If we add the “missing”
configuration 〈c0, c1, 1, 1〉 to the set of reachable configurations (filling the “hole” in the list above),
two states of the DFAs of Figure 8.14 can be merged, yielding the minimal DFAs of Figure 8.15.
Observe also that the set of all configurations, reachable or not, contains 120 elements, but is
recognized by a five-state DFA.

8.5. SAFETY AND LIVENESS PROPERTIES 183

8.5 Safety and Liveness Properties

Apart from the state-explosion problem, the automata-theoretic approach to automatic verification
as described in this chapter has a second limitation: it assumes that the violations of the property
can be witnessed by finite executions. In other words, if an execution violates the property, then
we can detect the violation is already violated after finite time. Not all properties satisfy this
assumption. A typical example is the property “if a process requests access to the critical section,
it eventually enters the critical section” (without specifying how long it may take). After finite time
we can only tell that the process has not entered the critical section yet, but we cannot say that
the property has been violated: the process might still enter the critical section in the future. A
violation of the property can only be witnessed by an infinite execution, in which we observe that
the process requests access, but the access is never granted.

Properties which are violated by finite executions are called safety properties. Intuitively, they
correspond to properties of the form “nothing bad ever happens”. Typical examples are “the system
never deadlocks”, or, more generally, “the system never enters a set of bad states”. Clearly, every
interesting system must also satisfy properties of the form “something good eventually happens”,
because otherwise the system that does nothing would already satisfy all properties. Properties of
this kind are called liveness properties, and can only be witnessed by infinite executions. Fortu-
nately, the automata-theoretic approach can be extended to liveness properties. This requires to
develop a theory of automata on infinite words, which is the subject of the second part of this book.
The application of this theory to the verification of liveness properties is presented in Chapter 14.
As an appetizer, the exercises start to discuss them.

Exercises

Exercise 95 Exhibit a family {Pn}n≥1 of sequential programs (like the one of Example 8.1) satis-
fying the following conditions:

• Pn has O(n) variables, all of them boolean, O(n) lines, and exactly one initial configuration.

• Pi has at least 2i reachable configurations.

Exercise 96 Modify AsyncProduct so that it produces system automata as those shown in Figure
8.1 for the program of Example 8.1.

Exercise 97 Prove:

(1) Parallel composition is associative, commutative, and idempotent. That is: (L1 ‖ L2) ‖
L3 = L1 ‖ (L2 ‖ L3) (associativity); L1 ‖ L2 = L2 ‖ L1 (commutativity), and L ‖ L = L
(idempotence).

(2) If L1, L2 ⊆ Σ∗, then L1 ‖ L2 = L1 ∩ L2.

184 CHAPTER 8. APPLICATIONS II: VERIFICATION

(3) Let A = 〈A1, . . . ,An〉 be a network of automata. Then L(A)) = L(A1) ‖ L(A2).

Exercise 98 Let Σ = {request, answer,working, idle}.

(1) Build a regular expression and an automaton recognizing all words with the property P1: for
every occurrence of request there is a later occurrence of answer.

(2) P1 does not imply that every occurrence of request has “its own” answer: for instance,
the sequence request request answer satisfies P1, but both requests must necessarily be
mapped to the same answer. But, if words were infinite and there were infinitely many
requests, would P1 guarantee that every request has its own answer?
More precisely, let w = w1w2 · · · satisfying P1 and containing infinitely many occurrences
of request, and define f : N → N such that w f (i) is the ith request in w. Is there always an
injective function g : N→ N satisfying wg(i) = answer and f (i) < g(i) for all i ∈ {1, . . . , k}?

(3) Build an automaton recognizing all words with the property P2: there is an occurrence of
answer before which only working and request occur.

(4) Using automata theoretic constructions, prove that all words accepted by the automaton A
below satisfy P1, and give a regular expression for all words accepted by the automaton that
violate P2.

q0 q1

Σ

answer

Exercise 99 Consider two processes (process 0 and process 1) being executed through the follow-
ing generic mutual exclusion algorithm:

1 while true do
2 enter(process id)

/* critical section */

3 leave(process id)
4 for arbitrarily many times do

/* non critical section */

8.5. SAFETY AND LIVENESS PROPERTIES 185

1. Consider the following implementations of enter and leave:

1 x0 ← 0
2 enter(i):
3 while x = 1 − i do
4 pass
5 leave(i):
6 x← 1 − i

(a) Design a network of automata capturing the executions of the two processes.

(b) Build the asynchronous product of the network.

(c) Show that both processes cannot reach their critical sections at the same time.

(d) If a process wants to enter its critical section, is it always the case that it can eventually
enter it? (Hint: reason in terms of infinite executions.)

2. Consider the following alternative implementations of enter and leave:

1 x0 ← false
2 x1 ← false
3 enter(i):
4 xi ← true
5 while x1−i do
6 pass
7 leave(i):
8 xi ← false

(a) Design a network of automata capturing the executions of the two processes.

(b) Can a deadlock occur, i.e. can both processes get stuck trying to enter their critical
sections?

Exercise 100 Consider a circular railway divided into 8 tracks: 0 → 1 → . . . → 7 → 0. In the
railway circulate three trains, modeled by three automata T1, T2, and T3. Each automaton Ti has
states {qi,0, . . . , qi,7}, alphabet {enter[i, j] | 0 ≤ j ≤ 7} (where enter[i, j] models that train i enters
track j), transition relation {(qi, j, enter[i, j ⊕ 1], qi, j⊕1) | 0 ≤ j ≤ 7}, and initial state qi,2i, where ⊕
denotes addition modulo 8. In other words, initially the trains occupy the tracks 2, 4, and 6.

Define automata C0, . . . ,C7 (the local controllers) to make sure that two trains can never be on
the same or adjacent tracks (i.e., there must always be at least one empty track between two trains).

186 CHAPTER 8. APPLICATIONS II: VERIFICATION

Each controler C j can only have knowledge of the state of the tracks j 	 1, j, and j ⊕ 1, there must
be no deadlocks, and every train must eventually visit every track. More formally, the network of
automata A =〉C0, . . . ,C7,T1,T2,T3〉 must satisfy the following specification:

• For j = 0, . . . , 7: C j has alphabet {enter[i, j 	 1], enter[i, j], enter[i, j ⊕ 1], | 1 ≤ i ≤ 3}.
(C j only knows the state of tracks j 	 1, j, and j ⊕ 1.)

• For i = 1, 2, 3: L (A) |Σi= (enter[i, 2i] enter[i, 2i ⊕ 1] . . . enter[i, 2i ⊕ 7])∗.
(No deadlocks, and every train eventually visits every segment.)

• For every word w ∈ L (A): if w = w1 enter[i, j] enter[i′, j′] w2 and i′ , i, then | j − j′| <
{0, 1, 7}.
(No two trains on the same or adjacent tracks.)

8.5. SAFETY AND LIVENESS PROPERTIES 187

1 0, 1 0, 1

0

12

5

1 0, 1 0, 1

1 0, 1

0

12

5

4

3

1

1

0

0, 1

1

1

0

2

5

4

3

1

1

0

0, 1

1

0, 1
1

0

Figure 8.12: Minimal DFAs for the reachable configurations of the program of Figure 8.10

188 CHAPTER 8. APPLICATIONS II: VERIFICATION

0 1

0

0 1

1

0 1 0 1

0 1

0 1

0

0

0

1

1

1

1

1

1

0

0

0

0 1
0

0 1

0 1 0 1

0 11 0 1

Figure 8.13: Minimal DFAs for the languages L1 and L2

8.5. SAFETY AND LIVENESS PROPERTIES 189

0

0

nc1, q′1

nc1, q′1
t1, q1

t1, c1, q1

1 0

t1, c1, q1

nc1, q′1

t0

nc0 c0

1

1

0

nc1, q′1 c1

t1, q1

nc0 nc0

t0, c0

0 1

1

t0

Figure 8.14: Minimal DFAs for the reachable configurations of Lamport’s algorithm. On the left a
configuration 〈s0, s1, v0, v1, q〉 is encoded by the word s0s1v0v1q, on the right by v1s1s0v0.

0

0

nc1, q′1 t1, c1, q1

1 0

nc0 t0, c0

1

1

0

0 1

1

t1, c1, q1 nc1, q′1

t0, c0nc0

nc1, q′1 t1, c1, q1

Figure 8.15: Minimal DFAs for the reachable configurations of Lamport’s algorithm plus
〈c0, c1, 1, 1〉.

190 CHAPTER 8. APPLICATIONS II: VERIFICATION

Chapter 9

Automata and Logic

A regular expression can be seen as a set of instructions (a ‘recipe’) for generating the words of a
language. For instance, the expression aa(a + b)∗b can be interpreted as “write two a’s, repeatedly
write a or b an arbitrary number of times, and then write a b”. We say that regular expressions are
an operational description language.

Languages can also be described in declarative style, as the set of words that satisfy a property.
For instance, “the words over {a, b} containing an even number of a’s and an even number of b’s” is
a declarative description. A language may have a simple declarative description and a complicated
operational description as a regular expression. For instance, the regular expression

(aa + bb + (ab + ba)(aa + bb)∗(ba + ab))∗

is a natural operational description of the language above, and it is arguably less intuitive than
the declarative one. This becomes even more clear if we consider the language of the words over
{a, b, c} containing an even number of a’s, of b’s, and of c’s.

In this chapter we present a logical formalism for the declarative description of regular lan-
guages. We use logical formulas to describe properties of words, and logical operators to construct
complex properties out of simpler ones. We then show how to automatically translate a formula
describing a property of words into an automaton recognizing the words satisfying the property.
As a consequence, we obtain an algorithm to convert declarative into operational descriptions, and
vice versa.

9.1 First-Order Logic on Words

In declarative style, a language is defined by its membership predicate, i.e., the property that words
must satisfy in order to belong to it. Predicate logic is the standard language to express membership
predicates. Starting from some natural, “atomic” predicates, more complex ones can be constructed
through boolean combinations and quantification. We introduce atomic predicates Qa(x), where a
is a letter, and x ranges over the positions of the word. The intended meaning is “the letter at

191

192 CHAPTER 9. AUTOMATA AND LOGIC

position x is an a.” For instance, the property “all letters are as” is formalized by the formula
∀x Qa(x).

In order to express relations between positions we add to the syntax the predicate x < y, with
intended meaning “position x is smaller than (i.e., lies to the left of) position y”. For example, the
property “if the letter at a position is an a, then all letters to the right of this position are also as” is
formalized by the formula

∀x∀y ((Qa(x) ∧ x < y)→ Qa(y)) .

Definition 9.1 Let V = {x, y, z, . . .} be an infinite set of variables, and let Σ = {a, b, c, . . .} be a finite
alphabet. The set FO(Σ) of first-order formulas over Σ is the set of expressions generated by the
grammar:

ϕ := Qa(x) | x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃x ϕ .

As usual, variables within the scope of an existential quantifier are bounded, and otherwise free. A
formula without free variables is a sentence. Sentences of FO(Σ) are interpreted on words over Σ.
For instance, ∀x Qa(x) is true for the word aa, but false for word ab. Formulas with free variables
cannot be interpreted on words alone: it does not make sense to ask whether Qa(x) holds for the
word ab or not. A formula with free variables is interpreted over a pair (w, I), where I assigns to
each free variable (and perhaps to others) a position in the word. For instance, Qa(x) is true for the
pair (ab, x 7→ 1), because the letter at position 1 of ab is a, but false for (ab, x 7→ 2).

Definition 9.2 An interpretation of a formula ϕ of FO(Σ) is a pair (w, I) where w ∈ Σ∗ and I is a
mapping that assigns to every free variable x a position I(x) ∈ {1, . . . , |w|} (the mapping may also
assign positions to other variables).

Notice that if ϕ is a sentence then a pair (w,E), where E is the empty mapping that does not assign
any position to any variable, is an interpretation of ϕ. Instead of (w,E) we write simply w.

We now formally define when an interpretation satisfies a formula. Given a word w and a
number k, let w[k] denote the letter of w at position k.

Definition 9.3 The satisfaction relation (w, I) |= ϕ between a formula ϕ of FO(Σ) and an interpre-
tation (w, I) of ϕ is defined by:

(w, I) |= Qa(x) iff w[I(x)] = a
(w, I) |= x < y iff I(x) < I(y)
(w, I) |= ¬ϕ iff (w, I) 6|= ϕ

(w, I) |= ϕ1 ∨ ϕ2 iff (w, I) |= ϕ1 or (w, I) |= ϕ2
(w, I) |= ∃x ϕ iff |w| ≥ 1 and some i ∈ {1, . . . , |w|} satisfies (w, I[i/x]) |= ϕ

where w[i] is the letter of w at position i, and I[i/x] is the mapping that assigns i to x and otherwise
coincides with I. (Notice that I may not assign any value to x.) If (w, I) |= ϕ we say that (w, I) is a
model of ϕ. Two formulas are equivalent if they have the same models.

9.1. FIRST-ORDER LOGIC ON WORDS 193

It follows easily from this definition that if two interpretations (w, I1) and (w, I2) of ϕ differ
only in the positions assigned by I1 and I2 to bounded variables, then either both interpretations
are models of ϕ, or none of them is. In particular, whether an interpretation (w, I) of a sentence is
a model or not depends only on w, not on I.

We use some standard abbreviations:

∀x ϕ := ¬∃ x¬ϕ ϕ1 ∧ ϕ2 := ¬ (¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

Notice that according to the definition of the satisfaction relation the empty word ε satisfies no
formulas of the form ∃x ϕ, and all formulas of the form ∀x ϕ. While this causes no problems for
our purposes, it is worth noticing that in other contexts it may lead to complications. For instance,
the formulas ∃x Qa(x) and ∀y∃x Qa(x) do not hold for exactly the same words, because the empty
word satisfies the second, but not the first. Further useful abbreviations are:

x = y := ¬(x < y ∨ y < x)
first(x) := ¬∃y y < x “x is the first position”
last(x) := ¬∃y x < y “x is the last position”

y = x + 1 := x < y ∧ ¬∃ z(x < z ∧ z < y) “y is the successor position of x”
y = x + 2 := ∃ z(z = x + 1 ∧ y = z + 1)

y = x + (k + 1) := ∃ z(z = x + k ∧ y = z + 1)

Example 9.4 Some examples of properties expressible in the logic:

• “The last letter is a b and before it there are only a’s.”

∃x Qb(x) ∧ ∀x (last(x)→ Qb(x) ∧ ¬last(x)→ Qa(x))

• “Every a is immediately followed by a b.”

∀x (Qa(x)→ ∃y (y = x + 1 ∧ Qb(y)))

• “Every a is immediately followed by a b, unless it is the last letter.”

∀x (Qa(x)→ ∀y (y = x + 1→ Qb(y)))

• “Between every a and every later b there is a c.”

∀x∀y (Qa(x) ∧ Qb(y) ∧ x < y→ ∃z (x < z ∧ z < y ∧ Qc(z)))

194 CHAPTER 9. AUTOMATA AND LOGIC

9.1.1 Expressive power of FO(Σ)

Once we have defined which words satisfy a sentence, we can associate to a sentence the set of
words satisfying it.

Definition 9.5 The language L (ϕ) of a sentence ϕ ∈ FO(Σ) is the set L (ϕ) = {w ∈ Σ∗ | w |= φ}. We
also say that ϕ expresses L (ϕ). A language L ⊆ Σ∗ is FO-definable if L = L (ϕ) for some formula
ϕ of FO(Σ).

The languages of the properties in the example are FO-definable by definition. To get an idea
of the expressive power of FO(Σ), we prove a theorem characterizing the FO-definable languages
in the case of a 1-letter alphabet Σ = {a}. In this simple case we only have one predicate Qa(x),
which is always true in every interpretation. So every formula is equivalent to a formula without
any occurrence of Qa(x). For example, the formula ∃y (Qa(y) ∧ y < x) is equivalent to ∃y y < x.

We prove that a language over a one-letter alphabet is FO-definable if and only if it is finite
or co-finite, where a language is co-finite if its complement is finite. So, for instance, even a
simple language like {an | n is even } is not FO-definable. The plan of the proof is as follows.
First, we define the quantifier-free fragment of FO({a}), denoted by QF; then we show that 1-letter
languages are QF-definable iff they are finite or co-finite; finally, we prove that 1-letter languages
are FO-definable iff they are QF-definable.

For the definition of QF we need some more macros whose intended meaning should be easy
to guess:

x + k < y := ∃z (z = x + k ∧ z < y)
x < y + k := ∃z (z = y + k ∧ x < z)

k < last := ∀x (last(x)→ x > k)

In these macros k is a constant, that is, k < last standa for the infinite family of macros 1 < last, 2 <
last, 3 < last Macros like k > x or x + k > y are defined similarly.

Definition 9.6 The logic QF (for quantifier-free) is the fragment of FO({a}) with syntax

f := x ≈ k | x ≈ y + k | k ≈ last | f1 ∨ f2 | f1 ∧ f2

where ≈ ∈ {<, >} and k ∈ N.

Proposition 9.7 A language over a 1-letter alphabet is QF-definable iff it is finite or co-finite.

Proof: (⇒): Let f be a sentence of QF. Since QF does not have quantifiers, f does not contain
any occurrence of a variable, and so it is a positive (i.e., negation-free) boolean combination of
formulas of the form k < last or k > last. We proceed by induction on the structure of f . If
f = k < last, then L (ϕ) is co-finite, and if f = k > last, then L (ϕ) is finite. If f = f1 ∨ f2, then by
induction hypothesis L (f1) and L (f2) are finite or co-finite; if L (f1) and L (f2) are finite, then so is
L (f), and otherwise L (f) is co-finite. The case f = f1 ∧ f2 is similar.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 195

(⇐): A finite language {ak1 , . . . , akn} is expressed by the formula (last > k1 − 1 ∧ last <

k1 + 1) ∨ . . . ∨ (last > k1 − 1 ∧ last < k1 + 1). To express a co-finite language, it suffices to show
that for every formula f of QF expressing a language L, there is another formula f expressing the
language L. This is easily proved by induction on the structure of the formula.

Theorem 9.8 Every formula ϕ of FO({a}) is equivalent to a formula f of QF.

Proof: Sketch. By induction on the structure of ϕ. If ϕ(x, y) = x < y, then ϕ ≡ y < x + 0. If
ϕ = ¬ψ, the result follows from the induction hypothesis and the fact that negations can be removed
using De Morgan’s rules and equivalences like ¬(x < y + k) ≡ x ≥ y + k. If ϕ = ϕ1 ∨ ϕ2, the result
follows directly from the induction hypothesis. Consider now the case ϕ = ∃x ψ. By induction
hypothesis, ψ is equivalent to a formula f of QF, and we can assume that f is in disjunctive normal
form, say f = D1 ∨ . . . ∨ Dn. Then ϕ ≡ ∃x D1 ∨ ∃x D2 ∨ . . . ∨ ∃x Dn, and so it suffices to find a
formula fi of QF equivalent to ∃x Di.

The formula fi is a conjunction of formulas containing all conjuncts of Di with no occurrence
of x, plus other conjuncts obtained as follows. For every lower bound x < t1 of Di, where t1 = k1
or t1 = x1 + k1, and every upper bound of the form x > t2, where t2 = k1 or t2 = x1 + k1 we add to
fi a conjunct equivalent to t2 + 1 < t1. For instance, y + 7 < x and x < z + 3 we add y + 5 < z. It is
easy to see that fi ≡ ∃x Di.

Corollary 9.9 The language Even = {a2n | n ≥ 0} is not first-order expressible.

These results show that first-order logic cannot express all regular languages, not even over a
1-letter alphabet. For this reason we now introduce monadic second-order logic.

9.2 Monadic Second-Order Logic on Words

Monadic second-order logic extends first-order logic with variables X,Y,Z, . . . ranging over sets of
positions, and with predicates x ∈ X, meaning “position x belongs to the set X. 1 It is allowed
to quantify over both kinds of variables. Before giving a formal definition, let us informally see
how this extension allows to describe the language Even. The formula states that the last position
belongs to the set of even positions. A position belongs to this set iff it is the second position, or
the second successor of another position in the set.

The following formula states that X is the set of even positions:

second(x) := ∃y (first(y) ∧ x = y + 1)
Even(X) := ∀x (x ∈ X ↔ (second(x) ∨ ∃y (x = y + 2 ∧ y ∈ X)))

For the complete formula, we observe that the word has even length if its last position is even:

EvenLength := ∃X
(
Even(X) ∧ ∀x (last(x)→ x ∈ X)

)
1More generally, second-order logic allows for variables ranging over relations of arbitrary arity. The monadic

fragment only allows arity 1, which corresponds to sets.

196 CHAPTER 9. AUTOMATA AND LOGIC

We now define the formal syntax and semantics of the logic.

Definition 9.10 Let X1 = {x, y, z, . . .} and X2 = {X,Y,Z, . . .} be two infinite sets of first-order and
second-order variables. Let Σ = {a, b, c, . . .} be a finite alphabet. The set MSO(Σ) of monadic
second-order formulas over Σ is the set of expressions generated by the grammar:

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

An interpretation of a formula ϕ is a pair (w, I) where w ∈ Σ∗, and I is a mapping that assigns every
free first-order variable x a position I(x) ∈ {1, . . . , |w|} and every free second-order variable X a
set of positions I(X) ⊆ {1, . . . , |w|}. (The mapping may also assign positions to other variables.)

The satisfaction relation (w, I) |= ϕ between a formula ϕ of MSO(Σ) and an interpretation (w, I)
of ϕ is defined as for FO(Σ), with the following additions:

(w, I) |= x ∈ X iff I(x) ∈ I(X)
(w, I) |= ∃X ϕ iff |w| > 0 and some S ⊆ {1, . . . , |w|}

satisfies (w, I[S/X]) |= ϕ

where I[S/X] is the interpretation that assigns S to X and otherwise coincides with I — whether
I is defined for X or not. If (w, I) |= ϕ we say that (w, I) is a model of ϕ. Two formulas are
equivalent if they have the same models. The language L (ϕ) of a sentence ϕ ∈ MSO(Σ) is the set
L (ϕ) = {w ∈ Σ∗ | w |= φ}. A language L ⊆ Σ∗ is MSO-definable if L = L (ϕ) for some formula
ϕ ∈ MSO(Σ).

Notice that in this definition the set S may be empty. So, for instance, ay interpretation that assigns
the empty set to X is a model of the formula ∃X ∀x ¬(x ∈ X).

We use the standard abbreviations

∀x ∈ X ϕ := ∀x (x ∈ X → ϕ) ∃x ∈ X ϕ := ∃x (x ∈ X ∧ ϕ)

9.2.1 Expressive power of MSO(Σ)

We show that the languages expressible in monadic second-order logic are exactly the regular
languages. We start with an example.

Example 9.11 Let Σ = {a, b, c, d}. We construct a formula of MSO(Σ) expressing the regular
language c∗(ab)∗d∗. The membership predicate of the language can be informally formulated as
follows:

There is a block of consecutive positions X such that: before X there are only c’s; after
X there are only d’s; in X b’s and a’s alternate; the first letter in X is an a and the last
letter is a b.

The predicate is a conjunction of predicates. We give formulas for each of them.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 197

• “X is a block of consecutive positions.”

Block(X) := ∀x ∈ X ∀y ∈ X (x < y→ (∀z (x < z ∧ z < y)→ z ∈ X))

• “x lies before/after X.”

Before(x, X) := ∀y ∈ X x < y After(x, X) := ∀y ∈ X y < x

• “Before X there are only c’s.”

Before only c(X) := ∀x Before(x, X)→ Qc(x)

• “After X there are only d’s.”

After only d(X) := ∀x After(x, X)→ Qd(x)

• “a’s and b’s alternate in X.”

Alternate(X) := ∀x ∈ X (Qa(x)→ ∀y ∈ X (y = x + 1→ Qb(y))
∧

Qb(x)→ ∀y ∈ X (y = x + 1→ Qa(y)))

• ”The first letter in X is an a and the last is a b.”

First a(X) := ∀x ∈ X ∀y (y < x→ ¬y ∈ X)→ Qa(x)

Last b(X) := ∀x ∈ X ∀y (y > x→ ¬y ∈ X)→ Qa(x)

Putting everything together, we get the formula

∃X(Block(X) ∧ Before only c(X) ∧ After only d(X) ∧
Alternate(X) ∧ First a(X) ∧ Last b(X))

Notice that the empty word is a model of the formula. because the empty set of positions satisfies
all the conjuncts.

Let us now directly prove one direction of the result.

Proposition 9.12 If L ⊆ Σ∗ is regular, then L is expressible in MSO(Σ).

198 CHAPTER 9. AUTOMATA AND LOGIC

Proof: Let A = (Q,Σ, δ, q0, F) be a DFA with Q = {q0, . . . , qn} and L (A) = L. We construct a
formula ϕA such that for every w , ε, w |= ϕA iff w ∈ L (A). If ε ∈ L (A), then we can extend the
formula to ϕA ∨ ϕ

′
A, where ϕ′A is only satisfied by the empty word (e.g. ϕ′A = ∀x x < x).

We start with some notations. Let w = a1 . . . am be a word over Σ, and let

Pq =
{
i ∈ {1, . . . ,m} | δ̂(q0, a1 . . . ai) = q

}
.

In words, i ∈ Pq iff A is in state q immediately after reading the letter ai. Then A accepts w iff
m ∈

⋃
q∈F Pq.

Assume we were able to construct a formula Visits(X0, . . . Xn) with free variables X0, . . . Xn

such that I(Xi) = Pqi holds for every model (w, I) and for every 0 ≤ i ≤ n. In words, Visits(X0, . . . Xn)
is only true when Xi takes the value Pqi for every 0 ≤ i ≤ n. Then (w, I) would be a model of

ψA := ∃X0 . . .∃Xn Visits(X0, . . . Xn) ∧ ∃x

last(x) ∧
∨
qi∈F

x ∈ Xi


iff w has a last letter, and w ∈ L. So we could take

ϕA :=
{
ψA if q0 < F
ψA ∨ ∀x x < x if q0 ∈ F

Let us now construct the formula Visits(X0, . . . Xn). The sets Pq are the unique sets satisfying
the following properties:

(a) 1 ∈ Pδ(q0,a1), i.e., after reading the letter at position 1 the DFA is in state δ(q0, a1);

(b) every position i belongs to exactly one Pq, i.e., the Pq’s build a partition of the set positions;
and

(c) if i ∈ Pq and δ(q, ai+1) = q′ then i + 1 ∈ Pq′ , i.e., the Pq’s “respect” the transition function δ.

We express these properties through formulas. For every a ∈ Σ, let qia = δ(q0, a). The formula for
(a) is:

Init(X0, . . . , Xn) = ∃x

first(x) ∧

∨
a∈Σ

(Qa(x) ∧ x ∈ Xia)


(in words: if the letter at position 1 is a, then the position belongs to Xia).
Formula for (b):

Partition(X0, . . . , Xn) = ∀x


n∨

i=0

x ∈ Xi ∧

n∧
i, j = 0
i , j

(x ∈ Xi → x < X j)



9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 199

Formula for (c):

Respect(X0, . . . , Xn) = ∀x∀y


y = x + 1→

∨
a ∈ Σ

i, j ∈ {0, . . . , n}
δ(qi, a) = q j

(x ∈ Xi ∧ Qa(x) ∧ y ∈ X j)


Altogether we get

Visits(X0, . . . Xn) := Init(X0, . . . , Xn) ∧ Partition(X0, . . . , Xn) ∧ Respect(X0, . . . , Xn)

It remains to prove that MSO-definable languages are regular. Given a sentence ϕ ∈ MSO(Σ)
show that L (ϕ) is regular by induction on the structure of ϕ. However, since the subformulas
of a sentence are not necessarily sentences, the language defined by the subformulas of ϕ is not
defined. We correct this. Recall that the interpretations of a formula are pairs (w, I) where I assigns
positions to the free first-order variables and sets of positions to the free second-order variables.
For example, if Σ = {a, b} and if the free first-order and second-order variables of the formula are
x, y and X,Y , respectively, then two possible interpretations areaab ,

x 7→ 1
y 7→ 3
X 7→ {2, 3}
Y 7→ {1, 2}


ba ,

x 7→ 2
y 7→ 1
X 7→ ∅
Y 7→ {1}


Given an interpretation (w, I), we can encode each assignment x 7→ k or X 7→ {k1, . . . , kl} as a
bitstring of the same length as w: the string for x 7→ k contains exactly a 1 at position k, and 0’s
everywhere else; the string for X 7→ {k1, . . . , kl} contains 1’s at positions k1, . . . , kl, and 0’s every-
where else. After fixing an order on the variables, an interpretation (w, I) can then be encoded as a
tuple (w,w1, . . . ,wn), where n is the number of variables, w ∈ Σ∗, and w1, . . . ,wn ∈ {0, 1}∗. Since all
of w,w1, . . . ,wn have the same length, we can as in the case of transducers look at (w,w1, . . . ,wn)
as a word over the alphabet Σ × {0, 1}n. For the two interpretations above we get the encodings

x
y
X
Y

a
1
0
0
1

a
0
0
1
1

b
0
1
1
0

and
x
y
X
Y

b
0
1
0
1

a
1
0
0
0

corresponding to the words

200 CHAPTER 9. AUTOMATA AND LOGIC


a
1
0
0
1




a
0
0
1
1




b
0
1
1
0


and


b
0
1
0
1




a
1
0
0
0


over Σ × {0, 1}4

Definition 9.13 Let ϕ be a formula with n free variables, and let (w, I) be an interpretation of ϕ.
We denote by enc(w, I) the word over the alphabet Σ × {0, 1}n described above. The language of ϕ
is L (ϕ) = {enc(w, I) | (w, I) |= ϕ}.

Now that we have associated to every formula ϕ a language (whose alphabet depends on the
free variables), we prove by induction on the structure of ϕ that L (ϕ) is regular. We do so by
exhibiting automata (actually, transducers) accepting L (ϕ). For simplicity we assume Σ = {a, b},
and denote by free(ϕ) the set of free variables of ϕ.

• ϕ = Qa(x). Then free(ϕ) = x, and the interpretations of ϕ are encoded as words over Σ×{0, 1}.
The language L (ϕ) is given by

L (ϕ) =


[
a1
b1

]
. . .

. . .

[
ak

bk

] ∣∣∣∣∣∣∣∣∣
k ≥ 0,
ai ∈ Σ and bi ∈ {0, 1} for every i ∈ {1, . . . , k}, and
bi = 1 for exactly one index i ∈ {1, . . . , k} such that ai = a


and is recognized by

[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]

• ϕ = x < y. Then free(ϕ) = {x, y}, and the interpretations of φ are encoded as words over
Σ × {0, 1}2. The language L (ϕ) is given by

L (ϕ) =


a1
b1
c1

 . . .

. . .

ak

bk

ck


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k ≥ 0,
ai ∈ Σ and bi, ci ∈ {0, 1} for every i ∈ {1, . . . , k},
bi = 1 for exactly one index i ∈ {1, . . . , k},
c j = 1 for exactly one index j ∈ {1, . . . , k}, and
i < j


and is recognized by

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 201

a01

b01



a00

b00


a00

 ,
b00


a00


b00

 a10

b10



• ϕ = x ∈ X. Then free(ϕ) = {x, X}, and interpretations are encoded as words over Σ × {0, 1}2.
The language L (ϕ) is given by

L (ϕ) =


a1
b1
c1

 . . .

. . .

ak

bk

ck


∣∣∣∣∣∣∣∣∣∣∣

k ≥ 0,
ai ∈ Σ and bi, ci ∈ {0, 1} for every i ∈ {1, . . . , k},
bi = 1 for exactly one index i ∈ {1, . . . , k}, and
for every i ∈ {1, . . . , k}, if bi = 1 then ci = 1


and is recognized by

a00
 ,

b00
 ,

a01
 ,

b01


a00
 ,

b00
 ,

a01
 ,

b01
 a11

 ,
b11



• ϕ = ¬ψ. Then free(ϕ) = free(ψ), and by induction hypothesis there exists an automaton Aψ
s.t. L

(
Aψ

)
= L (ψ).

Observe that L (ϕ) is not in general equal to L (ψ). To see why, consider for example the case
ψ = Qa(x) and ϕ = ¬Qa(x). The word [

a
1

] [
a
1

] [
a
1

]
belongs neither to L (ψ) nor L (ϕ), because it is not the encoding of any interpretation: the
bitstring for x contains more than one 1. What holds is L (ϕ) = L (ψ) ∩ Enc(ψ), where
Enc(ψ) is the language of the encodings of all the interpretations of ψ (whether they are
models of ψ or not). We construct an automaton Aenc

ψ recognizing Enc(ψ), and so we can
take Aϕ = Aψ ∩ Aenc

ψ .

Assume ψ has k first-order variables. Then a word belongs to Enc(ψ) iff each of its projec-
tions onto the 2nd, 3rd, . . . , (k + 1)-th component is a bitstring containing exactly one 1. As
states of Aenc

ψ we take all the strings {0, 1}k. The intended meaning of a state, say state 101
for the case k = 3, is “the automaton has already read the 1’s in the bitstrings of the first and
third variables, but not yet read the 1 in the second.” The initial and final states are 0k and
1k, respectively. The transitions are defined according to the intended meaning of the states.

202 CHAPTER 9. AUTOMATA AND LOGIC

For instance, the automaton Aenc
x<y is

a10
 ,

b10


a01
 ,

b01


a01
 ,

b01


a11
 ,

b11


a00
 ,

b00


a00
 ,

b00


a10
 ,

b10


a00
 ,

b00


a00
 ,

b00


Observe that the number of states of Aenc
ψ grows exponentially in the number of free variables.

This makes the negation operation expensive, even when the automaton Aφ is deterministic.

• ϕ = ϕ1 ∨ ϕ2. Then free(ϕ) = f ree(ϕ1) ∪ free(ϕ2), and by induction hypothesis there are
automata Aϕi , Aϕ2 such that L(Aϕ1) = L(ϕ1) and L(Aϕ2) = L(ϕ2).

If free(ϕ1) = free(ϕ2), then we can take Aϕ = Aϕ1 ∪ Aϕ2 . But this need not be the case. If
free(ϕ1) , free(ϕ2), then L(ϕ1) and L(ϕ2) are languages over different alphabets Σ1,Σ2, or
over the same alphabet, but with different intended meaning, and we cannot just compute
their intersection. For example, if ϕ1 = Qa(x) and ϕ2 = Qb(y), then both L(ϕ1) and L(ϕ2)
are languages over Σ × {0, 1}, but the second component indicates in the first case the value
of x, in the second the value of y.

This problem is solved by extending L(ϕ1) and L(Aϕ2) to languages L1 and L2 over Σ×{0, 1}2.
In our example, the language L1 contains the encodings of all interpretations (w, {x 7→
n1, y 7→ n2}) such that the projection (w, {x 7→ n1}) belongs to L(Qa(x)), while L2 contains
the interpretations such that (w, {y 7→ n2}) belongs to L(Qb(y)). Now, given the automaton
AQa(x) recognizing L(Qa(x))

[
a
0

]
,

[
b
0

]
[
a
1

]
[
a
0

]
,

[
b
0

]

we transform it into an automaton A1 recognizing L1

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 203a00
 ,

a01
 ,

b00
 ,

b01


a00
 ,

a01
 ,

b00
 ,

b01
a10

 ,
a11



After constructing A2 similarly, take Aϕ = A1 ∪ A2.

• ϕ = ∃x ψ. Then free(ϕ) = f ree(ψ) \ {x}, and by induction hypothesis there is an automaton
Aψ s.t. L

(
Aψ

)
= L (ψ). Define A∃ xψ as the result of the projection operation, where we

project onto all variables but x. The operation simply corresponds to removing in each letter
of each transition of Aσ the component for variable x. For example, the automaton A∃x Qa(x)
is obtained by removing the second components in the automaton for AQa(x) shown above,
yielding

a, b a, b

a

Observe that the automaton for ∃x ψ can be nondeterministic even if the one for ψ is deter-
ministic, since the projection operation may map different letters into the same one.

• ϕ = ∃X ϕ. We proceed as in the previous case.

Size of Aϕ. The procedure for constructing Aϕ proceeds bottom-up on the syntax tree of ϕ. We
first construct automata for the atomic formulas in the leaves of the tree, and then proceed upwards:
given automata for the children of a node in the tree, we construct an automaton for the node itself.

Whenever a node is labeled by a negation, the automaton for it can be exponentially bigger
than the automaton for its only child. This yields an upper bound for the size of Aϕ equal to a tower
of exponentials, where the height of the tower is equal to the largest number of negations in any
path from the root of the tree to one of its leaves.

It can be shown that this very large upper bound is essentially tight: there are formulas for
which the smallest automaton recognizing the same language as the formula reaches the upper
bound. This means that MSO-logic allows to describe some regular languages in an extremely
succinct form.

Example 9.14 Consider the alphabet Σ = {a, b} and the language a∗b ⊆ Σ∗, recognized by the
NFA

a

b

204 CHAPTER 9. AUTOMATA AND LOGIC

We derive this NFA by giving a formula ϕ such that L (ϕ) = a∗b, and then using the procedure
described above. We shall see that the procedure is quite laborious. The formula states that the last
letter is b, and all other letters are a’s.

ϕ = ∃x (last(x) ∧ Qb(x)) ∧ ∀x (¬last(x)→ Qa(x))

We first bring ϕ into the equivalent form

ψ = ∃x (last(x) ∧ Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x))

We transform ψ into an NFA. First, we compute an automaton for last(x) = ¬∃y x < y. Recall
that the automaton for x < y is

a01

b01



a00

b00


a00

 ,
b00


a00


b00

 a10

b10

 [x < y]

Applying the projection operation, we get following automaton for ∃y x < y

[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[∃y x < y]

Recall that computing the automaton for the negation of a formula requires more than complement-
ing the automaton. First,we need an automaton recognizing Enc(∃y x < y).

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]

Second, we determinize and complement the automaton for ∃y x < y:

[
a
0

]
,

[
b
0

]

Σ × {0, 1}

[
a
1

]
,

[
b
1

] Σ × {0, 1}

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 205

And finally, we compute the intersection of the last two automata, getting

[
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

]
[
a
0

]
,

[
b
0

]

whose last state is useless and can be removed, yielding the following NFA for last(x):

[
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

]
[last(x)]

Next we compute an automaton for ∃x (last(x) ∧ Qb(x)) , the first conjunct of ψ. We start with an
NFA for Qb(x)

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[Qb(x)]

The automaton for ∃x (last(x) ∧ Qb(x)) is the result of intersecting this automaton with the NFA
for last(x) and projecting onto the first component. We get

a, b

b
[∃x (last(x) ∧ Qb(x))]

Now we compute an automaton for ¬∃x (¬last(x) ∧ ¬Qa(x)), the second conjunct of ψ. We first
obtain an automaton for ¬Qa(x) by intersecting the complement of the automaton for Qa(x) and
the automaton for Enc(Qa(x). The automaton for Qa(x) is

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[Qa(x)]

206 CHAPTER 9. AUTOMATA AND LOGIC

and after determinization and complementation we get

[
a
1

]

[
b
1

] [
a
1

] [
b
1

]

Σ × {0, 1}

[
a
0

] [
b
0

][
a
0

] [
b
0

]

For the automaton recognizing Enc(Qa(x)), notice that Enc(Qa(x)) = Enc(∃y x < y), because both
formulas have the same free variables, and so the same interpretations. But we have already com-
puted an automaton for Enc(∃y x < y), namely

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]

The intersection of the last two automata yields a three-state automaton for ¬Qa(x), but after elim-
inating a useless state we get

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[¬Qa(x)]

Notice that this is the same automaton we obtained for Qb(x), which is fine, because over the
alphabet {a, b} the formulas Qb(x) and ¬Qa(x) are equivalent.

To compute an automaton for ¬last(x) we just observe that ¬last(x) is equivalent to ∃y x < y,
for which we have already compute an NFA, namely

[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[¬last(x)]

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 207

Intersecting the automata for ¬last(x) and ¬Qa(x), and subsequently projecting onto the first com-
ponent, we get an automaton for ∃x (¬last(x) ∧ ¬Qa(x))

a, b

b

a, b a, b

a, b
[∃x (¬last(x) ∧ ¬Qa(x))]

Determinizing, complementing, and removing a useless state yields the following NFA for¬∃x (¬last(x)∧
¬Qa(x)):

a

b
[¬∃x (¬last(x) ∧ ¬Qa(x))]

Summarizing, the automata for the two conjuncts of ψ are

a, b

b
and

a

b

whose intersection yields a 3-state automaton, which after removal of a useless state becomes

a

b
[∃x (last(x) ∧ Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x))]

ending the derivation.

Exercises

Exercise 101 Give formulations in plain English of the languages described by the following for-
mulas of FO({a, b}), and give a corresponding regular expression:

(a) ∃x first(x)

(b) ∀x first(x)

208 CHAPTER 9. AUTOMATA AND LOGIC

(c) ¬∃x∃y
(
x < y ∧ Qa(x) ∧ Qb(y)

)
∧ ∀x

(
Qb(x)→ ∃y x < y ∧ Qa(y)

)
∧ ∃x¬∃y x < y

Exercise 102 Let Σ = {a, b}.

(a) Give a formula ϕn(x, y) of FO(Σ), of size O(n), that holds iff y = x + 2n. (Notice that the
abbreviation y = x + k of page 9.1 has length O(k), and so it cannot be directly used.)

(b) Give a sentence of FO(Σ), of size O(n), for the language Ln = {ww | w ∈ Σ∗ and |w| = 2n}.

(c) Show that the minimal DFA accepting Ln has at least 22n
states.

(Hint: consider the residuals of Ln.)

Exercise 103 The nesting depth d(ϕ) of a formula ϕ of FO({a}) is defined inductively as follows:

• d(Qa(x)) = d(x < y) = 0;

• d(¬ϕ) = d(ϕ), d(ϕ1 ∨ ϕ2) = max{d(ϕ1), d(ϕ2)}; and

• d(∃x ϕ) = 1 + d(ϕ).

Prove that every formula ϕ of FO({a}) of nesting depth n is equivalent to a formula f of QF having
the same free variables as ϕ, and such that every constant k appearing in f satisfies k ≤ 2n.

Hint: Modify suitably the proof of Theorem 9.8.

Exercise 104 Let Σ be a finite alphabet. A language L ⊆ Σ∗ is star-free if it can be expressed by a
star-free regular expression, i.e. a regular expression where the Kleene star operation is forbidden,
but complementation is allowed. For example, Σ∗ is star-free since Σ∗ = ∅, but (aa)∗ is not.

(a) Give star-free regular expressions and FO(Σ) sentences for the following star-free languages:

(i) Σ+.

(ii) Σ∗AΣ∗ for some A ⊆ Σ.

(iii) A∗ for some A ⊆ Σ.

(iv) (ab)∗.

(v) {w ∈ Σ∗ | w does not contain aa }.

(b) Show that finite and cofinite languages are star-free.

(c) Show that for every sentence ϕ ∈ FO(Σ), there exists a formula ϕ+(x, y), with two free
variables x and y, such that for every w ∈ Σ+ and for every 1 ≤ i ≤ j ≤ w,

w |= ϕ+(i, j) iff wiwi+1 · · ·w j |= ϕ .

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 209

(d) Give a polynomial time algorithm that decides whether the empty word satisfies a given
sentence of FO(Σ).

(e) Show that every star-free language can be expressed by an FO(Σ) sentence. (Hint: use (c).)

Exercise 105 Give a MSO-formula Odd card(X) expressing that the cardinality of the set of posi-
tions X is odd. Hint: Follow the pattern of the formula Even(X).

Exercise 106 Given a formula ϕ of MSO(Σ) and a second order variable X not occurring in ϕ,
show how to construct a formula ϕX with X as free variable expressing “the projection of the word
onto the positions of X satisfies ϕ”. Formally, ϕX must satisfy the following property: for every
interpretation I of ϕX , we have (w, I) |= ϕX iff (w|I(X), I) |= ϕ, where w|I(X) denotes the result of
deleting from w the letters at all positions that do not belong to I(X).

Exercise 107 (1) Given two sentences ϕ1 and ϕ2 of MSO(Σ), construct a sentence Conc(ϕ1, ϕ2)
satisfying L(Conc(ϕ1, ϕ2)) = L(ϕ1) · L(ϕ2).

(2) Given a sentence ϕ of MSO(Σ), construct a sentence Star(ϕ) satisfying L(Star(ϕ)) = L(ϕ)∗.

(3) Give an algorithm RegtoMSO that accepts a regular expression r as input and directly con-
structs a sentence ϕ of MSO(Σ) such that L(ϕ) = L(r), without first constructing an automa-
ton for the formula.

Hint: Use the solution to Exercise 106.

Exercise 108 Consider the logic PureMSO(Σ) with syntax

ϕ := X ⊆ Qa | X < Y | X ⊆ Y | ¬ϕ | ϕ ∨ ϕ | ∃X ϕ

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation
of PureMSO(Σ) is given by:

(w, I) |= X ⊆ Qa iff w[p] = a for every p ∈ I(X)
(w, I) |= X < Y iff p < p′ for every p ∈ I(X), p′ ∈ I(Y)
(w, I) |= X ⊆ Y iff p < p′ for every p ∈ I(X), p′ ∈ I(Y)

with the rest as for MSO(Σ).
Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sentences. That is,

show that for every sentence φ of MSO(Σ) there is an equivalent sentence ψ of PureMSO(Σ), and
vice versa.

Exercise 109 Recall the syntax of MSO(Σ):

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

210 CHAPTER 9. AUTOMATA AND LOGIC

We have introduced y = x + 1 (“y is the successor position of x”) as an abbreviation

y = x + 1 := x < y ∧ ¬∃z (x < z ∧ z < y)

Consider now the variant MSO′(Σ) in which, instead of an abbreviation, y = x + 1 is part of the
syntax and replaces x < y. In other words, the syntax of MSO′(Σ) is

ϕ := Qa(x) | y = x + 1 | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

Prove that MSO′(Σ) has the same expressive power as MSO(Σ) by finding a formula of SO′(Σ)
with the same meaning as x < y.

Exercise 110 Give a defining formula of MSO({a, b}) for the following languages:

(a) aa∗b∗.

(b) The set of words with an odd number of occurrences of a.

(c) The set of words such that every two b with no other b in between are separated by a block
of a of odd length.

Exercise 111 1. Give a formula Block between of MSO(Σ) such that Block between(X, i, j)
holds whenever X = {i, i + 1, . . . , j}.

2. Let 0 ≤ m < n. Give a formula Modm,n of MSO(Σ) such that Modm,n(i, j) holds whenever
|wiwi+1 · · ·w j| ≡ m (mod n), i.e. whenever j − i + 1 ≡ m (mod n).

3. Let 0 ≤ m < n. Give a sentence of MSO(Σ) for am(an)∗.

4. Give a sentence of MSO({a, b}) for the language of words such that every two b’s with no
other b in between are separated by a block of a’s of odd length.

Exercise 112 Consider a formula φ(X) of MSO(Σ) that does not contain any occurrence of the
Qa(x). Given any two interpretations that assign to X the same set of positions, we have that either
both interpretations satisfy φ(X), or none of them does. So we can speak of the sets of natural
numbers (positions) satisfying φ(X). In this sense, φ(X) expresses a property of the finite sets of
natural numbers, which a particular set may satisfy or not.

This observation can be used to automatically prove some (very) simple properties of the natu-
ral numbers. Consider for instance the following “conjecture”: every finite set of natural numbers
has a minimal element2. The conjecture holds iff the formula

Has min(X) := ∃x ∈ X ∀y ∈ X x ≤ y

is satisfied by every interpretation in which X is nonempty. Construct an automaton for Has min(X),
and check that it recognizes all nonempty sets.

2Of course, this also holds for every infinite set, but we cannot prove it using MSO over finite words.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 211

Exercise 113 The encoding of a set is a string, that can be seen as the encoding of a number. We
can use this observation to express addition in monadic second-order logic. More precisely, find a
formula Sum(X,Y,Z) that is true iff nX + nY = nZ , where x, y, z are the numbers encoded by the sets
X,Y,Z, respectively, using the LSBF-encoding. For instance, the words

X
Y
Z

01
1


11
0


00
1

 and
X
Y
Z

11
0


11
1


11
1


11
1


10
0


00
1


00
0


00
0


should satisfy the formula: the first encodes 2 + 3 = 5, and the second encodes 31 + 15 = 46.

212 CHAPTER 9. AUTOMATA AND LOGIC

Chapter 10

Applications III: Presburger Arithmetic

Presburger arithmetic is a logical language for expressing properties of numbers by means of ad-
dition and comparison. A typical example of such a property is “x + 2y > 2z and 2x − 3z = 4y”.
The property is satisfied by some triples (nx, ny, nz) of natural numbers, like (4, 2, 0) and (8, 1, 4),
but not by others, like (6, 0, 4) or (2, 2, 4). Valuations satisfying the property are called solutions
or models. We show how to construct for a given formula ϕ of Presburger arithmetic an NFA Aϕ
recognizing the solutions of ϕ. In Section 10.1 we introduce the syntax and semantics of Presburger
arithemetic. Section 10.2 constructs a NFA recognizing all solutions over the natural numbers, and
Section 10.3 a NFA recognizing all solutions over the integers.

10.1 Syntax and Semantics

Formulas of Presburger arithmetic are constructed out of an infinite set of variables V = {x, y, z, . . .}
and the constants 0 and 1. The syntax of formulas is defined in three steps. First, the set of terms is
inductively defined as follows:

• the symbols 0 and 1 are terms;

• every variable is a term;

• if t and u are terms, then t + u is a term.

An atomic formula is an expression t ≤ u, where t and u are terms. The set of Presburger formulas
is inductively defined as follows:

• every atomic formula is a formula;

• if ϕ1, ϕ2 are formulas, then so are ¬ϕ1, ϕ1 ∨ ϕ2, and ∃x ϕ1.

213

214 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

As usual, variables within the scope of an existential quantifier are bounded, and otherwise free.
Besides standard abbreviations like ∀, ∧,→, we also introduce:

n := 1 + 1 + . . . + 1︸ ︷︷ ︸
n times

nx := x + x + . . . + x︸ ︷︷ ︸
n times

t ≥ t′ := t′ ≤ t
t = t′ := t ≤ t′ ∧ t ≥ t′

t < t′ := t ≤ t′ ∧ ¬(t = t′)
t > t′ := t′ < t

An interpretation is a function I : V → IN . An interpretation I is extended to terms in the
natural way: I(0) = 0, I(1) = 1, and I(t + u) = I(t) + I(u). The satisfaction relation I |= ϕ for
an interpretation I and a formula ϕ is inductively defined as follows, where I[n/x] denotes the
interpretation that assigns the number n to the variable x, and the same numbers as I to all other
variables:

I |= t ≤ u iff I(t) ≤ I(u)
I |= ¬ϕ1 iff I 6|= ϕ1
I |= ϕ1 ∨ ϕ2 iff I |= ϕ1 or I |= ϕ2
I |= ∃xϕ iff there exists n ≥ 0 such that I[n/x] |= ϕ

It is easy to see that whether I satisfies ϕ or not depends only on the values I assigns to the free
variables of ϕ (i.e., if two interpretations assign the the same values to the free variables , then
either both satisfy the formula, or none does). The solutions of ϕ are the projection onto the free
variables of ϕ of the interpretations that satisfy ϕ. if we fix a total order on the set V of variables
and a formula ϕ has k free variables, then its set of solutions can be represented as a subset of INk,
or as relation of arity k over the universe IN. We call this subset the solution space of ϕ, and denote
it by Sol(ϕ).

Example 10.1 The solution space of the formula x−2 ≥ 0 is the set {2, 3, 4, . . .}. The free variables
of the formula ∃x (2x = y ∧ 2y = z) are y and z. The solutions of the formula are the pairs
{(2n, 4n) | n ≥ 0}, where we assume that the first and second components correspond to the values
of y and z, respectively.

Automata encoding natural numbers. We use transducers to represent, compute and manipu-
late solution spaces of formulas. As in Section 6.1 of Chapter 6, we encode natural numbers as
strings over {0, 1} using the least-significant-bit-first encoding LSBF. If a formula has free variables
x1, . . . , xk, then its solutions are encoded as words over {0, 1}k. For instance, the word

x1
x2
x3

10
0


01
0


10
0


01
0


encodes the solution (3, 10, 0). The language of a formula φ is defined as

L (ϕ) =
⋃

s∈Sol(ϕ)

LSBF(s)

10.2. AN NFA FOR THE SOLUTIONS OVER THE NATURALS. 215

where LSBF(s) denotes the set of all encodings of the tuple s of natural numbers. In other words,
L (ϕ) is the encoding of the relation Sol(ϕ).

10.2 An NFA for the Solutions over the Naturals.

Given a Presburger formula ϕ, we construct a transducer Aϕ such that L
(
Aϕ

)
= L (ϕ). Recall that

Sol(ϕ) is a relation over IN whose arity is given by the number of free variables of φ. The last
section of Chapter 6 implements operations relations of arbitrary arity. These operations can be
used to compute the solution space of the negation of a formula, the disjunction of two formulas,
and the existential quantification of two formulas:

• The solution space of the negation of a formula with k free variables is the complement of its
solution space with respect to the universe Uk. In general, when computing the complement
of a relation we have to worry about ensuring that the NFAs we obtain only accept words that
encode some tuple of elements (i.e., some clean-up maybe necessary to ensure that automata
do not accept words encoding nothing). For Presburger arithmetic this is not necessary,
because in the LSBF encoding every word encodes some tuple of numbers.

• The solution space of a disjunction ϕ1 ∨ ϕ2 where ϕ1 and ϕ2 have the same free variables is
clearly the union of their solution spaces, and can be computed as Union(Sol(ϕ1), Sol(ϕ2)).
If ϕ1 and ϕ2 have different sets V1 and V2 of free variables, then some preprocessing is neces-
sary. Define SolV1∪V2(ϕi) as the set of valuations of V1∪V2 whose projection onto V1 belongs
to Sol(ϕi). Transducers recognizing SolV1∪V2(ϕi) for i = 1, 2 are easy to compute from trans-
ducers recognizing Sol(ϕi), and the solution space is Union(SolV1∪V2(ϕ1), SolV1∪V2(ϕ2)).

• The solution space of a formula ∃x ϕ, where x is a free variable of ϕ, is Projection I(Sol(ϕ)),
where I contains the indices of all variables with the exception of the index of x.

It only remains to construct automata recognizing the solution space of atomic formulas. Consider
an expression of the form

ϕ = a1x1 + . . . + anxn ≤ b

where a1, . . . , an, b ∈ Z (not N!). Since we allow negative integers as coefficients, for every
atomic formula there is an equivalent expression in this form (i.e., an expression with the same
solution space). For example, x ≥ y + 4 is equivalent to −x + y ≤ −4. Letting a = (a1, . . . , an),
x = (x1, . . . , xn), and denoting the scalar product of a and x by a · x we write ϕ = a · x ≤ b.

We construct a DFA for Sol(ϕ). The states of the DFA are integers. We choose transitions and
final states of the DFA so that the following property holds:

State q ∈ Z recognizes the encodings of the tuples c ∈ INn such that a · c ≤ q. (10.1)

Given a state q ∈ Z and a letter ζ ∈ {0, 1}n, let us determine the target state q′ of the transition

q
ζ
−−→ q′ of the DFA, where ζ ∈ {0, 1}n. A word w′ ∈ ({0, 1}n)∗ is accepted from q′ iff the word ζw′

216 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

is accepted from q. Since we use the lsbf encoding, the tuple of natural numbers encoded by ζw′

is 2c′ + ζ, where c′ ∈ INn is the tuple encoded by w′. So c′ ∈ INn is accepted from q′ iff 2c′ + ζ is
accepted from q. Therefore, in order to satisfy property 10.1 we must choose q′ so that a · c ≤ q iff
a · (2c + ζ) ≤ q′. A little arithmetic yields

q′ =

⌊
1
2

(q − a · ζ)
⌋

and so we define the transition function of the DFA by

δ(q, ζ) =
1
2

(q − a · ζ) .

For the final states we observe that a state is final iff it accepts the empty word iff it accepts the
tuple (0, . . . , 0) ∈ INn. So in order to satisfy property 10.1 we must make state q final iff q ≥ 0. As
initial state we choose b. This leads to the algorithm AFtoDFA(ϕ) of Table 10.1, where for clarity
the state corresponding to an integer k ∈ Z is denoted by sk.

AFtoDFA(ϕ)
Input: Atomic formula ϕ = a · x ≤ b
Output: DFA Aϕ = (Q,Σ, δ, q0, F) such that L

(
Aϕ

)
= L (ϕ)

1 Q, δ, F ← ∅; q0 ← sb

2 W ← {sb}

3 while W , ∅ do
4 pick sk from W
5 add sk to Q
6 if k ≥ 0 then add sk to F
7 for all ζ ∈ {0, 1}n do

8 j←
⌊
1
2

(k − a · ζ)
⌋

9 if s j < Q then add s j to W
10 add (sk, ζ, s j) to δ

Table 10.1: Converting an atomic formula into a DFA recognizing the lsbf encoding of its solutions.

Example 10.2 Consider the atomic formula 2x − y ≤ 2. The DFA obtained by applying AFtoDFA
to it is shown in Figure 10.1. The initial state is 2. Transitions leaving state 2 are given by

δ(2, ζ) =

⌊
1
2

(2 − (2,−1) · (ζx, ζy))
⌋

=

⌊
1
2

(2 − 2ζx + ζy)
⌋

and so we have 2
[0,0]
−−−−→ 1, 2

[0,1]
−−−−→ 1, 2

[1,0]
−−−−→ 0 and 2

[1,1]
−−−−→ 0. States 2, 1 , and 0 are final. The DFA

10.2. AN NFA FOR THE SOLUTIONS OVER THE NATURALS. 217

[
1
0

]
,

[
1
1

]

[
1
0

] [
1
1

]

[
0
1

]
[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
1
0

]

[
0
0

] [
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]

−2

0

−1
[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

]
1

[
0
1

]
2

Figure 10.1: DFA for the formula 2x − y ≤ 2.

accepts, for example, the word [
0
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
which encodes x = 12 and y = 50 and, indeed 24 − 50 ≤ 2. If we remove the last letter then the
word encodes x = 12 and y = 18, and is not accepted, which indeed corresponds to 24 − 18 � 2.

Consider now the formula x + y ≥ 4. We rewrite it as −x − y ≤ −4, and apply the algorithm.
The resulting DFA is shown in Figure 10.2. The initial state is −4. Transitions leaving −4 are given
by

δ(−4, ζ) =

⌊
1
2

(−4 − (−1,−1) · (ζx, ζy))
⌋

=

⌊
1
2

(−4 + ζx + ζy)
⌋

and so we have −4
[0,0]
−−−−→−2, −4

[0,1]
−−−−→−2, −4

[1,0]
−−−−→−2 and −4

[1,1]
−−−−→−1. Notice that the DFA is

not minimal, since sttaes 0 and 1 can be merged.

Partial correctness of AFtoDFA is easily proved by showing that for every q ∈ Z and every word
w ∈ ({0, 1}n)∗, the state q accepts w iff w encodes c ∈ INn satisfying a · c ≤ q. The proof proceeds
by induction of |w|. For |w| = 0 the result follows immediately from the definition of the final
states, and for |w| > 0 from the fact that δ satisfies property 10.1 and from the induction hypothesis.
Details are left to the reader. Termination of AFtoDFA also requires a proof: in principle the
algorithm could keep generating new states forever. We show that this is not the case.

Lemma 10.3 Let ϕ = a · x ≤ b and let s =
∑k

i=1 |ai|. All states s j added to the workset during the
execution of AFtoDFA(ϕ) satisfy

− |b| − s ≤ j ≤ |b| + s.

218 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

−4

−1

−2
[
0
0

]
,

[
0
1

]
,

[
1
0

]

1

[
1
1

] [
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

]
,

[
1
0

]
[
0
1

]
,

[
1
0

]
,

[
1
1

][
1
1

]

[
0
0

]
,

[
0
1

]
,

[
1
0

]

[
0
0

]

[
0
0

]0

[
1
1

]

Figure 10.2: DFA for the formula x + y ≥ 4.

Proof: The property holds for sb, the first state added to the workset. We show that, at any point
in time, if all the states added to the workset so far satisfy the property, then so does the next
one. Let s j be this next state. Then there exists a state sk in the workset and ζ ∈ {0, 1}n such that
j = b 1

2 (k − a · ζ)c. Since by assumption sk satisfies the property we have

− |b| − s ≤ k ≤ |b| + s

and so ⌊
− |b| − s − a · ζ

2

⌋
≤ j ≤

⌊
|b| + s − a · ζ

2

⌋
(10.2)

Now we manipulate the right and left ends of (10.2). A little arithmetic yields

− |b| − s ≤
− |b| − 2s

2
≤

⌊
− |b| − s − a · ζ

2

⌋
⌊
|b| + s − a · ζ

2

⌋
≤

|b| + 2s
2

≤ |b| + s

which together with (10.2) leads to

− |b| − s ≤ j ≤ |b| + s

and we are done.

Example 10.4 We compute all natural solutions of the system of linear inequations

2x − y ≤ 2
x + y ≥ 4

10.2. AN NFA FOR THE SOLUTIONS OVER THE NATURALS. 219

such that both x and y are multiples of 4. This corresponds to computing a DFA for the Presburger
formula

∃z x = 4z ∧ ∃w y = 4w ∧ 2x − y ≤ 2 ∧ x + y ≥ 4

The minimal DFA for the first two conjuncts can be computed using projections and intersections,
but the result is also easy to guess: it is the DFA of Figure 10.3 (where a trap state has been
omitted).

q2q1q0

[
0
0

] [
0
0

] [
0
0

] [
0
1

] [
1
0

] [
1
1

]

Figure 10.3: DFA for the formula ∃z x = 4z ∧ ∃w y = 4w.

The solutions are then represented by the intersection of the DFAs shown in Figures 10.1, 10.2
(after merging states 0 and 1), and 10.3. The result is shown in Figure 10.4. (Some states from
which no final state can be reached are omitted.)

2,−4, q0 1,−2, q1 0,−1, q2

0, 0, q2

−1, 0, q2 −2, 0, q2

[
0
1

]

[
1
0

]
,

[
1
1

] [
0
0

]
,

[
0
1

]
[
1
0

]
,

[
1
1

][
0
0

]
,

[
1
1

]

[
1
0

][
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
0
0

] [
0
0

]
[
0
0

]

Figure 10.4: Intersection of the DFAs of Figures 10.1, 10.2, and 10.3. States from which no final
state is reachable have been omitted.

10.2.1 Equations

A slight modification of AFtoDFA directly constructs a DFA for the solutions of a · x = b, without
having to intersect DFAs for a · x ≤ b and −a · x ≤ −b. The states of the DFA are a trap state qt

220 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

accepting the empty language, plus integers satisfying:

State q ∈ Z recognizes the encodings of the tuples c ∈ INn such that a · c = q. (10.3)

For the trap state qt we take δ(qt, ζ) = qt for every ζ ∈ {0, 1}n. For a state q ∈ Z and a letter

ζ ∈ {0, 1}n we determine the target state q′ of transition q
ζ
−−→ q′. Given a tuple c′ ∈ INn, property

10.3 requires c′ ∈ L (q′) iff a · c′ = q′. As in the case of inequations, we have

c′ ∈ L (q′)
iff 2c′ + cζ ∈ L (q)
iff a · (2c′ + ζ) = q (property 10.3 for q)
iff a · c′ = 1

2 (q − a · ζ)

If q− a · ζ is odd, then, since a · c′ is an integer, the equation a · c′ = 1
2 (q− a · ζ) has no solution. So

in order to satisfy property 10.3 we must choose q′ satisfying L (q′) = ∅, and so we take q′ = qt.
If q − a · ζ is even then we must choose q′ satisfying a · c′ = q′ , and so we take q′ = 1

2 (q − a · ζ).
Therefore, the transition function of the DFA is given by:

δ(q, ζ) =

{
qt if q = qt or q − a · ζ is odd

1
2 (q − a · ζ) if q − a · ζ is even

For the final states, recall that a state is final iff it accepts the tuple (0, . . . , 0). So qt is nonfinal and,
by property 10.3, q ∈ Z is final iff a · (0 . . . , 0) = q. So the only final state is q = 0. The resulting
algorithm is shown in Table 10.2. The algorithm does not construct the trap state.

Example 10.5 Consider the formulas x + y ≤ 4 and x + y = 4. The result of applying AFtoDFA to
x + y ≤ 4 is shown at the top of Figure 10.5. Notice the similarities and differences with the DFA
for x + y ≥ 4 in Figure 10.2. The bottom part of the Figure shows the result of applying EqtoDFA
to x + y = 4. Observe that the transitions are a subset of the transitions of the DFA for x + y ≤ 4.
This example shows that the DFA is not necessarily minimal, since state −1 can be deleted.

Partial correctness and termination of EqtoDFA are easily proved following similar steps to the
case of inequations.

10.3 An NFA for the Solutions over the Integers.

We construct an NFA recognizing the encodings of the integer solutions (positive or negative) of a
formula. In order to deal with negative numbers we use 2-complements. A 2-complement encoding
of an integer x ∈ Z is any word a0a1 . . . an, where n ≥ 1, satisfying

x =

n−1∑
i=0

ai · 2i − an · 2n (10.4)

10.3. AN NFA FOR THE SOLUTIONS OVER THE INTEGERS. 221

EqtoDFA(ϕ)
Input: Equation ϕ = a · x = b
Output: DFA A = (Q,Σ, δ, q0, F) such that L (A) = L (ϕ)

(without trap state)

1 Q, δ, F ← ∅; q0 ← sb

2 W ← {sb}

3 while W , ∅ do
4 pick sk from W
5 add sk to Q
6 if k = 0 then add sk to F
7 for all ζ ∈ {0, 1}n do
8 if (k − a · ζ) is even then

9 j←
1
2

(k − a · ζ)

10 if s j < Q then add s j to W
11 add (sk, ζ, s j) to δ

Table 10.2: Converting an equation into a DFA recognizing the lsbf encodings of its solutions.

We call an the sign bit. For example, 110 encodes 1 + 2−0 = 3, and 111 encodes 1 + 2−4 = −1. If
the word has length 1 then its only bit is the sign bit; in particular, the word 0 encodes the number
0, and the word 1 encodes the number −1. The empty word encodes no number. Observe that all
of 110, 1100, 11000, . . . encode 3, and all of 1, 11, 111, . . . encode −1. In general, it is easy to see
that all words of the regular expression a0 . . . an−1ana∗n encode the same number: for an = 0 this is
obvious, and for an = 1 both a0 . . . an−11 and a0 . . . an−111m encode the same number because

−2m+n + 2m−1+n + . . . + 2n+1 = 2n .

This property allows us to encode tuples of numbers using padding. Instead of padding with 0, we
pad with the sign bit.

Example 10.6 The triple (12,−3,−14) is encoded by all the words of01
0


00
1


11
0


11
0


01
1



01
1



∗

For example, the triples (x, y, z) and (x′, y′z′) encoded by01
0


00
1


11
0


11
0


01
1

 and

01
0


00
1


11
0


11
0


01
1


01
1


01
1



222 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

4 0

1

2

−1

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
1
1

]

[
0
0

]
[
1
1

]
[
0
0

]
,

[
0
1

]
,

[
1
0

]

−2

[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
1

]
,

[
1
0

]
,

[
1
1

] [
0
0

]
,

[
0
1

]
,

[
1
0

]

[
0
0

][
0
1

]
,

[
1
0

]
,

[
1
1

][
0
0

]

4 0

1

2

[
0
1

]
,

[
1
0

]

[
1
1

][
0
0

]

[
1
1

]
[
0
0

]
−1

[
1
1

]
[
0
1

]
,

[
1
0

][
0
0

]

Figure 10.5: DFAs for the formulas x + y ≤ 4 and x + y = 4.

are given by

x = 0 + 0 + 4 + 8 + 0 = 12 x′ = 0 + 0 + 4 + 8 + 0 + 0 + 0 + 0 = 12
y = 1 + 0 + 4 + 8 − 16 = −3 y′ = 1 + 0 + 4 + 8 + 16 + 32 − 64 = −3
z = 0 + 2 + 0 + 0 − 16 = −14 z′ = 0 + 2 + 0 + 0 + 16 + 32 − 64 = −14

We construct a NFA (no longer a DFA!) recognizing the integer solutions of an atomic formula
a · x ≤ b. As usual we take integers for the states, and the NFA should satisfy:

State q ∈ Z recognizes the encodings of the tuples c ∈ Zn such that a · c ≤ q. (10.5)

However, integer states are no longer enough, because no state q ∈ Z can be final: in the 2-
complement encoding the empty word encodes no number, and so, since q cannot accept the empty
word by property 10.5, q must be nonfinal. But we need at least one final state, and so we add to
the NFA a unique final state q f without any outgoing transitions, accepting only the empty word.

Given a state q ∈ Z and a letter ζ ∈ {0, 1}n, we determine the targets q′ of the transitions q
ζ
−−→ q′

of the NFA, where ζ ∈ {0, 1}n. (As we will see, the NFA may have one or two such transitions.)

10.3. AN NFA FOR THE SOLUTIONS OVER THE INTEGERS. 223

A word w′ ∈ ({0, 1}n)∗ is accepted from some target state q′ iff ζw′ is accepted from q. In the
2-complement encoding there are two cases:

(1) If w′ , ε, then ζw′ encodes the tuple of integers 2c′ + ζ, where c′ ∈ Zn is the tuple encoded
by w′. (This follows easily from the definition of 2-complements.)

(2) If w′ = ε, then ζw′ encodes the tuple of integers −ζ, because in this case ζ is the sign bit.

In case (1), property 10.5 requires a target state q′ such that a · c ≤ q iff a · (2c + ζ) ≤ q′. So we take

q′ =

⌊
1
2

(q − a · ζ)
⌋

For case (2) property 10.5 only requires a target state q′ if a · (−ζ) ≤ q, and if so then it requires

q′ to be a final state. So if q + a · ζ ≥ 0 then we add q
ζ
−−→ q f to the set of transitions, and in this

case the automaton has two transitions leaving state q and labeled by ζ. Summarizing, we define
the transition function of the NFA by

δ(q, ζ) =


{ ⌊

1
2 (q − a · ζ)

⌋
, q f

}
if q + a · ζ ≥ 0{ ⌊

1
2 (q − a · ζ)

⌋ }
otherwise

Observe that the NFA contains all the states and transitions of the DFA for the natural solutions of
a · x ≤ b, plus possibly other transitions. All integer states are now nonfinal, the only final state is
q f .

Example 10.7 Figure 10.6 shows at the top the NFA recognizing all integer solutions of 2x−y ≤ 2.
It has all states and transitions of the DFA for the natural solutions, plus some more (compare with
Figure 10.1). The final state q f and the transitions leading to it are drawn in red. Consider for
instance state −1. In order to determine the letters ζ ∈ {0, 1}2 for which q f ∈ δ(−1, ζ), we compute
q + a · ζ = −1 + 2ζx − ζy for each (ζx, ζy) ∈ {0, 1}2, and compare the result to 0. We obtain that the
letters leading to q f are (1, 0) and (1, 1).

10.3.1 Equations

If order to construct an NFA for the integer solutions of an equation a · x = b we can proceed as
for inequations. The result is again an NFA containing all states and transitions of the DFA for
the natural solutions computed in Section 10.2.1, plus possible some more. The automaton has an

additional final state q f , and a transition q
ζ
−−→ q f iff q + a · ζ = 0. Graphically, we can also obtain

the NFA by starting with the NFA for a · x ≤ b, and removing all transitions q
ζ
−−→ q′ such that

q′ , 1
2 (q − a · ζ), and all transitions q

ζ
−−→ q f such that q + a · ζ , 0.

Example 10.8 The NFA for the integer solutions of 2x − y = 2 is shown in the middle of Figure
10.6. Its transitions are a subset of those of the NFA for 2x − y ≤ 2.

224 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

The NFA for the integer solutions of an equation has an interesting property. Since q + a · ζ = 0

holds iff 1
2 (q + a · ζ) = 1

2 (2q) = q, the NFA has a transition q
ζ
−−→ q f iff it also has a self-loop q

ζ
−−→ q.

(For instance, state 1 of the DFA in the middle of Figure 10.6 has a red transition labeled by (0, 1)
and a self-loop labeled by (0, 1).) Using this property it is not difficult to see that the powerset
construction does not cause a blowup in the number of states: it only adds one extra state for each
predecessor of the final state.

Example 10.9 The DFA obtained by applying the powerset construction to the NFA for 2x −
y = 2 is shown at the bottom of Figure 10.6 (the trap state has been omitted). Each of the three
predecessors of q f gets “duplicated”.

Moreover, the DFA obtained by means of the powerset construction is minimal. This can be
proved by showing that any two states recognize different languages. If exactly one of the states
is final, we are done. If both states are nonfinal, say, k and k′, then they recognize the solutions
of a · x = k and a · x = k′, and so their languages are not only distinct but even disjoint. If both
states are final, then they are the “duplicates” of two nonfinal states k and k′, and their languages
are those of k and k′, plus the empty word. So, again, their languages are distinct.

10.3.2 Algorithms

The algorithms for the construction of the NFAs are shown in Table 10.3. Additions to the previous
algorithms are shown in blue.

Exercises

Exercise 114 t r ≥ 0, n ≥ 1. Give a Presburger formula ϕ such that J � ϕ if, and only if, J(x) ≥ J(y)
and J(x)− J(y) ≡ r (mod n). Give an automaton that accepts the solutions of ϕ for r = 0 and n = 2.

Exercise 115 Construct a finite automaton for the Presburger formula ∃y x = 3y using the algo-
rithms of the chapter.

Exercise 116 AFtoDFA returns a DFA recognizing all solutions of a given linear inequation

a1x1 + a2x2 + . . . + akxk ≤ b with a1, a2, . . . , ak, b ∈ Z (∗)

encoded using the lsbf encoding of INk. We may also use the most-significant-bit-first (msbf) en-
coding, e.g.,

msbf
([

2
3

])
= L

([
0
0

]∗ [1
1

] [
0
1

])
1. Construct a finite automaton for the inequation 2x − y ≤ 2 w.r.t. msbf encoding.

10.3. AN NFA FOR THE SOLUTIONS OVER THE INTEGERS. 225

IneqZtoNFA(ϕ)
Input: Inequation ϕ = a · x ≤ b over Z
Output: NFA A = (Q,Σ, δ,Q0, F) such that

L (A) = L (ϕ)

1 Q, δ, F ← ∅; Q0 ← {sb}

2 W ← {sb}

3 while W , ∅ do
4 pick sk from W
5 add sk to Q
6 for all ζ ∈ {0, 1}n do

7 j←
⌊
1
2

(k − a · ζ)
⌋

8 if s j < Q then add s j to W
9 add (sk, ζ, s j) to δ

10 j′ ← k + a · ζ
11 if j′ ≥ 0 then
12 add q f to Q and F
13 add (sk, ζ, q f) to δ

EqZtoNFA(ϕ)
Input: Equation ϕ = a · x = b over Z
Output: NFA A = (Q,Σ, δ,Q0, F) such that

L (A) = L (ϕ)

1 Q, δ, F ← ∅; Q0 ← {sb}

2 W ← {sb}

3 while W , ∅ do
4 pick sk from W
5 add sk to Q
6 for all ζ ∈ {0, 1}n do
7 if (k − a · ζ) is even then
8 if (k + a · ζ) = 0 then add k to F

9 j←
1
2

(k − a · ζ)

10 if s j < Q then add s j to W
11 add (sk, ζ, s j) to δ
12 j′ ← k + a · ζ
13 if j′ ≥ 0 then
14 add q f to Q and F
15 add (sk, ζ, q f) to δ

Table 10.3: Converting an inequality into a NFA accepting the 2-complement encoding of the
solution space.

2. Adapt AFtoDFA to the msbf encoding.

Exercise 117 Consider the extension of FO(Σ) where addition of variables is allowed. Give a
sentence of this logic for palindromes over {a, b}, i.e. {w ∈ {a, b}∗ : w = wR}.

226 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

[
0
0

]
,

[
0
1

] [
1
0

]

−2

0

−1

[
0
0

]
,

[
1
1

]
1

2

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

] [
0
0

]
,

[
0
1

]
[
1
0

] [
1
0

]
,

[
1
1

]
[
1
0

]
,

[
1
1

]
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

[
1
0

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

]

[
0
1

]

[
0
1

]

[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

q f

[
0
0

]

0

−1

1

2
[
1
1

]

[
0
1

]

q f

[
1
1

]

[
1
0

]
[
0
0

]

[
0
1

]

[
1
0

]
[
0
1

]

[
0
0

]

[
1
1

]

[
0
0

]

0

1

2
[
1
1

]
[
1
0

]

[
0
1

]

−1

[
0
0

]

[
0
1

]

[
1
1

]

[
1
1

]
[
0
0

]

[
1
0

]
[
0
1

] [
1
1

]

[
1
0

] [
0
1

]

Figure 10.6: NFAs for the solutions of 2x− y ≤ 2 and 2x− y = 2 over Z, and minimal DFA for the
solutions of 2x − y = 2.

Part II

Automata on Infinite Words

227

Chapter 11

Classes of ω-Automata and Conversions

Automata on infinite words, also called ω-automata in this book, were introduced in the 1960s as
an auxiliary tool for proving the decidability of some problems in mathematical logic. As the name
indicates, they are automata whose input is a word of infinite length. The run of an automaton on
a word typically is not expected to terminate.

Even a deterministic ω-automaton makes little sense as a language acceptor that decides if a
word has a property or not: Not many people are willing to wait infinitely long to get an answer
to a question! However, ω-automata still make perfect sense as a data structure, that is, as a finite
representation of a (possibly infinite) set of infinite words.

There are objects that can only be represented as infinite words. The example that first comes
to mind are the real numbers. A second example, more relevant for applications, are program
executions. Programs may have nonterminating executions, either because of programming errors,
or because they are designed this way. Indeed, many programs whose purpose is to keep a system
running, like routines of an operating systems, network infrastructure, communication protocols,
etc., are designed to be in constant operation. Automata on infinite words can be used to finitely
represent the set of executions of a program, or an abstraction of it. They are an important tool for
the theory and practice of program verification.

In the second part of this book we develop the theory of ω-automata as a data structure for
languages of inifnite words. This first chapter introduces ω-regular expressions, a textual notation
for defining languages of infinite words, and then proceeds to present different classes of automata
on infinite words, most of them with the same expressive power as ω-regular expressions, and
conversion algorithms between them.

11.1 ω-languages and ω-regular expressions

Let Σ be an alphabet. An infinite word, also called an ω-word, is an infinite sequence a0a1a2 . . . of
letters of Σ. The concatenation of a finite word w1 = a1 . . . an and an ω-word w2 = b1b2 . . . is the
ω-word w1w2 = a1 . . . anb1b2 . . ., sometimes also denoted by w1 · w2. We denote by Σω the set of

229

230 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

all ω-words over Σ. A set L ⊆ Σω of ω-words is an infinitary language or ω-language over Σ.
The concatenation of a language L1 and an ω-language L2 is the ω-language L1 · L2 = {w1w2 ∈

Σω | w1 ∈ L1 and w2 ∈ L2}. The ω-iteration of a language L ⊆ Σ∗ is the ω-language Lω =

{w1w2w3 . . . | wi ∈ L \ {ε}}. Observe that {∅}ω = ∅, in contrast to the case of finite words, where
{∅}∗ = {ε}.

We extend regular expressions to ω-regular expressions, a formalism to define ω-languages.

Definition 11.1 The ω-regular expressions over an alphabet Σ are defined by the following gram-
mar, where r ∈ RE(Σ) is a regular expression

s ::= rω | rs1 | s1 + s2

Sometimes we write r · s1 instead of rs1. The set of all ω-regular expressions over Σ is denoted by
REω(Σ). The language Lω(s) ⊆ Σ of an ω-regular expression s ∈ REω(Σ) is defined inductively as

• Lω(rω) = (L (r))ω;

• Lω(rs1) = L (r) · Lω(s1); and

• Lω(s1 + s2) = Lω(s1) ∪ Lω(s2).

A language L is ω-regular if there is an ω-regular expression s such that L = Lω(s).

Observe that the empty ω-language is ω-regular because Lω(∅ω) = ∅. As for regular expres-
sions, we often identify an ω-regular expression s and its associated ω-language Lω(s).

Example 11.2 The ω-regular expression (a + b)ω denotes the language of all ω-words over a and
b; (a + b)∗bω denotes the language of all ω-words over {a, b} containing only finitely many as, and
(a∗ab + b∗ba)ω the language of all ω-words over {a, b} containing infinitely many as and infinitely
many bs; an even shorter expression for this latter language is ((a + b)∗ab)ω.

11.2 Büchi automata

Büchi automata have the same syntax as NFAs, but a different definition of acceptance. Suppose
that an NFA A = (Q,Σ, δ,Q0, F) is given as input an infinite word w = a0a1a2 . . . over Σ. Intuitively,
a run of A on w never terminates, and so we cannot define acceptance in terms of the state reached at
the end of the run. In fact, even the name “final state” is no longer appropriate for Büchi automata.
So from now on we speak of “accepting states”, although we still denote the set of accepting states
by F. We say that a run of a Büchi automaton is accepting if some accepting state is visited along
the run infinitely often. Since the set of accepting states is finite, “some accepting state is visited
infinitely often” is equivalent to “the set of accepting states is infinitely often”.

11.2. BÜCHI AUTOMATA 231

Definition 11.3 A nondeterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, δ,Q0, F), where
Q, Σ, δ, Q0, and F are defined as for NFAs. A run of A on an ω-word a0a1a2 . . . ∈ Σω is an infinite
sequence ρ = q0

a0
−−−→ q1

a1
−−−→ q2 . . ., such that qi ∈ Q for 0 ≤ i ≤ n, q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for

every 0 ≤ i.
Let inf(ρ) be the set {q ∈ Q | q = qi for infinitely many i’s}, i.e., the set of states that occur in

ρ infinitely often. A run ρ is accepting if inf(ρ) ∩ F , ∅. A NBA accepts an ω-word w ∈ Σω if it
has an accepting run on w. The language recognized by a NBA A is the set Lω(A) = {w ∈ Σω | w is
accepted by A}.

The condition inf(ρ) ∩ F , ∅ on runs is called the the Büchi condition F. In later sections we
introduce other kinds of accepting conditions.

A Büchi automaton is deterministic if it is deterministic when seen as an automaton on finite
words. NBAs with ε-transitions can also be defined, but we will not need them.1

Example 11.4 Figure 11.1 shows two Büchi automata. The automaton on the left is deterministic,
and recognizes all ω-words over the alphabet {a, b} that contain infinitely many as. So, for instance,
A accepts aω, baω, (ab)ω, or (ab100)ω, but not bω or a100bω. To prove that this is indeed the language
we show that every ω-word containing infinitely many as is accepted by A, and that every word
accepted by A contains infinitely many as. For the first part, observe that immediately after reading
any a the automaton A always visits its (only) accepting state (because all transitions labeled by a
lead to it); therefore, when A reads an ω-word containing infinitely many as it visits its accepting
state infinitely often, and so it accepts. For the second part, if w is accepted by A, then there is
a run of A on w that visits the accepting state infinitely often. Since all transitions leading to the
accepting state are labeled by a, the automaton must read infinitely many as during the run, and so
w contains infinitely many as.

b a

a

b

a, b b

b

Figure 11.1: Two Büchi automata

The automaton on the right of the figure is not deterministic, and recognizes all ω-words over the
alphabet {a, b} that contain finitely many occurrences of a. The proof is similar.

Example 11.5 Figure 11.2 shows three further Büchi automata over the alphabet {a, b, c}. The top-
left automaton recognizes theω-words in which for every occurrence of a there is a later occurrence

1Notice that the definition of NBA-ε requires some care, because infinite runs containing only finitely many non-ε
transitions are never accepting, even if they visit some accepting state infinitely often.

232 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

of b. So, for instance, the automaton accepts (ab)ω, cω, or (bc)ω, but not acω or ab(ac)ω. The top
right automaton recognizes the ω-words that contain finitely many occurrences of a, or infinitely
many occurrences of a and infinitely many occurrences of b. Finally, the automaton at the bottom
recognizes the ω-words in which between every occurrence of a and the next occurrence of c there
is at most one occurrence of b; more precisely, for every two numbers i < j, if the letter at position i
is an a and the first occurrence of c after i is at position j, then there is at most one number i < k < j
such that the letter at position k is a b.

c, a

a

b

b, c

b, c

b

b

a, c

a, b, c

b, c

a

a

b, c

b

a

c

c

Figure 11.2: Three further Büchi automata

11.2.1 From ω-regular expressions to NBAs and back

We present algorithms for converting an ω-regular expression into a NBA, and vice versa. This
provides a first “sanity check” for NBAs as data structure, by showing that NBAs can represent
exactly the ω-regular languages.

From ω-regular expressions to NBAs. We give a procedure that transforms an ω-regular ex-
pression into an equivalent NBA with exactly one initial state, which moreover has no incoming
transitions.

11.2. BÜCHI AUTOMATA 233

We proceed by induction on the structure of the ω-regular expression. Recall that for every
regular expression r we can construct an NFA Ar with a unique initial state, a unique final state,
no transition leading to the initial state, and no transition leaving the final state. An NBA for rω is
obtained by adding to Ar new transitions leading from the final state to the targets of the transitions
leaving the initial state, as shown at the top of Figure ??. An NBA for r · s is obtained by merging
states as shown in the middle of the figure. Finally, an NBA for s1 + s2 is obtained by merging the
initial states of the NBAs for s1 and s2 as shown at the bottom.

From NBAs to ω-regular expressions. Let A = (Q,Σ, δ,Q0, F) be a NBA. For every two states
q, q′ ∈ Q, let Aq′

q be the NFA (not the NBA!) obtained from A by changing the set of initial states
to {q} and the set of final states to {q′}. Using algorithm NFAtoRE we can construct a regular
expression denoting L

(
Aq′

q

)
. By slightly modifying Aq′

q we can also onstruct a regular expression

rq′
q denoting the words accepted by L

(
Aq′

q

)
by means of runs that visit q′ exactly once (how to

do this is left as a little exercise). We use these expressions to compute an ω-regular expression
denoting Lω(A).

For every accepting state q ∈ F, let Lq ⊆ Lω(A) be the set of ω-words w such that some run
of A on w visits the state q infinitely often. We have Lω(A) =

⋃
q∈F Lq. Every word w ∈ Lq can

be split into an infinite sequence w1w2w3 . . . of finite, nonempty words, where w1 is the word read
by A until it visits q for the first time, and for every i > 1 wi is the word read by the automaton
between the i-th and the (i+1)-th visits to q. It follows w1 ∈ L

(
rq

q0

)
, and wi ∈ L

(
rq

q

)
for every i > 1.

So we have Lq = Lω
(
rq

q0

(
rq

q

)ω)
, and therefore∑

q∈F

rq
q0

(
rq

q

)ω
is the ω-regular expression we are looking for.

Example 11.6 Consider the top right NBA of Figure 11.2. We have to compute r1
0

(
r1

1

)ω
+ r2

0

(
r2

2

)ω
.

Using NFAtoRE and simplifying we get

r1
0 = (a + b + c)∗(b + c)

r2
0 = (a + b + c)∗b

r1
1 = (b + c)

r2
2 = b + (a + c)(a + b + c)∗b

and (after some further simplifications) we obtain the ω-regular expression

(a + b + c)∗(b + c)ω + (a + b + c)∗b
(
b + (a + c)(a + b + c)∗b

)ω
.

234 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

. . .

an

a1

an

. . .

an

NBA for rω

{
a1 a1

NFA for r

NFA for r

NBA for s

· · · · · ·

· · · · · ·

{

NBA for r · s

· · · · · · · · · · · ·

· · ·

NBA for s1 + s2

· · ·· · ·

· · ·· · ·

NBA for s1

NBA for s2

· · ·

· · · · · ·

{

Figure 11.3: From ω-regular expressions to Büchi automata

11.3. GENERALIZED BÜCHI AUTOMATA 235

11.2.2 Non-equivalence of NBAs and DBAs

Unfortunately, DBAs do not recognize all ω-regular languages, and so they do not have the same
expressive power as NBAs. We show that the language of ω-words containing finitely many oc-
currences of a is not recognized by any DBA. Intuitively, the NBA for this language “guesses” the
last occurrence of a, and this guess cannot be determinized using only a finite number of states.

Proposition 11.7 The language L = (a+b)∗bω (i.e., the language of all ω-words in which a occurs
only finitely often) is not recognized by any DBA.

Proof: Assume that L = Lω(A) for a DBA A = ({a, b},Q, q0, δ, F), and define δ̂ : Q × {a, b}∗ → Q
by δ̂(q, ε) = q and δ̂(q,wa) = δ(δ̂(q,w), a). That is, δ̂(q,w) denotes the unique state reached by
reading w from state q. Consider the ω-word w0 = bω. Since w0 ∈ L, the run of A on w0 is
accepting, and so δ̂(q0, u0) ∈ F for some finite prefix u0 of w0. Consider now w1 = u0 a bω.
We have w1 ∈ L, and so teh run of A on w1 is accepting, which implies δ̂(q0, u0 a u1) ∈ F for
some finite prefix u0 a u1 of w1. In a similar fashion we continue constructing finite words ui

such that δ̂(q0, u0 a u1 a . . . a ui) ∈ F. Since Q is finite, there are indices 0 ≤ i < j such that
δ̂(q0, u0 a . . . ui) = δ̂(q0, u0 a . . . ui a . . . a u j). It follows that A has an accepting run on

u0 a . . . ui (a ui+1 . . . a u j)ω .

But a occurs infinitely often in this word, and so the word does not belong to L.

Note that L =
(
(a + b)∗a

)ω (the set of infinite words in which a occurs infinitely often) is accepted
by the DBA on the left of Figure 11.1.

11.3 Generalized Büchi automata

Generalized Büchi automata are an extension of Büchi automata convenient for implementing some
operations, like for instance intersection. A generalized Büchi automaton (NGA) differs from a
Büchi automaton in its accepting condition. Instead of a set F of accepting states, a NGA has a
collection of sets of accepting states F = {F0, . . . , Fm−1}. A run ρ is accepting if for every set
Fi ∈ F some state of Fi is visited by ρ infinitely often. Formally, ρ is accepting if inf(ρ) ∩ Fi , ∅

for every i ∈ {0, . . . ,m − 1}. Abusing language, we speak of the generalized Büchi condition F.
Ordinary Büchi automata correspond to the special case m = 1.

A NGA with n states and m sets of accepting states can be translated into an NBA with mn
states. The translation is based on the following observation: a run ρ visits each set of F infinitely
if and only if the following two conditions hold:

(1) ρ eventually visits F0; and

(2) for every i ∈ {0, . . . ,m − 1}, every visit of ρ to Fi is eventually followed by a later visit to
Fi⊕1, where ⊕ denotes addition modulo m. (Between the visits to Fi and Fi⊕1 there can be
arbitrarily many visits to other sets of F.)

236 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

This suggests to take for the NBA m “copies” of the NGA, but with a modification: the NBA
“jumps” from the i-th to the i ⊕ 1-th copy whenever it visits a state of Fi. More precisely, the
transitions of the i-th copy that leave a state of Fi are redirected from the i-th copy to the (i ⊕ 1)-th
copy. This way, visiting the accepting states of the first copy infinitely often is equivalent to visiting
the accepting states of each copy infinitely often.

More formally, the states of the NBA are pairs [q, i], where q is a state of the NGA and i ∈
{0, . . . ,m− 1}. Intuitively, [q, i] is the i-th copy of q. If q < Fi then the successors of [q, i] are states
of the i-th copy, and otherwise states of the (i ⊕ 1)-th copy.

The pseudocode for the conversion algorithm is as follows:

NGAtoNBA(A)
Input: NGA A = (Q,Σ,Q0, δ,F), where F = {F0, . . . , Fm−1}

Output: NBA A′ = (Q′,Σ, δ′,Q′0, F
′)

1 Q′, δ′, F′ ← ∅; Q′0 ← {[q0, 0] | q0 ∈ Q0}

2 W ← Q′0
3 while W , ∅ do
4 pick [q, i] from W
5 add [q, i] to Q′

6 if q ∈ F0 and i = 0 then add [q, i] to F′

7 for all a ∈ Σ, q′ ∈ δ(q, a) do
8 if q < Fi then
9 if [q′, i] < Q′ then add [q′, i] to W

10 add ([q, i], a, [q′, i]) to δ′

11 else /* q ∈ Fi */

12 if [q′, i ⊕ 1] < Q′ then add [q′, i ⊕ 1] to W
13 add ([q, i], a, [q′, i ⊕ 1]) to δ′

14 return (Q′,Σ, δ′,Q′0, F
′)

Example 11.8 Figure 11.4 shows a NGA over the alphabet {a, b} on the left, and the NBA obtained
by applying NGAtoNBA to it on the right. The NGA has two sets of accepting states, F0 = {q} and
F1 = {r}, and so its accepting runs are those that visit both q and r infinitely often . It is easy to
see that the automaton recognizes the ω-words containing infinitely many occurrences of a and
infinitely many occurrences of b.

The NBA on the right consists of two copies of the NGA: the 0-th copy (pink) and the 1-st copy
(blue). Transitions leaving [q, 0] are redirected to the blue copy, and transitions leaving [r, 1] are
redirected to the pink copy. The only accepting state is [q, 0].

11.4. OTHER CLASSES OF ω-AUTOMATA 237

b a

a

b

b

a

b

b

a

a

b aq r

r, 0

r, 1q, 1

q, 0

F = { {q}, {r} }

Figure 11.4: A NGA and its corresponding NBA

11.4 Other classes of ω-automata

Since not every NBA is equivalent to a DBA, there is no determinization procedure for Büchi
automata. This raises the question whether such a procedure exists for other classes of automata.
We shall see that the answer is yes, but the simplest determinizable classes have other problems,
and so this section can be seen as a quest for automata classes satisfying more and more properties.

11.4.1 Co-Büchi Automata

Like a Büchi automaton, a (nondeterministic) co-Büchi automaton (NCA) has a set F of accepting
states. However, a run ρ of a NCA is accepting if it only visits states of F finitely often. Formally,
ρ is accepting if inf(ρ) ∩ F = ∅. So a run of a NCA is accepting iff it is not accepting as run of a
NBA (this is the reason for the name “co-Büchi”).

a

b

a

q r

Figure 11.5: Running example for the determinization procedure

We show that co-Büchi automata can be determinized. We fix an NCA A = (Q,Σ, δ,Q0, F)
with n states, and, using Figure 11.5 as running example, construct an equivalent DCA B in three
steps:

1. We define a mapping dag that assigns to each w ∈ Σω a directed acyclic graph dag(w).

238 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

2. We prove that w is rejected by A iff dag(w) contains only finitely many breakpoints.

3. We construct a DCA B which accepts w if and only if dag(w) contains finitely many break-
points.

Intuitively, dag(w) is the result of “bundling together” all the runs of A on the word w. Figure
11.6 shows the initial parts of dag(abaω) and dag((ab)ω). Formally, for w = σ1σ2 . . . the directed

a a
q, 0 q, 1 q, 2 q, 3 q, 4

r, 1 r, 3

· · ·ba a b

a a a
q, 0 q, 1 q, 2 q, 3 q, 4

r, 1 r, 3 r, 4

· · ·ba a a

Figure 11.6: The (initial parts of) dag(abaω) and dag((ab)ω)

acyclic graph dag(w) has nodes in Q × IN and edges labelled by letters of Σ, and is inductively
defined as follows:

• dag(w) contains a node 〈q, 0〉 for every initial state q ∈ Q0.

• If dag(w) contains a node 〈q, i〉 and q′ ∈ δ(σi+1, q), then dag(w) also contains a node
〈q′, i + 1〉 and an edge 〈q, i〉

σi+1
−−−−→〈q′, i + 1〉.

• dag(w) contains no other nodes or edges.

Clearly, q0
σ1
−−−→ q1

σ2
−−−→ q2 · · · is a run of A if and only if 〈q0, 0〉

σ1
−−−→〈q1, 1〉

σ2
−−−→〈q2, 2〉 · · · is a path

of dag(w). Moreover, A accepts w if and only if no path of dag(w) visits accepting states infinitely
often. We partition the nodes of dag(w) into levels, with the i-th level containing all nodes of
dag(w) of the form 〈q, i〉.

One could be tempted to think that the accepting condition “some path of dag(w) only visits
accepting states finitely often” is equivalent to “only finitely many levels of dag(w) contain accept-
ing states”, but dag(abaω) shows this is false: Even though all paths of dag(abaω) visit accepting
states only finitely often, infinitely many levels (in fact, all all levels i ≥ 3) contain accepting states.
For this reason we introduce the set of breakpoint levels of the graph dag(w), inductively defined
as follows:

• The 0-th level of dag(w) is a breakpoint.

11.4. OTHER CLASSES OF ω-AUTOMATA 239

• If level l is a breakpoint, then the next level l′ > l such that every path between nodes of
l and l′ (excluding nodes of l and including nodes of l′) visits an accepting state is also a
breakpoint.

We claim that “some path of dag(w) only visits accepting states finitely often” is equivalent to
“the set of breakpoint levels of dag(w) is finite”. If the breakpoint set is infinite, then by König’s
Lemma dag(w) contains at least an infinite path, and moreover all infinite paths visit accepting
states infinitely often. If the breakpoint set is finite, let i be the largest breakpoint. If dag(w) is
finite, we are done. If dag(w) is infinite, then for every j > i there is a path π j from level i to level j
that does not visit any accepting state. The paths {π j} j>i build an acyclic graph of bounded degree.
By König’s lemma, this graph contains an infinite path π that never visits any accepting state, and
we are done.

If we were able to tell that a level is a breakpoint by just examining it, we would be done:
We would take the set of all possible levels as states of the DCA (i.e., the powerset of Q, as in
the powerset construction for determinization of NFAs), the possible transitions between levels
as transitions, and the breakpoints as accepting states. The run of this automaton on w would
be nothing but an encoding of dag(w), and it would be accepting iff it contains only finitely many
breakpoints, as required by the co-Büchi acceptance condition. However, the level does not contain
enough information for that. The solution is to add information to the states. We take for the states
of the DCA pairs [P,O], where O ⊆ P ⊆ Q, with the following intended meaning: P is the set of
states of a level, and q ∈ O iff q is the endpoint of some path, starting at the last breakpoint, that
has not yet visited any accepting state(meaning that no edge of the path leads to a final state). We
call O the set of owing states (states that “owe” a visit to the accepting states). To guarantee that O
indeed has this intended meaning, we define the DCA B = (Q̃,Σ, δ̃, q̃0, F̃) as follows:

• The initial state is the pair [{q0}, ∅].

• The transition relation is given by δ̃([P,O], a) = [P′,O′], where P′ = δ(P, a), and

– if O , ∅, then O′ = δ(O, a) \ F;

– if O = ∅, (i.e., if the current level is a breakpoint, and the automaton must start searching
for the next one) then O′ = δ(P, a) \ F; in other words, all non-final states of the next
level become owing.

• The accepting states are those at which a breakpoint is reached, i.e. [P,O] ∈ F̃ is accepting
iff O = ∅.

With this definition, a run is accepting iff it contains infinitely many breakpoints. The algorithm
for the construction is

240 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

NCAtoDCA(A)
Input: NCA A = (Q,Σ, δ,Q0, F)
Output: DCA B = (Q̃,Σ, δ̃, q̃0, F̃) with Lω(A) = B

1 Q̃, δ̃, F̃ ← ∅; if q0 ∈ F then q̃0 ← [{q0}, ∅] else q̃0 ← [{q0}, {q0}]
2 W ← { q̃0 }

3 while W , ∅ do
4 pick [P,O] from W; add [P,O] to Q̃
5 if P = ∅ then add [P,O] to F̃
6 for all a ∈ Σ do
7 P′ = δ(P, a)
8 if O , ∅ then O′ ← δ(O, a) \ F else O′ ← δ(P, a) \ F
9 add ([P,O], a, [P′,O′]) to δ̃

10 if [P′,O′] < Q̃ then add [P′,Q′] to W

Figure 11.7 shows the result of applying the algorithm to our running example. The NCA is
at the top, and the DCA below it on the left. On the right we show the DCA obtained by applying
the powerset construction to the NCA. It is almost the same automaton, but with the important
difference that the state (∅, ∅) is now accepting, and so the powerset construction does not yield
a correct result. For example, the DCA obtained by the powerset construction accepts the word
bω, which is not accepted by the original NCA, because it has no run on it. For the complexity,

a

b

a

q r

q

∅

b

a

b

a, b

{q, r}

a

{q}, ∅ {q, r}, {q}

a

a

b

∅, ∅

a, b

b

Figure 11.7: NCA of Figure 12.5 (top), DCA (lower left), and DFA (lower right)

11.4. OTHER CLASSES OF ω-AUTOMATA 241

observe that the number of states of the DCA is bounded by the number of pairs [P,O] such that
O ⊆ P ⊆ Q. For every state q ∈ Q there are three mutually exclusive possibilities: q ∈ O, q ∈ P\O,
and q ∈ Q \ P. So if A has n states then B has at most 3n states.

Unfortunately, co-Büchi automata do not recognize all ω-regular languages. In particular, we
claim that no NCA recognizes the language L of ω-words over {a, b} containing infinitely many
a’s. To see why, assume some NCA recognizes L. Then, since every NCA can be determinized,
some DCA A recognizes L. This automaton A, interpreted as a DBA instead of a DCA, recognizes
the complement of L: indeed, a word w is recognized by the DCA A iff the run of A on w visits
accepting states only finitely often iff w is not recognized by the DBA A. But the complement
of L is (a + b)∗bω, which by Proposition 11.7 is not accepted by any DBA. We have reached a
contradiction, which proves the claim. So we now ask whether there is a class of ω-automata that
(1) recognizes all ω-regular languages and (2) has a determinization procedure.

11.4.2 Muller automata

A (nondeterministic) Muller automaton (NMA) has a collection {F0, . . . , Fm−1} of sets of accepting
states. A run ρ is accepting if the set of states ρ visits infinitely often is equal to one of the Fi’s.
Formally, ρ is accepting if inf(ρ) = Fi for some i ∈ {0, . . . ,m−1}. We speak of the Muller condition
{F0, . . . , Fm−1}.

NMAs have the nice feature that any boolean combination of predicates of the form “state
q is visited infinitely often” can be formulated as a Muller condition. It suffices to put in the
collection all sets of states for which the predicate holds. For instance, the condition (q ∈ inf(ρ)) ∧
¬(q′ ∈ inf(ρ)) corresponds to the Muller condition containing all sets of states F such that q ∈ F
and q′ < F. In particular, the Büchi and generalized Büchi conditions are special cases of the
Muller condition (as well as the Rabin and Street conditions introduced in the next sections). The
obvious disadvantage is that the translation of a Büchi condition into a Muller condition involves
an exponential blow-up: a Büchi automaton with states Q = {q0, . . . , qn} and Büchi condition
{qn} is transformed into an NMA with the same states and transitions, but with a Muller condition
{F ⊆ Q | qn ∈ F}, a collection containing 2n sets of states.

Deterministic Muller automata recognize all ω-regular languages. The proof of this result is
complicated, and we omit it here.

Theorem 11.9 (Safra) A NBA with n states can be effectively transformed into a DMA with nO(n)

states.

In particular, the DMA of Figure 11.8 with Muller condition { {q1} } recognizes the language
L = (a + b)∗bω, which, as shown in Proposition 11.7, is not recognized by any DBA. Indeed, a run
ρ is accepting if inf(ρ) = {q1}, that is, if it visits state 1 infinitely often and state q0 finitely often.
So accepting runs initially move between states q0 and q1, but eventually jump to q1 and never visit
q0 again. These runs accept exactly the words containing finitely many occurrences of a.

We finally show that an NMA can be translated into a NBA, and so that Muller and Büchi au-
tomata have the same expressive power. Given a Muller automaton A = (Q,Σ,Q0, δ, {F0, . . . , Fm−1}),

242 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

q0 q1

b

a

a b

Figure 11.8: A Muller automaton for (a + b)∗bω.

it is easy to see that Lω(A) =
⋃m−1

i=0 Lω(Ai), where Ai = (Q,Σ,Q0, δ, {Fi}). So we proceed in three
steps: first, we convert the NMA Ai into a NGA A′i ; then we convert A′i into a NBA A′′i using
NGAtoNBA(); finally, we put the NBAs A0, . . . , Am−1 “side by side” (i.e., take the disjoint union of
their sets of states, initial states, final states, and transitions).

For the first step, we observe that, since an accepting run ρ of Ai satisfies inf(ρ) = Fi, from
some point on the run only visits states of Fi. In other words, ρ consists of an initial finite part, say
ρ0, that may visit all states, and an infinite part, say ρ1, that only visits states of Fi. The idea for
the construction for A′i is to take two copies of Ai. The first one is a “full” copy, while the second

one only contains copies of the states of Fi. For every transition [q, 0]
a
−−→[q′, 0] of the first copy

such that q′ ∈ Fi we add another transition [q, 0]
a
−−→[q′, 1] leading to the “twin brother” [q′, 1].

Intuitively, A′i simulates ρ by executing ρ0 in the first copy, and ρ1 in the second. The condition
that ρ1 must visit each state of Fi infinitely often is enforced as follows: if Fi = {q1, . . . , qk}, then
we take for Ai the generalized Büchi condition { {[q1, 1]}, . . . , {qk, 1]} }.

Example 11.10 Figure 11.9 shows on the left a NMA A = (Q,Σ, δ,Q0,F) where F = { {q}, {r} }.
While A is syntactically identical to the NGA of Figure 11.4, we now interpret F as a Muller
condition: a run ρ is accepting if inf(ρ) = {q} or inf(ρ) = {r}. In other words, an accepting run ρ
eventually moves to q and stays there forever, or eventually moves to r and stays there forever. It
follows that A accepts the ω-words that contain finitely many as or finitely many bs. On the right
part the figure shows the two NGAs A′0, A

′
1 defined above. Since in this particular case F′0 and F′1

only contain singleton sets, A′0 and A′1 are in fact NBAs, i.e., we have A′′0 = A′0 and A′′1 = A′1. The
final NBA is the result of putting A′0 and A′1 side by side.

Formally, the algorithm to convert a Muller automaton with only one accepting set into a NBA
looks as follows:

11.4. OTHER CLASSES OF ω-AUTOMATA 243

F = {F0, F1}

F0 = {q}

F1 = {r}

b a

b

q r

a

a

r, 0

q, 1

q, 0

b

b

a

a

r, 0

r, 1

q, 0

b

b

a

F′1 = { [r, 1] }F′0 = { [q, 1] }

A′0 A′1

b a

b a

A

Figure 11.9: A Muller automaton and its conversion into a NBA

NMA1toNGA(A)
Input: NMA A = (Q,Σ,Q0, δ, {F})
Output: NGA A = (Q′,Σ,Q′0, δ

′,F′)

1 Q′, δ′,F′ ← ∅
2 Q′0 ← {[q0, 0] | q0 ∈ Q0}

3 W ← Q′0
4 while W , ∅ do
5 pick [q, i] from W; add [q, i] to Q′

6 if q ∈ F and i = 1 then add {[q, 1] } to F′

7 for all a ∈ Σ, q′ ∈ δ(q, a) do
8 if i = 0 then
9 add ([q, 0], a, [q′, 0]) to δ′

10 if [q′, 0] < Q′ then add [q′, 0] to W
11 if q′ ∈ F then
12 add ([q, 0], a, [q′, 1]) to δ′

13 if [q′, 1] < Q′ then add [q′, 1] to W
14 else /* i = 1 */

15 if q′ ∈ F then
16 add ([q, 1], a, [q′, 1]) to δ′

17 if [q′, 1] < Q′ then add [q′, 1] to W
18 return (Q′,Σ, q′0, δ

′,F′)

Complexity. Assume Q contains n states and F contains m accepting sets. Each of the NGAs
A′0, . . . , A

′
m−1 has at most 2n states, and an acceptance condition containing at most m acceptance

sets. So each of the NBAs A′0, . . . , A
′
m−1 has at most 2n2 states, and the final NBA has at most

244 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

2n2m + 1 states. Observe in particular that while the conversion from NBA to NMA involves a
possibly exponential blow-up, the conversion NMA to NBA does not.

It can be shown that the exponential blow-up in the conversion from NBA to NMA cannot be
avoided, which leads to the next step in our quest: is there a class of ω-automata that (1) recognizes
all ω-regular languages, (2) has a determinization procedure, and (3) has polynomial conversion
algorithms to and from NBA?

11.4.3 Rabin automata

The acceptance condition of a Rabin automaton is a set of pairs {〈F0,G0〉, . . . , 〈Fm,Gm〉}, where the
Fi and Gi are sets of states. A run ρ is accepting if there is i ∈ {1, . . . ,m} such that inf(ρ) ∩ Fi , ∅

and inf(ρ) ∩Gi = ∅. If we say that a run visits a set whenever it visits one of its states, then we can
concisely express this condition in words: a run is accepting if, for some pair 〈Fi,Gi〉, it visits Fi

infinitely often Gi finitely often.
NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa,

without any exponential blow-up.

NBA→ NRA. Just observe that a Büchi condition {q1, . . . , qk} is equivalent to the Rabin condi-
tion

{ (
{q1}, ∅

)
, . . . ,

(
{qn}, ∅

) }
.

NRA→ NBA. Given a Rabin automaton A =
(
Q,Σ,Q0, δ,

{
〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉

})
, it fol-

lows easily that, as in the case of Muller automata, Lω(A) =
⋃m−1

i=0 Lω(Ai) holds for the NRAs
Ai = (Q,Σ,Q0, δ, {〈Fi,Gi〉}). So it suffices to translate each Ai into an NBA. Since an accepting run
ρ of Ai satisfies inf(ρ) ∩ Gi = ∅, from some point on ρ only visits states of Qi \ Gi. So ρ consists
of an initial finite part, say ρ0, that may visit all states, and an infinite part, say ρ1, that only visits
states of Q \ Gi. So we take two copies of Ai. Intuitively, A′i simulates ρ by executing ρ0 in the
first copy, and ρ1 in the second. The condition that ρ1 must visit some state of Fi infinitely often is
enforced by taking Fi as Büchi condition.

Example 11.11 Figure 11.9 can be reused to illustrate the conversion of a Rabin into a Büchi
automaton. Consider the automaton on the left, but this time with Rabin accepting condition
{〈F0,G0〉, 〈F1,G1〉}, where F0 = {q} = G1, and G0 = {r} = F1. Then the automaton accepts
the ω-words that contain finitely many as or finitely many bs. The Büchi automata A′0, A

′
1 are as

shown on the right, but now instead of NGAs they are NBAs with accepting states [q, 1] and [r, 1],
respectively. The final NBA is exactly the same one.

For the complexity, observe that each of the A′i has at most 2n states, and so the final Büchi
automaton has at most 2nm + 1 states.

To prove that DRAs are as expressive as NRAs it suffices to show that they are as expressive
as DMAs. Indeed, since NRAs are as expressive as NBAs, both classes recognize the ω-regular
languages, and, by Theorem 11.9, so do DMAs.

11.4. OTHER CLASSES OF ω-AUTOMATA 245

DMA→ DRA. We sketch an algorithm that converts a Muller condition into a Rabin condition,
while preserving determinism.

Let A be a DMA. Consider first the special case in which the Muller condition of A contains
one single set F = {q1, . . . , qn}. We use the same construction as in the conversion NBA→ NGA:
we take n copies of the DMA, and “jump” from the i-th copy to the next one whenever we visit
state qi. The result is a deterministic automaton A′. Given a run ρ of A on a word w, we have
inf(ρ) ⊆ F if and only if (q1, 1), ∈ inf(ρ′), where ρ′ is the run of A′ on w Now we give A′ the Rabin
accepting condition consisting of the single Rabin pair 〈{(q1, 1)}, (Q \ F) × {1, . . . , n}〉. We have:

ρ is an accepting run of A
iff inf(ρ) = F
iff inf(ρ) ⊆ F and inf(ρ) ∩ (Q \ F) = ∅

iff (q1, 1) ∈ inf(ρ′) and inf(ρ′) ∩ (Q \ F × {1, . . . , n}) = ∅

iff ρ′ is an accepting run of A′

and so LωA = LωA′.
If the Muller condition of A contains multiple sets {F0, . . . , Fm−1}, then we have L (() A) =⋃m−1

i=0 L (() A′i), where Ai is the DRA for the set Fi defined above Let Ai = (Qi,Σ, q0i, δi, {〈q f i,Gi〉}).
We construct a DRA A′ by pairing the Ai (that is, a state of A′ is a tuple of states of the Ai). Further,
we give A′ the Rabin condition with pairs 〈F′0,G

′
0〉 . . . 〈F

′
m−1,G

′
m−1〉 defined as follows: F′i contains

a tuple (q0, . . . , qm−1) of states iff qi = q f i, and G′i contains a tuple (q0, . . . , qm−1) iff qi ∈ Gi.

11.4.4 Streett automata

The accepting condition of Rabin automata is not “closed under negation”. Indeed, the negation of

there is i ∈ {1, . . . ,m} such that inf(ρ) ∩ Fi , ∅ and inf(ρ) ∩Gi = ∅

has the form

for every i ∈ {1, . . . ,m}: inf(ρ) ∩ Fi = ∅ or inf(ρ) ∩Gi , ∅

This is called the Streett condition. More precisely, the acceptance condition of a Streett automaton
is again a set of pairs {〈F1,G1〉, . . . , 〈Fm,Gm〉}, where Fi,Gi are sets of states. A run ρ is accepting
if inf(ρ) ∩ Fi = ∅ or inf(ρ) ∩ Gi , ∅ holds for every pair 〈Fi,Gi〉. Observe that the condition is
equivalent to: if inf(ρ) ∩Gi = ∅, then inf(ρ) ∩ Fi = ∅.

A Büchi automaton can be easily transformed into a Streett automaton and vice versa. However,
the conversion from Streett to Büchi is exponential.

NBA→NSA. A Büchi condition {q1, . . . , qk} corresponds to the Streett condition {〈Q, {q1, . . . , qk}〉}.

246 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

NSA → NBA. We can transform an NSA into an NBA by following the path NSA → NMA
→ NBA. If the NSA has n states, the resulting NBA has 2n22n states. It can be shown that the
exponential blow-up is unavoidable; in other words, Streett automata can be exponentially more
succinct than Büchi automata.

Example 11.12 Let Σ = {0, 1, 2}. For n ≥ 1, we represent an infinite sequence x1, x2, . . . of vectors
of dimension n with components in Σ by the ω-word x1x2 . . . over Σn. Let Ln be the language in
which, for each component i ∈ {1, . . . , n}, x j(i) = 1 for infinitely many j’s if and only if xk(i) = 2
for infinitely many k’s. It is easy to see that Ln can be accepted by a NSA with 3n states and 2n
accepting pairs, but cannot be accepted by any NBA with less than 2n states.

Deterministic automata are useful for the design of complementation algorithms. However,
neither DMAs, DRAs, nor DSAs yield a polynomial complementation procedure. Indeed, while we
can complement a DMA with set of states Q and accepting condition F by changing the condition
to 2Q \F, the number of acceptings sets of 2Q \F can be exponentially larger. In the case of Rabin
and Street automata, we can complement in linear time by negating the accepting condition, but the
result is an automaton that belongs to the other class, and, again, if we wish to obtain an automaton
of the same class, then the accepting condition becomes exponentially larger in the worst case.

These considerations lead us to out final question: is there a class of ω-automata that (1) recog-
nizes all ω-regular languages, (2) has a determinization procedure, (3) has polynomial conversion
algorithms to and from NBA, and (4) has a polynomial complementation procedure ?

11.4.5 Parity automata

The acceptance condition of a nondeterministic parity automaton (NPA) with set of states Q is a
sequence (F1, F2, . . . , F2n) of sets of states, where F1 ⊆ F2 ⊆ · · · ⊆ F2n = Q. A run ρ of a parity
automaton is accepting if the minimal index i such that inf(ρ) ∩ Fi , ∅ is even.

The following conversions show that NPAs recognize the ω-regular languages, can be con-
verted to and from NBAs without exponential blowup, and have a determinization procedure.

NBA→ NPA. A NBA with a set F of accepting states recognizes the same language as the same
automaton with parity condition (∅, F,Q,Q).

NPA→ NBA. Use the construction NPA→ NRA shown below, followed by NRA→ NBA.

NPA→ NRA. A NPA with accepting condition (F1, F2, . . . , F2n) recognizes the same language
as the same automaton with Rabin condition {〈F2k, F2k−1〉, . . . , 〈F3, F2〉, 〈F1, ∅〉. Incidentally, this
shows that the parity condition is a speical case of the Rabin condition in which the sets appearing
in the pairs form a chain with respect to set inclusion.

11.4. OTHER CLASSES OF ω-AUTOMATA 247

DMA→ DPA. In order to construct a DPA equivalent to a given NPA we can proceed as follows.
First we transform the NPA into a DMA, for example following the path NPA→ NRA→ NBA→
DMA, and then transform the DMA into an equivalent DPA. This construction can be achieved by
means of so-called latest appearance records. Alternatively, it is also possible to modify Safra’s
determinization procedure so that it yields a DPA instead of a DMA.

Theorem 11.13 (Safra, Piterman) A NBA with n states can be effectively transformed into a DPA
with nO(n) states and an accepting condition with O(n) sets.

Finally, DPAS have a very simple complementation procedure:

Complementation of DPAs. In order to complement a parity automaton with accepting condition
(F1, F2, . . . , F2n), replace the condition by (∅, F1, F2, . . . , F2n, F2n).

11.4.6 Conclusion

We have presented a short overview of the “zoo” of classes of ω-automata. If we are interested in a
determinizable class with a simple complementation procedure, then parity automata are the right
choice. However, the determinization procedures for ω-automata not only have large complexity,
but are also difficult to implement efficiently. For this reason in the next chapter we present imple-
mentations of our operations using NBA. Since not all NBAs can be determinized, we have to find
a complementation operation that does not require to previously determinize the automaton.

Exercises

Exercise 118 Construct Büchi automata and ω-regular expressions, as small as possible, recogniz-
ing the following languages over the alphabet {a, b, c}. Recall that inf (w) denotes the set of letters
of {a, b, c} that occur infinitely often in w.

(1) {w ∈ {a, b, c}ω | {a, b} ⊇ inf (w)}

(2) {w ∈ {a, b, c}ω | {a, b} = inf (w)}

(3) {w ∈ {a, b, c}ω | {a, b} ⊆ inf (w)}

(4) {w ∈ {a, b, c}ω | {a, b, c} = inf (w)}

(5) {w ∈ {a, b, c}ω | if a ∈ inf (w) then {b, c} ⊆ in f (w)}

Exercise 119 Give deterministic Büchi automata accepting the following ω-languages over Σ =

{a, b, c}:

(1) L1 = {w ∈ Σω : w contains at least one c},

248 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

(2) L2 = {w ∈ Σω : in w, every a is immediately followed by a b},

(3) L3 = {w ∈ Σω : in w, between two successive a’s there are at least two b’s}.

Exercise 120 Prove or disprove:

1. For every Büchi automaton A, there exists a NBA B with a single initial state and such that
Lω(A) = Lω(B).

2. For every Büchi automaton A, there exists a NBA B with a single accepting state and such
that Lω(A) = Lω(B).

Exercise 121 Recall that every finite set of finite words is a regular language. We prove that not
every finite set of ω-words is an ω-regular language.

(1) Prove that every ω-regular language contains an ultimately periodic ω-word, i.e., an ω-word
of the form u vω for some finite words w, v.

(2) Give an ω-word w such that {w} is not an ω-regular language.

Exercise 122 (Duret-Lutz) An ω-automaton has acceptance on transitions if the acceptance con-
dition specifies which transitions must appear finitely or infinitely often in a run, instead of which
states. All classes of ω-automata (Büchi, Rabin, etc.) can be defined with acceptance on states, or
acceptance on transitions.

Give minimal deterministic automata for the language of words over {a, b} containing infinitely
many a and infinitely many b. of the following kinds (1) Büchi, (2) generalized Büchi, (3) Büchi
with acceptance on transitions, and (4) generalized Büchi with acceptance on transitions.

Exercise 123 Consider the class of non deterministic automata over infinite words with the fol-
lowing acceptance condition: an infinite run is accepting if it visits a final state at least once. Show
that no such automaton accepts the language of all words over {a, b} containing infinitely many a
and infinitely many b.

Exercise 124 The limit of a language L ⊆ Σ∗, denoted by lim(L), is the ω-language defined as
follows: w ∈ lim(L) iff infinitely many prefixes of w are words of L. For example, the limit of (ab)∗

is {(ab)ω}.

(1) Determine the limit of the following regular languages over {a, b}: (i) (a+b)∗a; (ii) (a+b)∗a∗;
(iii) the set of words containing an even number of as; (iv) a∗b.

(2) Prove: An ω-language is recognizable by a deterministic Büchi automaton iff it is the limit
of a regular language.

(3) Exhibit a non-regular language whose limit is ω-regular.

11.4. OTHER CLASSES OF ω-AUTOMATA 249

(4) Exhibit a non-regular language whose limit is not ω-regular.

Exercise 125 Let L1 = (ab)ω, and let L2 be the language of all words containing infinitely many a
and infinitely many b (both languages over the alphabet {a, b}).

(1) Show that no DBA with at most two states recognizes L1 or L2.

(2) Exhibit two different DBAs with three states recognizing L1.

(3) Exhibit six different DBAs with three states recognizing L2.

Exercise 126 Find ω-regular expressions (the shorter the better) for the following languages:

(1) {w ∈ {a, b}ω | k is even for each subword bakb of w}

(2) {w ∈ {a, b}ω | w has no occurrence of bab}

Exercise 127 In Definition 3.19 we have introduced the quotient A/P of a NFA A with respect to a
partition P of its states. In Lemma 3.21 we have proved L (A) = L (A/P`) for the language partition
P` that puts two states q1, q2 in same block iff LA(q1) = LA(q2).

Let B = (Q,Σ, δ,Q0, F) be a NBA. Given a partition P of Q, define the quotient B/P of B with
respect to P exactly as for NFA.

(1) Let P` be the partition of Q that puts two states q1, q2 of B in same block iff Lω,B(q1) =

Lω,B(q2), where Lω,B(q) denotes the ω-language containing the words accepted by B with q
has initial state. Does Lω(B) = Lω(B/P`) always hold ?

(2) Let CSR be the coarsest stable refinement of the equivalence relation with equivalence classes
{F,Q \ F}. Does Lω(A) = Lω(A/CSR) always hold ?

Exercise 128 Let L be anω-language over Σ, and let w ∈ Σ∗. The w-residual of L is theω-language
Lw = {w′ ∈ Σω | w w′ ∈ L}. An ω-language L′ is a residual of L if L′ = Lw for some word w ∈ Σ∗.

We show that the theorem stating that a language of finite words is regular iff it has finitely
many residuals does not extend to ω-regular languages.

(1) Prove: If L is an ω-regular language, then it has finitely many residuals.

(2) Disprove: Every ω-language with finitely many residuals is ω-regular.
Hint: Let w be a non-ultimately-periodic ω-word and consider the language Tailw of infinite
tails of w.

Exercise 129 The solution to Exercise 127(2) shows that the reduction algorithm for NFAs that
computes the partition CSR of a given NFA A and constructs the quotient A/CSR can also be
applied to NBAs. Generalize the algorithm so that it works for NGAs.

250 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

Exercise 130 Let L = {w ∈ {a, b}ω | w contains finitely many a}

(1) Give a deterministic Rabin automaton for L.

(2) Give a NBA for L and try to “determinize” it by using the NFA to DFA powerset construction.
Which is the language accepted by the deterministic automaton?

(3) What ω-language is accepted by the following Muller automaton with acceptance condition
{ {q0}, {q1}, {q2} }? And with acceptance condition { {q0, q1}, {q1, q2}, {q2, q0} } ?

q2

q0 q1

a b

c

a, b, c

a, b, ca, b, c

(4) Show that any Büchi automaton that accepts the ω-language of (c) (with the first acceptance
condition) has more than 3 states.

(5) For every m, n ∈ N>0, let Lm,n be the ω-language over {a, b} described by the ω-regular
expression (a + b)∗((ambb)ω + (anbb)ω).

(i) Describe a family of Büchi automata accepting the family ofω-languages {Lm,n}m,n∈N>0 .

(ii) Show that there exists c ∈ N such that for every m, n ∈ N>0 the language Lm,n is
accepted by a Rabin automaton with at most max(m, n) + c states.

(iii) Modify your construction in (ii) to obtain Muller automata instead of Rabin automata.

(iv) Convert the Rabin automaton for Lm,n obtained in (ii) into a Büchi automaton.

Chapter 12

Boolean operations: Implementations

The list of operations of Chapter 4 can be split into two parts, with the the boolean operations union,
intersection, and complement in the first part, and the emptiness, inclusion, and equality tests in
the second. This chapter deals with the boolean operations, while the tests are discussed in the next
one. Observer that we now leave the membership test out. Observe that a test for arbitrary ω-words
does not make sense, because no description formalism can represent arbitrary ω-words. For ω-
words of the form w1(w2)ω, where w1,w2 are finite words, membership in an ω-regular language L
can be implemented by checking if the intersection of L and {w1(w2)ω} is empty.

We provide implementations for ω-languages represented by NBAs and NGAs. We do not
discuss implementations on DBAs, because they cannot represent all ω-regular languages.

In Section 12.1 we show that union and intersection can be easily implemented using con-
structions already presented in Chapter 2. The rest of the chapter is devoted to the complement
operation, which is more involved.

12.1 Union and intersection

As already observed in Chapter 2, the algorithm for union of regular languages represented as
NFAs also works for NBAs and for NGAs.

One might be tempted to think that, similarly, the intersection algorithm for NFAs also works
for NBAs. However, this is not the case. Consider the two Büchi automata A1 and A2 of Figure
12.1. The Büchi automaton A1 ∩ A2 obtained by applying algorithm IntersNFA(A1, A2) in page

a

a

q0 q1

a

a

r0 r1

Figure 12.1: Two Büchi automata accepting the language aω

251

252 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

91 (more precisely, by interpreting the output of the algorithm as a Büchi automaton) is shown in
Figure 12.2. It has no accepting states, and so Lω(A1) = Lω(A2) = {aω}, but Lω(A1 ∩ A2) = ∅.

q1, r1q0, r0

a

a

Figure 12.2: The automaton A1 ∩ A2

What happened? A run ρ of A1 ∩ A2 on an ω-word w is the result of pairing runs ρ1 and ρ2 of
A1 and A2 on w. Since the accepting set of A1 ∩ A2 is the cartesian product of the accepting sets
of A1 and A2, ρ is accepting if ρ1 and ρ2 simultaneously visit accepting states infinitely often. This
condition is too strong, and as a result Lω(A1 ∩ A2) can be a strict subset of Lω(A1) ∩ Lω(A2).

This problem is solved by means of the observation we already made when dealing with NGAs:
the run ρ visits states of F1 and F2 infinitely often if and only if the following two conditions hold:

(1) ρ eventually visits F1; and

(2) every visit of ρ to F1 is eventually followed by a visit to F2 (with possibly further visits to
F1 in-between), and every visit to F2 is eventually followed by a visit to F1 (with possibly
further visits to F1 in-between).

We proceed as in the translation NGA → NBA. Intuitively, we take two “copies” of the pairing
[A1, A2], and place them one of top of the other. The first and second copies of a state [q1, q2] are
called [q1, q2, 1] and [q1, q2, 2], respectively. The transitions leaving the states [q1, q2, 1] such that
q1 ∈ F1 are redirected to the corresponding states of the second copy, i.e., every transition of the
form [q1, q2, 1]

a
−−→[q′1, q

′
2, 1] is replaced by [q1, q2, 1]

a
−−→[q′1, q

′
2, 2]. Similarly, the transitions leav-

ing the states [q1, q2, 2] such that q2 ∈ F2 are redirected to the first copy. We choose [q01, q02, 1],
as initial state, and declare the states [q1, q2, 1] such that q1 ∈ F1 as accepting.

Example 12.1 Figure 12.3 shows the result of the construction for the NBAs A1 and A2 of Fig-
ure 12.1, after removing the states that are not reachable form the initial state. Since q0 is not an

q1, r1, 2

a

a
a

q1, r1, 1q0, r0, 1

Figure 12.3: The NBA A1 ∩ω A2 for the automata A1 and A2 of Figure 12.1

accepting state of A1, the transition [q0, r0, 1]
a
−−→[q1, r1, 1] is not redirected. However, since q1 is

12.1. UNION AND INTERSECTION 253

an accepting state, transitions leaving [q1, r1, 1] must jump to the second copy, and so we replace
[q1, r1, 1]

a
−−→[q0, r0, 1] by [q1, r1, 1]

a
−−→[q0, r0, 2]. Finally, since r0 is an accepting state of A2, tran-

sitions leaving [q0, r0, 2] must return to the first copy, and so we replace [q0, r0, 2]
a
−−→[q1, r1, 2] by

[q0, r0, 2]
a
−−→[q1, r1, 1]. The only accepting state is [q1, r1, 1], and the language accepted by the

NBA is aω.

To see that the construction works, observe first that a run ρ of this new NBA still corresponds
to the pairing of two runs ρ1 and ρ2 of A1 and A2, respectively. Since all transitions leaving the
accepting states jump to the second copy, ρ is accepting iff it visits both copies infinitely often,
which is the case iff ρ1 and ρ2 visit states of F1 and F2, infinitely often, respectively.

Algorithm IntersNBA(), shown below, returns an NBA A1 ∩ω A2. As usual, the algorithm only
constructs states reachable from the initial state.

IntersNBA(A1, A2)
Input: NBAs A1 = (Q1,Σ, δ1,Q01, F1), A2 = (Q2,Σ, δ2,Q02, F2)
Output: NBA A1 ∩ω A2 = (Q,Σ, δ,Q0, F) with Lω(A1 ∩ω A2) = Lω(A1) ∩ Lω(A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02, 1]
3 W ← { [q01, q02, 1] }
4 while W , ∅ do
5 pick [q1, q2, i] from W
6 add [q1, q2, i] to Q′

7 if q1 ∈ F1 and i = 1 then add [q1, q2, 1] to F′

8 for all a ∈ Σ do
9 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ(q2, a) do

10 if i = 1 and q1 < F1 then
11 add ([q1, q2, 1], a, [q′1, q

′
2, 1]) to δ

12 if [q′1, q
′
2, 1] < Q′ then add [q′1, q

′
2, 1] to W

13 if i = 1 and q1 ∈ F1 then
14 add ([q1, q2, 1], a, [q′1, q

′
2, 2]) to δ

15 if [q′1, q
′
2, 2] < Q′ then add [q′1, q

′
2, 2] to W

16 if i = 2 and q2 < F2 then
17 add ([q1, q2, 2], a, [q′1, q

′
2, 2]) to δ

18 if [q′1, q
′
2, 2] < Q′ then add [q′1, q

′
2, 2] to W

19 if i = 2 and q2 ∈ F2 then
20 add ([q1, q2, 2], a, [q′1, q

′
2, 1]) to δ

21 if [q′1, q
′
2, 1] < Q′ then add [q′1, q

′
2, 1] to W

22 return (Q,Σ, δ,Q0, F)

There is an important case in which the construction for NFAs can also be applied to NBAs,
namely when all the states of one of the two NBAs, say A1 are accepting. In this case, the condition

254 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

that two runs ρ1 and ρ2 on an ω-word w simultaneously visit accepting states infinitely often is
equivalent to the weaker condition that does not require simultaneity: any visit of ρ2 to an accepting
state is a simultaneous visit of ρ1 and ρ2 to accepting states.

It is also important to observe a difference with the intersection for NFAs. In the finite word
case, given NFAs A1, . . . , Ak with n1, . . . , nk states, we can compute an NFA for L (A1)∩ . . .∩L (An)
with at most

∏k
i=1 ni states by repeatedly applying the intersection operation, and this construction

is optimal (i.e., there is a family of instances of arbitrary size such that the smallest NFA for the
intersection of the languages has the same size). In the NBA case, however, the repeated application
of IntersNBA() is not optimal. Since IntersNBA() introduces an additional factor of 2 in the number
of states, for Lω(A1)∩ . . .∩Lω(Ak) it yields an NBA with 2k−1 ·n1 · . . . ·nk states. We obtain a better
construction proceeding as in the translation NGA→ NBA: we produce k copies of A1 × . . . × Ak,
and move from the i-th copy to the (i + 1)-th copy when we hit an accepting state of Ai. This
construction yields an NBA with k · n1 · . . . · nk states.

12.2 Complement

So far we have been able to adapt the constructions for NFAs to NBAs. The situation is consider-
ably more involved for complement.

12.2.1 The problems of complement

Recall that for NFAs a complement automaton is constructed by first converting the NFA into
a DFA, and then exchanging the final and non-final states of the DFA. For NBAs this approach
breaks down completely:

(a) The subset construction does not preserve ω-languages; i.e, a NBA and the result of applying
the subset construction to it do not necessarily accept the same ω-language.

The NBA on the left of Figure 12.4 accepts the empty language. However, the result of
applying the subset construction to it, shown on the right, accepts aω. Notice that both
automata accept the same finite words.

q0 q1

a

a {q0} {q0, q1}
a

a

Figure 12.4: The subset construction does not preserve ω-languages

(b) The subset construction cannot be replaced by another determinization procedure, because
no such procedure exists: As we have seen in Proposition 11.7, some languages are accepted
by NBAs, but not by DBAs.

12.2. COMPLEMENT 255

(c) The automaton obtained by exchanging accepting and non-accepting states in a given DBA
does not necessarily recognize the complement of the language.

In Figure 12.1, A2 is obtained by exchanging final and non-final states in A1. However, both
A1 and A2 accept the language aω. Observe that as automata for finite words they accept the
words over the letter a of even and odd length, respectively.

Despite these discouraging observations, NBAs turn out to be closed under complement. For
the rest of the chapter we fix an NBA A = (Q,Σ, δ,Q0, F) with n states, and use Figure 12.5 as
running example. Further, we abbreviate “infinitely often” to “i.o.”. We wish to build an automaton

a

b

a

q r

Figure 12.5: Running example for the complementation procedure

A satisfying:

no path of dag(w) visits accepting states of A i.o.
if and only if

some run of w in A visits accepting states of A i.o.

We give a summary of the procedure. First, we define the notion of ranking. For the moment it
suffices to say that a ranking of w is the result of decorating the nodes of dag(w) with numbers.
This can be done in different ways, and so, while a word w has one single dag dag(w), it may have
many rankings. The essential property of rankings will be:

no path of dag(w) visits accepting states of A i.o.
if and only if for some ranking R(w)

every path of dag(w) visits nodes of odd rank i.o.

In the second step we profit from the determinization construction for co-Büchi automata. Recall
that the construction maps dag(w) to a run ρ of a new automatonsuch that: every path of dag(w)
visits accepting states of A i.o. if and only if ρ visits accepting states of the new automaton i.o. We
apply the same construction to map every ranking R(w) to a run ρ of a new automaton B such that

every path of dag(w) visits nodes of odd rank i.o. (in R(w))
if and only if

the run ρ visits states of B i.o.

256 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

This immediately implies Lω(B) = Lω(A). However, the automaton B may in principle have an
infinite number of states! In the final step, we show that a finite subautomaton A of B already
recognizes the same language as B, and we are done.

12.2.2 Rankings and level rankings

Recall that, given w ∈ alω, the directly acyclic graph dag(w) is the result of bundling together the
runs of A on w. A ranking of dag(w) is a mapping R(w) that associates to each node of dag(w) a
natural number, called a rank, satisfying the following two properties:

(a) the rank of a node is greater than or equal to the rank of its children, and

(b) the rank of an accepting node is even.

a a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3 q1, 4

· · ·ba a a

a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3

· · ·ba a b

2 1 1 1 1

1 1 0 0 0

0 0

2 0 0

Figure 12.6: Rankings for dag(abaω) and dag((ab)ω)

The ranks of the nodes in an infinite path form a non-increasing sequence, and so there is a node
such that all its (infinitely many) successors have the same rank; we call this number the stable
rank of the path. Figure 12.6 shows rankings for dag(abaω) and dag((ab)ω). Both have one single
infinite path with stable rank 1 and 0, respectively. We now prove the fundamental property of rank
ings:

Proposition 12.2 No path of dag(w) visits accepting nodes of A i.o. if and only if for some ranking
R(w) every infinite path of dag(w) visits nodes of odd rank i.o.

Proof: If all infinite paths of a ranking R have odd stable rank, then each of them contains only
finitely many nodes with even rank. Since accepting nodes have even ranks, no path visits accepting
nodes i.o.

12.2. COMPLEMENT 257

For the other direction, assume that no path of dag(w) visits accepting nodes of A i.o. Give
each accepting node 〈q, l〉 the rank 2k, where k is the maximal number of accepting nodes in the
paths starting at 〈q, l〉, and give a non-accepting nodes rank 2k + 1, where 2k is the maximal rank of
its descendants with even rank. In the ranking so obtained every infinite path visits nodes of even
rank only finitely often, and therefore it visits nodes of odd rank i.o.

Recall that the i-th level of dag(w) is defined as the set of nodes of dag(w) of the form 〈q, i〉.
Let R be the set of all ranking levels. Any ranking r of dag(w) can be decomposed into an infinite
sequence lr1, lr2, . . . of level rankings by defining lri(q) = r(〈q, i〉) if 〈q, i〉 is a node of dag(w), and
lri(q) = ⊥ otherwise. For example, if we represent a level ranking lr of our running example by the
column vector [

lr(q0)
lr(q1)

]
,

then the rankings of Figure 12.6 correspond to the sequences[
2
⊥

] [
⊥

2

] [
1
⊥

] [
1
0

]ω
[

1
⊥

] [
1
0

] ([
0
⊥

] [
0
0

])ω
For two level rankings lr and lr′ and a letter a ∈ Σ, we write lr

a
7→ lr′ if for every q′ ∈ Q:

• lr′(q′) = ⊥ iff no q such that lr(q) , ⊥ satisfies q
a
−−→ q′, and

• lr(q) ≥ lr′(q′) for every q satisfying lr(q) , ⊥ and q
a
−−→ q′.

12.2.3 A (possibly infinite) complement automaton

We construct an NBA B an infinite number of states (and many initial states) whose runs on an
ω-word w are the rankings of dag(w). The automaton accepts a ranking R iff every infinite path of
R visits nodes of odd rank i.o.

We start with an automaton without any accepting condition:

• The states are all the possible ranking levels.

• The initial states are the levels lrn defined by: rln(q0) = n, and lrn(q) = ⊥ for every q , q0.

• The transitions are the triples (lr, a, lr′), where lr and lr′ are level rankings, a ∈ Σ, and
lr

a
7→ lr′ holds.

The runs of this automaton on w clearly correspond to the rankings of dag(w). Now we apply
the same construction we used for determinization of co-Büchi automata. We decorate the ranking
levels with a set of ‘owing’ states, namely those that owe a visit to a state of odd rank, and take
as accepting states the breakpoints i.e., the levels with an empty set of ‘owing’ states. We get the
Büchi automaton B:

258 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

• The states are all pairs [rl,O], where lr is a level ranking and O is a subset of the states q for
which lr(q) ∈ N.

• The initial states are all pairs of the form [lr, ∅], where lr(q0) , ⊥ and lr0(q) = ⊥ for every
q , q0.

• The transitions are the triples [lr,O]
a
−−→[lr′,O′] such that lr

a
7→ lr′ and

– O , ∅ and O′ = {q′ ∈ δ(O, a) | lr′(q′) is even }, or

– O = ∅ and O′ = {q′ ∈ Q | lr′(q′) is even }.

• The accepting states (breakpoints) are the pairs [rl, ∅].

B accepts a ranking iff it contains infinitely many breakpoints. As we saw in the construction
for co-Büchi automata, this is the case iff every infinite path of dag(w) visits nodes of odd rank i.o.,
and so iff A does not accept w.

The remaining problems with this automaton are that its number of states is infinite, and that it
has many initial states. Both can be solved by proving the following assertion: there exists a number
k such that for every word w, if dag(w) admits an odd ranking, then it admits an odd ranking whose
initial node 〈q0, 0〉 has rank k. (Notice that, since ranks cannot increase along paths, every node has
rank at most k.) If we are able to prove this, then we can eliminate all states corresponding to level
rankings in which some node is mapped to a number larger than k: they are redundant. Moreover,
the initial state is now fixed: it is the level ranking that maps q0 to k and all other states to ⊥.

Proposition 12.3 Let n be the number of states of A. For every word w ∈ Σω, if w is rejected by A
then dag(w) has a ranking such that

(a) every infinite path of dag(w) visits nodes of odd rank i.o., and

(b) the initial node 〈q0, 0〉 has rank 2n.

Proof: In the proof we call a ranking satisfying (a) an odd ranking. Assume w is rejected by A.
We construct an odd ranking in which 〈q0, 0〉 has rank at most 2n. Then we can just change the
rank of the initial node to 2n, since the change preserves the properties of a ranking.

In the sequel, given two dags D,D′, we denote by D′ ⊆ D the fact that D′ can be obtained from
D through deletion of some nodes and their adjacent edges.

Assume that A rejects w. We describe an odd ranking for dag(w). We say that a node 〈q, l〉
is red in a (possibly finite) dag D ⊆ dag(w) iff only finitely many nodes of D are reachable from
〈q, l〉. The node 〈q, l〉 is yellow in D iff all the nodes reachable from 〈q, l〉 (including itself) are not
accepting. In particular, yellow nodes are not accepting. Observe also that the children of a red
node are red, and the children of a yellow node are red or yellow. We inductively define an infinite
sequence D0 ⊇ D1 ⊇ D2 ⊇ . . . of dags as follows:

• D0 = dag(w);

12.2. COMPLEMENT 259

• D2i+1 = D2i \ {〈q, l〉 | 〈q, l〉 is red in D2i};

• D2i+2 = D2i+1 \ {〈q, l〉 | 〈q, l〉 is yellow in D2i+1}.

Figure 12.7 shows D0, D1, and D2 for dag(abaω). D3 is the empty dag.

a a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3 q1, 4

· · ·ba a a

a a
q0, 0 q0, 2 q0, 3 q0, 4

q1, 1

· · ·ba

q0, 0

q1, 1

a

D0

D1

D2

Figure 12.7: The dags D0, D1, D2 for dag(abaω)

Consider the function f that assigns to each node of dag(w) a natural number as follows:

f (〈q, l〉) =

{
2i if 〈q, l〉 is red in D2i

2i + 1 if 〈q, l〉 is yellow in D2i+1

We prove that f is an odd ranking. The proof is divided into three parts:

(1) f assigns all nodes a number in the range [0 . . . 2n].

(2) If 〈q′, l′〉 is a child of 〈q, l〉, then f (〈q′, l′〉) ≤ f (〈q, l〉).

(3) If 〈q, l〉 is an accepting node, then f (〈q, l〉) is even.

Part (1). We show that for every i ≥ 0 there exists a number li such that for all l ≥ li, the dag D2i

contains at most n − i nodes of the form 〈q, l〉. This implies that D2n is finite, and so that D2n+1 is
empty, which in turn implies that f assigns all nodes a number in the range [0 . . . 2n].

260 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

The proof is by an induction on i. The case where i = 0 follows from the definition of G0:
indeed, in dag(w) all levels l ≥ 0 have at most n nodes of the form 〈q, l〉. Assume now that the
hypothesis holds for i; we prove it for i + 1. Consider the dag D2i. If D2i is finite, then D2i+1 is
empty; D2i+2 is empty as well, and we are done. So assume that D2i is infinite. We claim that D2i+1
contains some yellow node. Assume, by way of contradiction, that no node in D2i+1 is yellow.
Since D2i is infinite, D2i+1 is also infinite. Moreover, since D2i+1 is obtained by removing all red
nodes from D2i, every node of D2i+1 has at least one child. Let 〈q0, l0〉 be an arbitrary node of
D2i+1. Since, by the assumption, it is not yellow, there exists an accepting node 〈q′0, l

′
0〉 reachable

from 〈q0, l0〉. Let 〈q1, l1〉 be a child of 〈q′0, l
′
0〉. By the assumption, 〈q1, l1〉 is also not yellow, and

so there exists an accepting node 〈q′1, l
′
1〉 reachable from 〈q1, l1〉. We can thus construct an infinite

sequence of nodes 〈q j, l j〉, 〈q′j, l
′
j〉 such that for all i the node 〈q′j, l

′
j〉 is accepting, reachable from

〈q j, l j〉, and 〈q j+1, l j+1〉 is a child of 〈q′j, l
′
j〉. Such a sequence, however, corresponds to a path in

dag(w) visiting infinitely many accepting nodes, which contradicts the assumption that A rejects w,
and the claim is proved.

So, let 〈q, l〉 be a yellow node in D2i+1. We claim that we can take li+1 = l, that is, we claim that
for every j ≥ l the dag D2i+2 contains at most n − (i + 1) nodes of the form 〈q, j〉. Since 〈q, l〉 is in
D2i+1, it is not red in D2i. Thus, infinitely many nodes of D2i are reachable from 〈q, l〉. By König’s
Lemma, D2i contains an infinite path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, For all k ≥ 1, infinitely many
nodes of D2i are reachable from 〈qk, l + k〉, and so 〈qk, l + k〉 is not red in D2i. Therefore, the
path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, . . . exists also in D2i+1. Recall that 〈q, l〉 is yellow. Hence, being
reachable from 〈q, l〉, all the nodes 〈qk, l + k〉 in the path are yellow as well. Therefore, they are
not in D2i+2. It follows that for all j ≥ l the number of nodes of the form 〈q, j〉 in D2i+2 is strictly
smaller than their number in D2i, which, by the induction hypothesis, is n − i. So there are at most
n − (i + 1) nodes of the form 〈q, j〉 in D2i+2, and the claim is proved.

Part(2). Follows from the fact that the children of a red node in D2i are red, and the children of
a yellow node in D2i+1 are yellow. Therefore, if a node has rank i, all its successors have rank at
most i or lower.

Part(3). Nodes that get an odd rank are yellow at D2i+1 for some i, and so not accepting.

Example 12.4 We construct the complements A1 and A2 of the two possible NBAs over the alpha-
bet {a} having one state and one transition: B1 = ({q}, {a}, δ, {q}, {q}) and B2 = ({q}, {a}, δ, {q}, ∅),
where δ(q, a) = {q}. The only difference between B1 and B2 is that the state q is accepting in B1,
but not in B2. We have Lω(A1) = aω and Lω(A2) = ∅.

We begin with B1. A state of B1 is a pair 〈lr,O〉, where lr is the rank of node q (since there is
only one state, we can identify lr and lr(q)). The initial state is 〈2, ∅〉. Let us compute the successors
of 〈2, ∅〉 under the letter a. Let 〈lr′,O′〉 be a successor. Since δ(q, a) = {q}, we have lr′ , ⊥, and
since q is accepting, we have lr′ , 1. So either lr′ = 0 or lr′ = 2. In both cases the visit to a node
of odd rank is still “owed’, which implies O′ = {q}. So the successors of 〈2, ∅〉 are 〈2, {q}〉 and

12.2. COMPLEMENT 261

〈0, {q}〉. Consider now the successors 〈lr′′,O′′〉 of 〈0, {q}〉. We have lr′′ , ⊥ and lr′′ , 1 as before,
but now, since ranks cannot increase a long a path, we also have lr′′ , 2. So lr′′ = 0, and, since the
visit to the node of odd rank is still ‘ owed”, the only successor of 〈0, {q}〉 is 〈0, {q}〉. Similarly, the
successors of 〈2, {q}〉 are 〈2, {q}〉 and 〈0, {q}〉.

Since 〈2, ∅〉 is its only accepting state, B1 recognizes the empty language. B1 is shown on the
left of Figure 12.8. Let us now construct B2. The difference with B1 is that, since q is no longer

0, {q}

0, {q}

2, {q} a

a a
2, {q} a

a a

a a

a

1, ∅

Figure 12.8: The NBAs B1 and B2

accepting, it can also have odd rank 1. So 〈2, ∅ has three successors: 〈2, {q}〉, 〈1, ∅〉, and 〈0, {q}〉.
The successors of 〈1, ∅〉 are 〈1, ∅〉 and 〈0, {q}〈. The successors of 〈2, {q}〉 are 〈2, {q}〉, 〈1, ∅〉, and
〈0, {q}〉, and the only successor of 〈0, {q}〉 is 〈0, {q}〉. The accepting states are 〈2, ∅〉 and 〈1, ∅〉, and
B2 recognizes aω. B2 is shown on the right of Figure 12.8.

The pseudocode for the complementation algorithm is shown below. In the code, R denotes the
set of all level rankings, and lr0 denotes the level ranking given by lr(q0) = 2|Q| and lr(q) = ⊥ for
every q , q0. Recall also that lr

a
7→ lr′ holds if for every q′ ∈ Q we have: lr′(q′) = ⊥ iff no q ∈ Q

satisfies lr(q) , ⊥ and q
a
−−→ q′, and lr(q) ≥ lr′(q′) for every q such that lr(q) , ⊥ and q

a
−−→ q′.

262 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

CompNBA(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: NBA A = (Q,Σ, δ, q0, F) with Lω(A) = Lω(A)

1 Q, δ, F ← ∅
2 q0 ← [lr0, {q0}]
3 W ← { [lr0, {q0}] }
4 while W , ∅ do
5 pick [lr, P] from W; add [lr, P] to Q
6 if P = ∅ then add [lr, P] to F
7 for all a ∈ Σ, lr′ ∈ R such that lr

a
7→ lr′ do

8 if P , ∅ then P′ ← {q ∈ δ(P, a) | lr′(q) is even }
9 else P′ ← {q ∈ Q | lr′(q) is even }

10 add ([lr, P], a, [lr′, P′]) to δ
11 if [lr′, P′] < Q then add [lr′, P′] to W
12 return (Q,Σ, δ, q0, F)

Complexity. Let n be the number of states of A. Since a level ranking is a mapping lr : Q → {⊥} ∪ [0, 2n],
there are at most (2n + 2)n level rankings. So A has at most (2n + 2)n · 2n ∈ nO(n) states. Since
nO(n) = 2O(n·log n), we have introduced an extra log n factor in the exponent with respect to the subset
construction for automata on finite words. The next section shows that this factor is unavoidable.

12.2.4 The size of A

We exhibit a family {Ln}n≥1 of infinitary languages such that Ln is accepted by an automaton with
n + 2 states and any Büchi automaton accepting the complement of Ln has at least n! ∈ 2Θ(n log n)

states.
Let Σn = {1, . . . , n, #}. We associate to a word w ∈ Σωn the following directed graph G(w): the

nodes of G(w) are 1, . . . , n and there is an edge from i to j if w contains infinitely many occurrences
of the word i j. Define Ln as the language of infinite words w ∈ Aω for which G(w) has a cycle and
define Ln as the complement of Ln.

We first show that for all n ≥ 1, Ln is recognized by a Büchi automaton with n + 2 states. Let
An be the automaton shown in Figure 12.9. We show that An accepts Ln.
(1) If w ∈ Ln, then An accepts w.
Choose a cycle ai1ai2 . . . aik ai1 of G(w). We construct an accepting run of An by picking qi1 as initial
state and iteratively applying the following rule:

If the current state is qi j , stay there until the next occurrence of the word ai jai j+1 in w,
then use ai j to move to r, and use ai j+1 to move to qi j+1.

By the definition of G(w), r is visited infinitely often, and so w is accepted.
(2) If An accepts w, then w ∈ Ln.

12.2. COMPLEMENT 263

q1

q2

qn

r h

...

a1

a1
a2

a2
an

an

a1, a2, . . . , an,#

a1, a2, . . . , an,#

a1, a2, . . . , an,#

#

a1, a2, . . . , an,#

Figure 12.9: The automaton An

Let ρ be a run of An accepting w, and let Qρ = inf (ρ) ∩ {q, . . . , qn}. Since ρ is accepting, it cannot
stay in any of the qi forever, and so for each qi ∈ Qρ there is q j ∈ Qρ such that the sequence qirq j

appears infinitely often in ρ. Therefore, for every qi ∈ Qρ there is q j ∈ Qρ such that aia j appears
infinitely often in w, or, in other words, such that (ai, a j) ∈ G(w). Since Qρ is finite, G(w) contains
a cycle, and so w ∈ Ln.

Proposition 12.5 For all n ≥ 1, every NBA recognizing Ln, has at least n! states.

Proof: We need some preliminaries. Given a permutation τ = 〈τ(1), . . . , τ(n)〉 of 〈1, . . . , n〉, we
identify τ and the word τ(1) . . . τ(n). We make two observations:

(a) (τ#)ω ∈ Ln for every permutation τ.
The edges of G((τ#)ω) are 〈τ(1), τ(a2)〉, 〈τ(a2), τ(a3)〉, . . . , 〈τ(an−1), τ(an)〉, and so G((τ#)ω)
is acyclic.

(b) If a word w contains infinitely many occurrences of two different permutations τ and τ′ of
1 . . . n, then w ∈ Ln.
Since τ and τ′ are different, there are i and j in {1, . . . , n} such that i precedes j in τ and j
precedes i in τ′. Since w contains infinitely many occurrences of τ, G(w) has a path from i to
j. Since it contains infinitely many occurrences of τ′, G(w) has a path from j to i. So G(w)
contains a cycle, and so w ∈ Ln.

Now, let A be a Büchi automaton recognizing Ln, and let τ, τ′ be two arbitrary permutations of
(1, . . . , n). By (a), there exist runs ρ and ρ′ of A accepting (τ#)ω and (τ′#)ω, respectively. We prove
that the intersection of inf(ρ) and inf(ρ′) is empty. This implies that A contains at least as many
final states as permutations of (1, . . . , n), which proves the Proposition.

We proceed by contradiction. Assume q ∈ inf(ρ) ∩ inf(ρ′). We build an accepting run ρ′′ by
“combining” ρ and ρ′ as follows:

264 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

(0) Starting from the initial state of ρ, go to q following the run ρ.

(1) Starting from q, follow ρ′ until having gone through a final state, and having read at least
once the word τ′; then go back to q (always following ρ′).

(2) Starting from q, follow ρ until having gone through a final state, and having read at least
once the word τ; then go back to q (always following ρ).

(3) Go to (1).

The word accepted by ρ′′ contains infinitely many occurrences of both τ and τ′. By (b), this word
belongs to Ln, contradicting the assumption that A recognizes Ln.

Exercises

Exercise 131 1. Give deterministic Büchi automata for La, Lb, Lc where Lσ = {w ∈ {a, b, c}ω :
w contains infinitely many σ’s}, and build the intersection of these automata.

2. Give Büchi automata for the following ω-languages:

• L1 = {w ∈ {a, b}ω : w contains infinitely many a’s},

• L2 = {w ∈ {a, b}ω : w contains finitely many b’s},

• L3 = {w ∈ {a, b}ω : each occurrence of a in w is followed by a b},

and build the intersection of these automata.

Exercise 132 Consider the following Büchi automaton over Σ = {a, b}:

q0 q1

a, b b

b

1. Sketch dag(ababω) and dag((ab)ω).

2. Let rw be the ranking of dag(w) defined by

rw(q, i) =


1 if q = q0 and 〈q0, i〉 appears in dag(w),
0 if q = q1 and 〈q1, i〉 appears in dag(w),
⊥ otherwise.

Are rababω and r(ab)ω odd rankings?

3. Show that rw is an odd ranking if and only if w < Lω(B).

12.2. COMPLEMENT 265

4. Build a Büchi automaton accepting Lω(B) using the construction seen in class. (Hint: by (c),
it is sufficient to use {0, 1} as ranks.)

Exercise 133 Find algorithms (not necessarily eficient) for the following decision problems:

(1) Given finite words u, v, x, y ∈ Σ∗, decide whether the ω-words u vω and x yω are equal.

(2) Given a Büchi automaton A and finite words u, v, decide whether A accepts the ω-word u vω.

Exercise 134 Show that for every DBA A with n states there is an NBA B with 2n states such that
Lω(B) = Lω(A).

Exercise 135 A B’́uchi automaton A = (Q,Σ, δ,Q0, F) is weak if no strongly connected compo-
nent (SCC) of states contains of A both accepting and non-accepting states, that is, every SCC
C ⊆ Q satisfies either C ⊆ F or C ⊆ Q \ F.

(a) Prove that a B’́uchi automaton A is weak iff for every run ρ either inf (ρ) ⊆ F or inf (ρ) ⊆
Q \ F.

(b) Prove that the algorithms for union, intersection, and complementation of DFAs are also
correct for weak DBAs. More precisely, show that the algorithms return weak DBAs recog-
nizing the union, intersection, and complement, respectively, of the languages of the input
automata.

Exercise 136 Give algorithms that directly complement deterministic Muller and parity automata,
without going through Büchi automata.

Exercise 137 Let A = (Q,Σ, q0, δ, {〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉}) be deterministic. Which is the
relation between the languages recognized by A as a deterministic Rabin automaton and as a deter-
ministic Streett automaton?

Exercise 138 Consider Büchi automata with universal accepting condition (UBA): an ω-word w
is accepted if every run of the automaton on w is accepting, i.e., if every run of the automaton on w
visits final states infinitely often.

Recall that automata on finite words with existential and universal accepting conditions recog-
nize the same languages. Prove that is no longer the case for automata on ω-words by showing that
for every UBA there is a DBA automaton that recognizes the same language. (This implies that the
ω-languages recognized by UBAs are a proper subset of the ω-regular languages.)

Hint: On input w, the DBA checks that every path of dag(w) visits some final state infinitely
often. The states of the DBA are pairs (Q′,O) of sets of the UBA where O ⊆ Q′ is a set of “owing”
states (see below). Loosely speaking, the transition relation is defined to satisfy the following
property: after reading a prefix w′ of w, the DBA is at the state (Q′,O) given by:

• Q′ is the set of states reached by the runs of the UBA on w′.

• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA. (See the con-
struction for the complement of a Büchi automaton.)

266 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

Chapter 13

Emptiness check: Implementations

We present efficient algorithms for the emptiness check. We fix an NBA A = (Q,Σ, δ,Q0, F). Since
transition labels are irrelevant for checking emptiness, in this Chapter we redefine δ from a subset
of Q × Σ × Q into a subset of Q × Q as follows:

δ := {(q, q′) ∈ Q × Q | (q, a, q′) ∈ δ for some a ∈ Σ}

Since in many applications we have to deal with very large Büchi automata, we are interested
in on-the-fly algorithms that do not require to know the Büchi automaton in advance, but check
for emptiness while constructing it. More precisely, we assume the existence of an oracle that,
provided with a state q returns the set δ(q).

We need a few graph-theoretical notions. If (q, r) ∈ δ, then r is a successor of a and q is a
predecessor of r. A path is a sequence q0, q1, . . . , qn of states such that qi+1 is a successor of qi for
every i ∈ {0, . . . , n − 1}; we say that the path leads from q0 to qn. Notice that a path may consist of
only one state; in this case, the path is empty, and leads from a state to itself. A cycle is a path that
leads from a state to itself. We write q{ r to denote that there is a path from q to r.

Clearly, A is nonempty if it has an accepting lasso, i.e., a path q0q1 . . . qn−1qn such that qn = qi

for some i ∈ {0, . . . , n − 1}, and at least one of {qi, qi+1, . . . , qn−1} is accepting. The lasso consists
of a path q0 . . . qi, followed by a nonempty cycle qiqi+1 . . . qn−1qi. We are interested in emptiness
checks that on input A report EMPTY or NONEMPTY, and in the latter case return an accepting
lasso, as a witness of nonemptiness.

13.1 Algorithms based on depth-first search

We present two emptiness algorithms that explore A using depth-first search (DFS). We start with
a brief description of depth-first search and some of its properties.

A depth-first search (DFS) of A starts at the initial state q0. If the current state q still has
unexplored outgoing transitions, then one of them is selected. If the transition leads to a not yet
discovered state r, then r becomes the current state. If all of q’s outgoing transitions have been

267

268 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

explored, then the search “backtracks” to the state from which q was discovered, i.e., this state
becomes the current state. The process continues until q0 becomes the current state again and
all its outgoing transitions have been explored. Here is a pseudocode implementation (ignore the
algorithm DFS Tree for the moment).

DFS(A)
Input: NBA A = (Q,Σ, δ,Q0, F)

1 S ← ∅
2 dfs(q0)

3 proc dfs(q)
4 add q to S
5 for all r ∈ δ(q) do
6 if r < S then dfs(r)
7 return

DFS Tree(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: Time-stamped tree (S ,T, d, f)

1 S ← ∅
2 T ← ∅; t ← 0
3 dfs(q0)

4 proc dfs(q)
5 t ← t + 1; d[q]← t
6 add q to S
7 for all r ∈ δ(q) do
8 if r < S then
9 add (q, r) to T ; dfs(r)

10 t ← t + 1; f [q]← t
11 return

Observe that DFS is nondeterministic, because we do not fix the order in which the states of δ(q)
are examined by the for-loop. Since, by hypothesis, every state of an automaton is reachable from
the initial state, we always have S = Q after termination. Moreover, after termination every state
q , q0 has a distinguished input transition, namely the one that, when explored by the search, led
to the discovery of q. It is well-known that the graph with states as nodes and these transitions as
edges is a tree with root q0, called a DFS-tree. If some path of the DFS-tree leads from q to r, then
we say that q is an ascendant of r, and r is a descendant of q (in the tree).

It is easy to modify DFS so that it returns a DFS-tree, together with timestamps for the states.
The algorithm, which we call DFS Tree is shown above. While timestamps are not necessary
for conducting a search itself, many algorithms based on depth-first search use them for other
purposes1. Each state q is assigned two timestamps. The first one, d[q], records when q is first dis-
covered, and the second, f [q], records when the search finishes examining the outgoing transitions
of q. Since we are only interested in the relative order in which states are discovered and finished,
we can assume that the timestamps are integers ranging between 1 and 2|Q|. Figure 13.1 shows an
example.

1In the rest of the chapter, and in order to present the algorithms is more compact form, we omit the instructions for
computing the timestamps, and just assume they are there.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 269

In our analyses we also assume that at every time point a state is white, grey, or black. A state
q is white during the interval [0, d[q]], grey during the interval (d[q], f [q]], and black during the
interval (f [q], 2|Q|]. So, loosely speaking, q is white, if it has not been yet discovered, grey if it
has already been discovered but still has unexplored outgoing edges, or black if all its outgoing
edges have been explored. It is easy to see that at all times the grey states form a path (the grey
path) starting at q0 and ending at the state being currently explored, i.e., at the state q such that
dfs(q) is being currently executed; moreover, this path is always part of the DFS-tree.

q0 q1 q2 q3 q4

q5

q0 q1 q2 q3 q4

q5

[1,12] [2,11] [4,9] [5,8] [6,7]

[3,10]

Figure 13.1: An NBA (the labels of the transitions have been omitted), and a possible run of
DFS Tree on it. The numeric intervals are the discovery and finishing times of the states, shown in
the format [d[q], f [q]].

We recall two important properties of depth-first search. Both follow easily from the fact that
a procedure call suspends the execution of the caller, which is only resumed after the execution of
the callee terminates.

Theorem 13.1 (Parenthesis Theorem) In a DFS-tree, for any two states q and r, exactly one of
the following four conditions holds, where I(q) denotes the interval (d[q], f [q]], and I(q) ≺ I(r)
denotes that f [q] < d[r] holds.

• I(q) ⊆ I(r) and q is a descendant of r, or

• I(r) ⊆ I(q) and r is a descendant of q, or

• I(q) ≺ I(r), and neither q is a descendant of r, nor r is a descendant of q, or

• I(r) ≺ I(q), and neither q is a descendant of r, nor r is a descendant of q.

270 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Theorem 13.2 (White-path Theorem) In a DFS-tree, r is a descendant of q (and so I(r) ⊆ I(q))
if and only if at time d[q] state r can be reached from q in A along a path of white states.

13.1.1 The nested-DFS algorithm

To determine if A is empty we can search for the accepting states of A, and check if at least one of
them belongs to a cycle. A naı̈ve implementation proceeds in two phases, searching for accepting
states in the first, and for cycles in the second. The runtime is quadratic: since an automaton with
n states and m transitions has O(n) accepting states, and since searching for a cycle containing a
given state takes O(n + m) time, we obtain a O(n2 + nm) bound.

The nested-DFS algorithm runs in time O(n+m) by using the first phase not only to discover the
reachable accepting states, but also to sort them. The searches of the second phase are conducted
according to the order determined by the sorting. As we shall see, conducting the search in this
order avoids repeated visits to the same state.

The first phase is carried out by a DFS, and the accepting states are sorted by increasing fin-
ishing (not discovery!) time. This is known as the postorder induced by the DFS. Assume that in
the second phase we have already performed a search starting from the state q that has failed, i.e.,
no cycle of A contains q. Suppose we proceed with a search from another state r (which implies
f [q] < f [r]), and this search discovers some state s that had already been discovered by the search
starting at q. We claim that it is not necessary to explore the successors of s again. More precisely,
we claim that s 6{ r, and so it is useless to explore the successors of s, because the exploration
cannot return any cycle containing r. The proof of the claim is based on the following lemma:

Lemma 13.3 If q{ r and f [q] < f [r] in some DFS-tree, then some cycle of A contains q.

Proof: Let π be a path leading from q to r, and let s be the first node of π that is discovered by
the DFS. By definition we have d[s] ≤ d[q]. We prove that s , q, q { s and s { q hold, which
implies that some cycle of A contains q.

• q , s. If s = q, then at time d[q] the path π is white, and so I(r) ⊆ I(q), contradicting
f [q] < f [r].

• q{ s. Obvious, because s belongs to π.

• s { q. By the definition of s, and since s , q, we have d[s] ≤ d[q]. So either I(q) ⊆ I(s)
or I(s) ≺ I(q). We claim that I(s) ≺ I(q) is not possible. Since at time d[s] the subpath of π
leading from s to r is white, we have I(r) ⊆ I(s). But I(r) ⊆ I(s) and I(s) ≺ I(q) contradict
f [q] < f [r], which proves the claim. Since I(s) ≺ I(q) is not possible, we have I(q) ⊆ I(s),
and hence q is a descendant of s, which implies s{ q.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 271

Example 13.4 The NBA of Figure 13.1 contains a path from q1 to q0, and the DFS-tree displayed
satisfied f [q1] = 11 < 12 = f [q0]. As guaranteed by lemma 13.3, some cycle contains q1, namely
the cycle q1q6q0.

To prove the claim, we assume that s{ r holds and derive a contradiction. Since s was already
discovered by the search starting at q, we have q{ s, and so q{ r. Since f [q] < f [r], by Lemma
13.3 some cycle of A contains q, contradicting the assumption that the search from q failed.

Hence, during the second phase we only need to explore a transition at most once, namely when
its source state is discovered for the first time. This guarantees the correctness of the following
algorithm:

• Perform a DFS on A from q0, and output the accepting states of A in postorder2. Let
q1, . . . , qk be the output of the search, i.e., f [q1] < . . . < f [qk].

• For i = 1 to k, perform a DFS from the state qi, with the following changes:

– If the search visits a state q that was already discovered by any of the searches starting
at q1, . . . , qi−1, then the search backtracks.

– If the search visits qi, it stops and returns NONEMPTY.

• If none of the searches from q1, . . . , qk returns NONEMPTY, return EMPTY.

Example 13.5 We apply the algorithm to the example of Figure 13.1. Assume that the first DFS
runs as in Figure 13.1. The search outputs the accepting states in postorder, i.e., in the order
q2, q1, q0. Figure 13.2 shows the transitions explored during the searches of the second phase. The
search from q2 explores the transitions labelled by 2.1, 2.2, 2.3. The search from q1 explores the
transitions 1.1, . . . , 1.5. Notice that the search backtracks after exploring 1.1, because the state q2
was already visited by the previous search. This search is successful, because transition 1.5 reaches
state q1, and so a cycle containing q1 has been found.

The running time of the algorithm can be easily determined. The first DFS requires O(|Q|+ |δ|)
time. During the searches of the second phase each transition is explored at most once, and so they
can be executed together in O(|Q| + |δ|) time.

Nesting the two searches

Recall that we are looking for algorithms that return an accepting lasso when A is nonempty. The
algorithm we have described is not good for this purpose. Define the DFS-path of a state as the
unique path of the DFS-tree leading from the initial state to it. When the second phase answers
NONEMPTY, the DFS-path of the state being currently explored, say q, is an accepting cycle, but

2Notice that this does not require to apply any sorting algorithm, it suffices to output an accepting state immediately
after blackening it.

272 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

q0 q1 q2 q3 q4

q6

1.5 1.1 2.1
2.2

2.3

1.4
1.2

1.3

Figure 13.2: The transitions explored during the search starting at qi are labelled by the index i.
The search starting at q1 stops with NONEMPTY.

usually not an accepting lasso. For an accepting lasso we can prefix this path with the DFS-path of
q obtained during the first phase. However, since the first phase cannot foresee the future, it does
not know which accepting state, if any, will be identified by the second phase as belonging to an
accepting lasso. So either the first search must store the DFS-paths of all the accepting states it
discovers, or a third phase is necessary, in which a new DFS-path is recomputed.

This problem can be solved by nesting the first and the second phases: Whenever the first DFS
blackens an accepting state q, we immediately launch a second DFS to check if q is reachable from
itself. We obtain the nested-DFS algorithm, due to Courcoubetis, Vardi, Wolper, and Yannakakis:

• Perform a DFS from q0.

• Whenever the search blackens an accepting state q, launch a new DFS from q. If this second
DFS visits q again (i.e., if it explores some transition leading to q), stop with NONEMPTY.
Otherwise, when the second DFS terminates, continue with the first DFS.

• If the first DFS terminates, output EMPTY.

A pseudocode implementation is shown below; for clarity, the program on the left does not include
the instructions for returning an accepting lasso. A variable seed is used to store the state from
which the second DFS is launched. The instruction report X produces the output X and stops
the execution. The set S is usually implemented by means of a hash-table. Notice that it is not
necessary to store states [q, 1] and [q, 2] separately. Instead, when a state q is discovered, either
during the first or the second searches, then it is stored at the hash address, and two extra bits are
used to store which of the following three possibilities hold: only [q, 1] has ben discovered so far,
only [q, 2], or both. So, if a state is encoded by a bitstring of length c, then the algorithm needs
c + 2 bits of memory per state.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 273

NestedDFS(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ← ∅
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if q ∈ F then { seed ← q; dfs2(q) }
9 return

10 proc dfs2(q)
11 add [q, 2] to S
12 for all r ∈ δ(q) do
13 if r = seed then report NEMP
14 if [r, 2] < S then dfs2(r)
15 return

NestedDFSwithWitness(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ← ∅; succ← false
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if succ = true then return [q, 1]
9 if q ∈ F then

10 seed ← q; dfs2(q)
11 if succ = true then return [q, 1]
12 return

13 proc dfs2(q)
14 add [q, 2] to S
15 for all r ∈ δ(q) do
16 if [r, 2] < S then dfs2(r)
17 if r = seed then
18 report NEMP; succ← true
19 if succ = true then return [q, 2]
20 return

The algorithm on the right shows how to modify NestedDFS so that it returns an accepting lasso.
It uses a global boolean variable succ (for success), initially set to false. If at line 11 the algorithm
finds that r = seed holds, it sets success to true. This causes procedure calls in dfs1(q) and dfs2(q)
to be replaced by return[q, 1] and return[q, 2], respectively. The lasso is produced in reverse order,
i.e., with the initial state at the end.

A small improvement

We show that dfs2(q) can already return NONEMPTY if it discovers a state that belongs to the DFS-
path of q in dfs1. Let qk be an accepting state. Asssume that dfs1(q0) discovers qk, and that the
DFS-path of qk in dfs1 is q0q1 . . . qk−1qk. Assume further that dfs2(qk) discovers qi for some 0 ≤ i ≤
k−1, and that the DFS-path of qi in dfs2 is qkqk+1 . . . qk+lqi. Then the path q0q1 . . . qk−1qk . . . qk+lqi

is a lasso, and, since qk is accepting, it is an accepting lasso. So stopping with NONEMPTY
is correct. Implementing this modification requires to keep track during dfs1 of the states that

274 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

belong to the DFS-path of the state being currently explored. Notice, however, that we do not need
information about their order. So we can use a set P to store the states of the path, and implement
P as e.g. a hash table. We do not need the variable seed anymore, because the case r = seed is
subsumed by the more general r ∈ P.

ImprovedNestedDFS(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅, NEMP other-
wise

1 S ← ∅; P← ∅
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S ; add q to P
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if q ∈ F then dfs2(q)
9 remove q from P

10 return

11 proc dfs2(q)
12 add [q, 2] to S
13 for all r ∈ δ(q) do
14 if r ∈ P then report NEMP
15 if [r, 2] < S then dfs2(r)
16 return

Evaluation

The strong point of the the nested-DFS algorithm are its very modest space requirements. Apart
from the space needed to store the stack of calls to the recursive dfs procedure, the algorithm just
needs two extra bits for each state of A. In many practical applications, A can easily have millions
or tens of millions of states, and each state may require many bytes of storage. In these cases, the
two extra bits per state are negligible.

The algorithm, however, also has two important weak points: It cannot be extended to NGAs,
and it is not optimal, in a formal sense defined below. We discuss these two points separately.

The nested-DFS algorithm works by identifying the accepting states first, and then checking
if they belong to some cycle. This principle no longer works for the acceptance condition of
NGAs, where we look for cycles containing at least one state of each family of accepting states.
No better procedure than translating the NGA into an NBA has been described so far. For NGAs

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 275

having a large number of accepting families, the translation may involve a substantial penalty in
performance.

A search-based algorithm for emptiness checking explores the automaton A starting from the
initial state. At each point t in time, the algorithm has explored a subset of the states and the
transitions of the algorithm, which form a sub-NBA At = (Qt,Σ, δt, q0, Ft) of A (i.e., Qt ⊆ Q,
δt ⊆ δ, and Ft ⊆ F)). Clearly, a search-based algorithm can have only reported NONEMPTY at a
time t if At contains an accepting lasso. A search-based algorithm is optimal if the converse holds,
i.e., if it reports NONEMPTY at the earliest time t such that At contains an accepting lasso. It is
easy to see that NestedDFS is not optimal. Consider the automaton on top of Figure 13.5. Initially,

q0

q1

q2 qn−1 qn• • •

q0

q1

q2 qn−1 qn

qn+1

• • •

Figure 13.3: Two bad examples for NestedDFS

the algorithm chooses between the transitions (q0, q1) and (q0, q2). Assume it chooses (q0, q1) (the
algorithm does not know that there is a long tail behind q2). The algorithm explores (q0, q1) and
then (q1, q0) at some time t. The automaton At already contains an accepting lasso, but, since q0
has not been blackened yet, dfs1 continues its execution with (q0, q2), and explores all transitions
before dfs2 is called for the first time, and reports NONEMPTY. So the time elapsed between the
first moment at which the algoritm has enough information to report NONEMPTY, and the moment
at which the report occurs, can be arbitrarily large.

The automaton at the bottom of Figure 13.5 shows another problem of NestedDFS related to
non-optimality. If it selects (q0, q1) as first transition, then, since qn precedes q0 in postorder,
dfs2(qn) is executed before dfs2(q0), and it succeeds, reporting the lasso q0q2 . . . qnqn+1qn, instead
of the much shorter lasso q0q1q0.

In the next section we describe an optimal algorithm that can be easily extended to NGAs. The
price to pay is a higher memory consumption. As we shall see, the new algorithm needs to assign
a number to each state, and store it (apart from maintaining other data structures).

276 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

13.1.2 The two-stack algorithm

Recall that the nested-DFS algorithm searches for accepting states of A, and then checks if they
belong to some cycle. The two-stack algorithm proceeds the other way round: It searches for states
that belong to some cycle of A by means of a single DFS, and checks whether they are accepting.

A first observation is that by the time the DFS blackens a state, it already has explored enough
to decide whether it belongs to a cycle:

Lemma 13.6 Let At be the sub-NBA of A containing the states and transitions explored by the DFS
up to (and including) time t. If a state q belongs to some cycle of A, then it already belongs to some
cycle of A f [q].

Proof: Let π be a cycle containing q, and consider the snapshot of the DFS at time f [q]. Let
r be the last state of π after q such that all sttaes in the subpath from q to r are black. We have
f [r] ≤ f [q]. If r = q, then π is a cycle of A f [q], and we are done. If r , q, let s be the successor
of r in π (see Figure 13.4). We have f [r] < f [q] < f [s]. Moreover, since all successors of r have

����
����
����
����
����
����
����

����
����
����
����
����
����
����

π

π′

q

r

s

Figure 13.4: Illustration of the proof of Lemma 13.6

necessarily been discovered at time f [r], we have d[s] < f [r] < f [q] < f [s]. By the Parenthesis
theorem, s is a DFS-ascendant of q. Let π′ be the cycle obtained by concatenating the DFS-path
from s to q, the prefix of π from q to r, and the transition (r, s). By the Parenthesis Theorem, all the
transitions in this path have been explored at time f [q], and so the cycle belongs to A f [q]

This lemma suggests to maintain during the DFS a set C of candidates, containing the states for
which it is not yet known whether they belong to some cycle or not. A state is added to C when it
is discovered. While the state is grey, the algorithm tries to find a cycle containing it. If it succeeds,
then the state is removed from C. If not, then the state is removed from C when it is blackened. At
any time t, the candidates are the currently grey states that do not belong to any cycle of At.

Assume that at time t the set C indeed contains the current set of candidates, and that the DFS
explores a new transition (q, r). We need to update C. If r has not been discovered yet (i.e., if it
does not belong to At), the addition of r and (q, r) to At does not create any new cycle, and the

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 277

update just adds r to C. If r belongs to At but no path of At leads from r to q, again no new cycle is
created, and the set C does not change. But if r belongs to At, and r{ q then the addition of (q, r)
does create new cycles. Let us assume we can ask an oracle whether r { q holds, and the oracle
answers ‘yes’. Then we have already learnt that both q and r belong to some cycle of A, and so both
of them must be removed from C. However, we may have to remove other states as well. Consider
the DFS of Figure 13.5: after adding (q4, q1) to the set of explored transitions at time 5, all of
q1, q2, q3, q4 belong to a cycle. The fact that these are the states discovered by the DFS between the

q0 q1 q2

q3q4

[1,10] [2,9] [3,8]

[4,7][5,6]

Figure 13.5: A DFS on an automaton

discoveries of q1 and q4 suggests to implement C using a stack: By pushing states into C when they
are discovered, and removing when they are blackened or earlier (if some cycle contains them), the
update to C after exploring a transition (q, r) can be performed very easily: it suffices to pop from
C until r is hit (in Figure 13.5 we pop q4, q3, q2, and q1). Observe also that removing q from C
when it is blackened does not require to inspect the complete stack; since every state is removed at
the latest when it is blackened, if q has not been removed yet, then it is necessarily at the top of C.
(This is the case of state q0 in Figure 13.5). So it suffices to inspect the top of the stack: if q is at
the top, we pop it; otherwise q is not in the stack, and we do nothing.

This leads to our first attempt at an algorithm, shown on the top left corner of Figure 13.6. When
a state q is discovered it is pushed into C (line 5), and its successors explored (lines 6-12). When
exploring a successor r, if r has not been discovered yet then dfs(r) is called (line 7). Otherwise the
oracle is consulted (line 8), and if r { q holds at the time (i.e., in the part of A explored so far),
then states are popped from C until r is hit (lines 9-12). Then the algorithm checks if q has already
been removed by inspecting the top of the stack (line 13), and removes q if that is the case.

The NBA below FirstAttempt shows, however, that the algorithm needs to be patched. After
exploring (q4, q1) the states q4, q3, q2, q1 are popped from C, in that order, and C contains only q0.
Now the DFS backtracks to state q3, and explores (q3, q5), pushing q5 into the stack. Then the DFS
explores (q5, q1), and pops from C until it hits q1. But this leads to an incorrect result, because,
since q1 no longer belongs to C, the algorithm pops all states from C, and when it pops q0 it reports
NONEMPTY.

This problem can be solved as follows: If the DFS explores (q, r) and r{ q holds, then it pops
from C until r is popped, and pushes r back into the stack. This second attempt is shown at the top

278 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

FirstAttempt(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ,C ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C)
11 if s ∈ F then report
NEMP
12 until s = r
13 if top(C) = q then pop(C)

SecondAttempt(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ,C ← ∅;
2 dfs1(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C)
11 if s ∈ F then report
NEMP
12 until s = r
13 push(r,C)
14 if top(C) = q then pop(C)

q0 q1 q2

q3q4

q5

[1,12] [2,11] [3,10]

[4,7][5,6]

[8,9]

q0 q1 q2

q3q4

q5

[1,12] [2,11] [3,10]

[4,9][5,6]

[7,8]

Figure 13.6: Two incorrect attempts at an emptiness checking algorithm

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 279

right of the figure. However, the NBA below SecondAttempt shows that it is again incorrect. After
exploring (q4, q1) (with stack content q4q3q2q1q0), the states q4, q3, q2, q1 are popped from C, in
that order, and q1 is pushed again. C contains now q1q0. The DFS explores (q3, q5) next, pushing
q5, followed by (q5, q4). Since q4 { q5 holds, the algorithm pops from C until q4 is found. But,
again, since q4 does not belong to C, the result is incorrect.

A patch for this problem is to change the condition of the repeat loop: If the DFS explores (q, r)
and r{ q holds, we cannot be sure that r is still in the stack. So we pop until either r or some state
discovered before r is hit, and then we push this state back again. In the example, after exploring
(q5, q4) with stack content q5q1q0, the algorithm pops q5 and q1, and then pushes q1 back again.
This new patch leads to the OneStack algorithm:

OneStack(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C ← ∅;
2 dfs(q0)
3 report EMP

4 dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C); if s ∈ F then report NEMP
11 until d[s] ≤ d[r]
12 push(s,C)
13 if top(C) = q then pop(C)

Example 13.7 Figure 13.7 shows a run of OneStack on the NBA shown at the top. The NBA has
no accepting states, and so it is empty. However, during the run we will see how the algorithm
answers NONEMPTY (resp. EMPTY) when f (res. h) is the only accepting state. The discovery
and finishing times are shown at the top. Observe that the NBA has three sccs: {a, b, e, f , g}, {h},
and {c, d, i, j}, with roots a, h, and i, respectively.

Below the NBA at the top, the figure shows different snapshots of the run of OneStack. At
each snapshot, the current grey path is shown in red/pink. The dotted states and transitions have
not been discovered yet, while dark red states have already been blackened. The current content of
stack C is shown on the right.

• The first snapshot is taken immediately before state j is blackened. The algorithm has just
explored the transition (j, i), has popped the states c, d, j, i from C, and has pushed state i
back. The states c, d, j, i have been identified as belonging to some cycle.

280 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

• The second snapshot is taken immediately after state i is blackened. State i has been popped
from C at line 13. Observe that after this the algorithm backtracks to dfs(h), and, since state
h is at the top of the stack, it pops h from C at line 13. So h is never popped by the repeat
loop, and so even if h is accepting the algorithm does not report NONEMPTY.

• The third snapshot is taken immediately before state f is blackened. The algorithm has just
explored the transition (f , a), has popped the states f , g, b, a from C, and has pushed state
a back. The states f , g, b, a have been identified as belonging to some cycle. If state f is
accepting, at this point the algorithm reports EMPTY and stops.

• The fourth snapshot is taken immediately after state e is discovered. The state has been
pushed into C.

• The final snapshot is taken immediately before a is blackened and the run terminates. State
a is going to be removed from C at line 13, and the run terminates.

Observe that when the algorithm explores transition (b, c) it calls the oracle, which answers
c 6{ b, and no states are popped from C.

The algorithm looks now plausible, but we still must prove it correct. We have two proof obliga-
tions:

• If A is nonempty, then OneStack reports NONEMPTY. This is equivalent to: every state that
belongs to some cycle is eventually popped during the repeat loop.

• If OneStack reports NONEMPTY, then A is nonempty. This is equivalent to: every state
popped during the repeat loop belongs to some cycle.

These properties are shown in Propositions 13.8 and 13.11 below.

Proposition 13.8 If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof: Let π be a cycle containing q, let q′ be the last successor of q along π such that at time d[q]
there is a white path from q to q′, and let r be the successor of q′ in π. Since r is grey or black at
time d[q], we have d[r] ≤ d[q] ≤ d[q′]. By the White-path Theorem, q′ is a descendant of q, and so
the transition (q′, r) is explored before q is blackened. So when (q′, r) is explored, q has not been
popped at line 13. Since r { q′, either q has already been popped by at some former execution of
the repeat loop, or it is popped now, because d[r] ≤ d[q′].

Actually, the proof of Proposition 13.8 proves not only that q is eventually popped by the
repeat loop, but also that for every cycle π containing q, the repeat loop pops q immediately after
all transitions of π have been explored, or earlier. But this is precisely the optimality property,
which leads to:

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 281

[1,20] [7,10]

[4,13][3,18]

[6,11][2,19]

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c
[16,17]

b

Cg ha b

Ca

Ca

Ca

e

[8,9][5,12][14,15]

unexplored

grey path

black

d

jih

Cg h ia b

t = 15 − ε

t = 16

t = 20 − ε

t = 9 − ε

t = 12 + ε

Figure 13.7: A run of OneStack

282 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Corollary 13.9 OneStack is optimal.

The property that every state popped during the repeat loop belongs to some cycle has a more
involved proof. A strongly connected component (scc) of A is a maximal set of states S ⊆ Q such
that q { r for every q, r ∈ S .3 The first state of a reachable scc that is discovered by the DFS is
called the root of the scc (with respect to this DFS). In other words, if q is the root of an scc, then
d[q] ≤ d[r] for every state r of the scc. The following lemma states an important invariant of the
algorithm. If a root belongs to C at line 9, before the repeat loop is executed, then it still belongs to
C after the loop finishes and the last popped state is pushed back. So, loosely speaking, the repeat
loop cannot remove a root from the stack; more precisely, if the loop removes a root, then the push
instruction at line 12 reintroduces it again.

Lemma 13.10 Let ρ be a root. If ρ belongs to C before an execution of the repeat loop at lines 9-
11, then all states s popped during the execution of the loop satisfy d[ρ] ≤ d[s], and ρ still belongs
to C after the repeat loop has terminated and line 12 has been executed.

Proof: Let t be the time right before an execution of the repeat loop starts at line 9, and assume
ρ belongs to C at time t. Since states are removed from C when they are blackened or earlier, ρ is
still grey at time t. Since r ∈ δ(q) (line 6) and r { q (line 8), both q and r belong to the same scc.
Let ρ′ be the root of this scc. Since ρ′ is also grey at time t, and grey states always are a path of the
DFS-tree, either ρ is a DFS-ascendant of ρ′, or ρ′ , ρ and ρ′ is a DFS-ascendant of ρ. In the latter
case we have ρ′ { ρ { q, contradicting that ρ′ is the root of q’s scc. So ρ is a DFS-ascendant
of ρ′, and so in particular we have d[ρ] ≤ d[ρ′] ≤ d[r]. Since states are added to C when they are
discovered, the states of C are always ordered by decreasing discovery time, starting from the top,
and so every state s popped before ρ satisfies d[ρ] ≤ d[s]. If ρ is popped, then, since d[ρ] ≤ d[r],
the execution of the repeat loop terminates, and ρ is pushed again at line 12.

Proposition 13.11 Any state popped during the repeat loop (at line 10) belongs to some cycle.

Proof: Consider the time t right before a state s is about to be popped at line 10 while the for-loop
(lines 6-12) is exploring a transition (q, r). (Notice that the body of the for-loop may have already
been executed for other transitions (q, r′)). Since the algorithm has reached line 10, we have r{ q
(line 8), and so both q and r belong to the same scc of A. Let ρ be the root of this scc. We show
that s belongs to a cycle.

(1) s is a DFS-ascendant of q.
Since s belongs to C at time t, both s and q are grey at time t, and so they belong to the
current path of grey states. Moreover, since dfs(q) is being currently executed, q is the last
state in the path. So s is a DFS-ascendant of q.

3Notice that a path consisting of just a state q and no transitions is a path leading from q to q.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 283

(2) ρ is a DFS-ascendant of s.
Since ρ is a root of the scc of q, at time d[ρ] there is a white path from ρ to q. By the White-
path and Parenthesis Theorem, ρ is a DFS-ascendant of q. Together with (1), this implies
that either ρ is a DFS-ascendant of s or s is a DFS-ascendant of ρ. By Lemma 13.10 we have
d[ρ] ≤ d[s], and so by the Parenthesis Theorem ρ is a DFS-ascendant of s.

By (1), (2), and r{ q, we have ρ{ s{ q{ r{ ρ, and so s belongs to a cycle.

Implementing the oracle

Recall that OneStack calls an oracle to decide at time t if r { q holds. At first sight the oracle
seems difficult to implement. We show that this is not the case.

Assume that OneStack calls the oracle at line 8 at some time t. We look for a condition that
holds at time t if and only if r{ q, and is easy to check.

Lemma 13.12 Assume that OneStack(A) is currently exploring a transition (q, r), and the state r
has already been discovered. Let R be the scc of A satisfying r ∈ R. Then r{ q iff some state of R
is not black.

Proof: Assume r { q. Then r and q belong to R, and since q is not black because (q, r) is being
explored, R is not black.

Assume some state of R is not black. Not all states of R are white because r has already been
discovered, and so at least one state s ∈ R is grey. Since grey states form a path ending at the state
whose outgoing transitions are being currently explored, the grey path contains s and ends at q. So
s{ q, and, since s and r belong to R, we have r{ q.

By Lemma 13.12, checking if r { q holds amounts to checking if all states of R are black or
not. This can be done as follows: we maintain a set V of actiVe states, where a state is active if its
scc has not yet been completely explored, i.e., if some state of the scc is not black. Then, checking
r { q reduces to checking whether r is active. The set V can be maintained by adding a state
to it whenever it is discovered, and removing all the states of a scc right after the last of them is
blackened. The next lemma shows that the last of them is always the root:

Lemma 13.13 Let ρ be a root, and let q be a state such that ρ { q { ρ. Then I(q) ⊆ I(r). (In
words: The root is the first state of a scc to be grayed, and the last to be blackened)

Proof: By the definition of a root, at time d[ρ] there is a white path from ρ to q. By the White-path
and the Parenthesis Theorems, I(q) ⊆ I(r).

By this lemma, in order to maintain V it suffices to remove all the states of an scc whenever
its root is blackened. So whenever the DFS blackens a state q, we have to perform two tasks: (1)
check if q is a root, and (2) if q is a root, remove all the states of q’s scc. Checking if q is a root is
surprisingly simple:

284 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Lemma 13.14 When OneStack executes line 13, q is a root if and only if top(C) = q.

Proof: Assume q is a root. By Lemma 13.10, q still belongs to C after the for loop at lines 6-12
is executed, and so top(C) = q at line 13.

Assume now that q is not a root. Then there is a path from q to the root of q’s scc. Let r be the
first state in the path satisfying d[r] < d[q], and let q′ be the predecessor of r in the path. By the
White-path theorem, q′ is a descendant of q, and so when transition (q, r) is explored, q is not yet
black. When OneStack explores (q′, r), it pops all states s from C satisfying d[s] > d[r], and none
of these states is pushed back at line 12. In particular, either OneStack has already removed q from
C, or it removes it now. Since q has not been blackened yet, when OneStack executes line 14 for
dfs(q), the state q does not belong to C and in particular q , top(C)

Tasks (2) can be performed very elegantly by implementing V as a second stack, and maintain-
ing it as follows:

• when a state is discovered (greyed), it is pushed into the stack (so states are always ordered
in V by increasing discovery time); and

• when a root is blackened, all states of V above it (including the root itself) are popped.

Example 13.15 Figure 13.8 shows the run of TwoStack on the same example considered in Figure
13.7. The figure shows the content of V at different times when the policy above is followed. Right
before state j is blackened, V contains all states in the grey path. When the root i is blackened,
all states above it (including i itself), are popped; these are the states c, d, j, i, which form a scc.
State h is also a root, and it is also popped. Then, states f and e are discovered, and pushed into V .
Finally, when the root a is blackened, states c, f , g, b, a are popped, which correspond to the third
and last scc.

We show that the states popped when ρ is blackened are exactly those that belong to ρ’s scc.

Lemma 13.16 The states popped from V right after blackening a root ρ are exactly those belonging
to ρ’s scc.

Proof: Let q be a state of ρ’s scc. Since ρ is a root, we have d[ρ] ≤ d[q], and so q lies above ρ
in V . So q is popped when ρ is blackened, unless it has been popped before. We show that this
cannot be the case. Assume q is popped before ρ is blackened, i.e., when some other root ρ′ , ρ is
blackened at time f [ρ′]. We collect some facts: (a) d[ρ] ≤ d[q] ≤ d[q] ≤ f [ρ] by Lemma 13.13;
(b) d[ρ′] ≤ d[q] < f [ρ′], because q is in the stack at time f [ρ′] (implying d[q] < f [ρ′]), and it is
above ρ′ in the stack (implying d[ρ′] ≤ d[q]); (c) f [ρ′] < f [ρ], because q has not been popped yet
at time f [ρ′], and so ρ cannot have been blackened yet. From (a)-(c) and the Parenthesis Theorem
we get I(q) ⊆ I(ρ′) ⊆ I(ρ), and so in particular ρ { ρ′ { q. But then, since q { ρ, we get
ρ{ ρ′ { ρ, contradicting that ρ and ρ′ are different roots, and so belong to different sccs.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 285

g h ia b j d c

g h ia b

[1,20] [7,10]

[4,13][3,18]

[6,11][2,19]

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c
[16,17]

b

C

V

g ha b

g ha b

C

V

a

C

g fa b

a

Ca

e

[8,9][5,12][14,15]

unexplored

grey path

black

d

jih

C

V

Vg f ea b

Vg f ea b

t = 15 − ε

t = 16

t = 20 − ε

t = 9 − ε

t = 12 + ε

Figure 13.8: A run of TwoStack

286 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

This finally leads to the two-stack algorithm

TwoStack(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C,V ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C); push(q,V)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r ∈ V then
9 repeat

10 s← pop(C); if s ∈ F then report NEMP
11 until d[s] ≤ d[r]
12 push(s,C)
13 if top(C) = q then
14 pop(C)
15 repeat s← pop(V) until s = q

The changes with respect to OneStack are shown in blue. The oracle r { q is replaced by r ∈ V
(line 8). When the algorithm blackens a root (line 13), it pops from V all elements above q, and q
itself (line 15).

Observe that V cannot be implemented only as a stack, because at line 8 we have to check
if a state belongs to the stack or not. The solution is to implement V both as a stack and use an
additional bit in the hash table for S to store whether the state belongs to V or not, which is possible
because V ⊆ S holds at all times. The check at line 8 is performed by checking the value of the bit.

Extension to GBAs

We show that TwoStack can be easily transformed into an emptiness check for generalized Büchi
automata that does not require to construct an equivalent NBA. Recall that a NGA has in general
several sets {F0, . . . , Fk−1} of accepting states, and that a run ρ is accepting if inf ρ ∩ Fi , ∅

for every i ∈ {0, . . . , k − 1}. So we have the following characterization of nonemptiness, where
K = {0, . . . , k − 1}:

Fact 13.17 Let A be a NGA with accepting condition {F0, . . . , Fk−1}. A is nonempty iff some scc S
of A satisfies S ∩ Fi , ∅ for every i ∈ K.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 287

Since every time the repeat loop at line 15 is executed, it pops from V one scc, we can easily check
this condition by modifying line 15 accordingly. However, the resulting algorithm would not be
optimal, because the condition is not checked until the scc has been completely explored. To solve
this problem, we have a closer look at Proposition 13.11. The proof shows that a state s popped
at line 10 belongs to the ssc of state r. So, in particular, all the states popped during an execution
of the repeat loop at lines 9-11 belong to the same scc. So we collect the set I of indices of the
sets of accepting states they belong to, and keep checking whether I = K. If so, then we report
NONEMPTY. Otherwise, we attach the set I to the state s that is pushed back into the C at line
12. This yields algorithm TwoStackNGA, where F(q) denotes the set of all indices i ∈ K such that
q ∈ Fi:

TwoStackNGA(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fk−1})
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C,V ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add [q, F(q)] to S ; push([q, F(q)],C); push(q,V)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r ∈ V then
9 I ← ∅

10 repeat
11 [s, J]← pop(C);
12 I ← I ∪ J; if I = K then report NEMP
13 until d[s] ≤ d[r]
14 push([s, I],C)
15 if top(C) = (q, I)for some I then
16 pop(C)
17 repeat s← pop(V) until s = q

For the correctness of the algorithm, observe that, at every time t, the states of teh subautomaton At

can be partitioned into strongly connected components, and each of these components has a root.
The key invariant for the correctness proof is the following:

Lemma 13.18 At every time t, the stack C contains a pair [q, I] iff q is a root of At, and I is the
subset of indices i ∈ K such that some state of Fi belongs to q’s scc.

288 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Proof: Initially the invariant holds because both At and C are empty. We show that whenever
a new transition (q, r) is explored, TwoStackNGA carries out the necessary changes to keep the
invariant. Let t be the time immediately after (q, r) is explored. If r is a new state, then it has no
successors in At, and so it builds an scc of At by itself, with root r. Moreover, all roots before the
exploration of (q, r) are alsoroots of At. So a new pair [r, F(r)] must be added to C, and that is what
dfs(r) does. If r < L, then r 6{ ρ, the addition of (q, r) has not changed the sccs of the automaton
explored so far, and nothing must be done. If r ∈ L, then the addition of (q, r) creates new cycles,
and some states stop being roots. More precisely, let NR be the set of states of At that belong to a
cycle containing both q and r, and let ρ be the state of NR with minimal discovery time. Then the
algorithm must remove from C all states of NR with the exception of ρ (and no others). We show
that this is exactly what the execution of lines 9-14 achieves. By Proposition 13.8 and Corollary
13.9, all the states of NR \ {ρ} have already been removed at some former execution of the loop, or
are removed now at lines 9-14, because they have discovery time smaller than or equal to d[r]. It
remains to show that all states popped at line 11 belong to NR (that ρ is not removed follows then
from the fact that the state with the lowest discovery time is pushed again at line 14, and that state
is ρ). For, this, we have a closer look at the proof of Proposition 13.11. The proposition shows not
only that the states popped by the repeat loop belong to some cycle, but also that they all belong to
cycles that containing q and r (see the last line of the proof), and we are done.

We can now easily prove:

Proposition 13.19 TwoStackNGA(A) reports NONEMPTY iff A is nonempty. Moreover, TwoStack-
NGA is optimal.

Proof: If TwoStackNGA(A) reports NONEMPTY, then the repeat loop at lines 10-13 pops some
pair [q,K]. By Lemma 13.18, q belongs to a cycle of A containing some state of Fi for every i ∈ K.

If A is nonempty, then some scc S of A satisfies S ∩ Fi , ∅ for every i ∈ K. So there is an
earliest time t such that At contains an scc S t ⊆ S satisfying the same property. By Lemma 13.18,
TwoStackNGA(A) reports NONEMPTY at time t or earlier, and so it is optimal.

Evaluation

Recall that the two weak points of the nested-DFS algorithm were that it cannot be directly ex-
tended to NGAs, and it is not optimal. Both are strong points of the two-stack algorithm.

The strong point of the the nested-DFS algorithm were its very modest space requirements:
just two extra bits for each state of A. Let us examine the space needed by the two-stack algorithm.
It is conveniet to compute it for empty automata, because in this case both the nested-DFS and the
two-stack algorithms must visit all states.

Because of the check d[s] ≤ d[r], the algorithm needs to store the discovery time of each state.
This is done by extending the hash table S . If a state q can be stored using c bits, then log n bits
are needed to store d[q]; however, in practice d[q] is stored using a word of memory, because if the

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 289

number states of A exceeds 2w, where w is the number of bits of a word, then A cannot be stored in
main memory anyway. So the hash table S requires c + w + 1 bits per state (the extra bit being the
one used to check membership in V at line 8).

The stacks C and V do not store the states themselves, but the memory addresses at which they
are stored. Ignoring hashing collisions, this requires 2w additional bits per state. For generalized
Büchi automata, we must also add the k bits needed to store the subset of K in the second com-
ponent of the elements of C. So the two-stack algorithm uses a total of c + 3w + 1 bits per state
(c + 3w + k + 1 in the version for NGA), compared to the c + 2 bits required by the nested-DFS
algorithm. In most cases w << c, and so the influence of the additional memory requirements on
the performance is small.

13.2 Algorithms based on breadth-first search

In this section we describe algorithms based on breadth-first search (BFS). No linear BFS-based
emptiness check is known, and so this section may look at first sight superfluous. However, BFS-
based algorithms can be suitably described using operations and checks on sets, which allows us
to implement them using automata as data structures. In many cases, the gain obtained by the use
of the data structure more than compensates for the quadratic worse-case behaviour, making the
algorithms competitive.

Breadth-first search (BFS) maintains the set of states that have been discovered but not yet
explored, often called the frontier or boundary. A BFS from a set Q0 of states (in this section we
consider searches from an arbitrary set of states of A) initializes both the set of discovered states and
its frontier to Q0, and then proceeds in rounds. In a forward search, a round explores the outgoing
transitions of the states in the current frontier; the new states found during the round are added to
the set of discovered states, and they become the next frontier. A backward BFS proceeds similarly,
but explores the incoming instead of the outgoing transitions. The pseudocode implementations of
both BFS variants shown below use two variables S and B to store the set of discovered states and
the boundary, respectively. We assume the existence of oracles that, given the current boundary B,
return either δ(B) =

⋃
q∈B δ(q) or δ−1(B) =

⋃
q∈B δ

−1(q).

ForwardBFS[A](Q0)
Input:

NBA A = (Q,Σ, δ,Q0, F),
Q0 ⊆ Q

1 S , B← Q0;
2 repeat
3 B← δ(B) \ S
4 S ← S ∪ B
5 until B = ∅

BackwardBFS[A](Q0)
Input:

NBA A = (Q,Σ, δ,Q0, F),
Q0 ⊆ Q

1 S , B← Q0;
2 repeat
3 B← δ−1(B) \ S
4 S ← S ∪ B
5 until B = ∅

Both BFS variants compute the successors or predecessors of a state exactly once, i.e., if in

290 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

the course of the algorithm the oracle is called twice with arguments Bi and B j, respectively, then
Bi∩B j = ∅. To prove this in the forward case (the backward case is analogous), observe that B ⊆ S
is an invariant of the repeat loop, and that the value of S never decreases. Now, let B1, S 1, B2, S 2, . . .

be the sequence of values of the variables B and S right before the i-th execution of line 3. We have
Bi ⊆ S i by the invariant, S i ⊆ S j for every j ≥ i, and and B j+1 ∩ S j = ∅ by line 3. So B j ∩ Bi = ∅

for every j > i.
As data structures for the sets S and B we can use a hash table and a queue, respectively.

But we can also take the set Q of states of A as finite universe, and use automata for fixed-length
languages to represent both S and B. Moreover, we can represent δ ⊆ Q × Q by a finite transducer
Tδ, and reduce the computation of δ(B) and δ−1(B) in line 3 to computing Post(B, δ) and Pre(B, δ),
respectively.

13.2.1 Emerson-Lei’s algorithm

A state q of A is live if some infinite path starting at q visits accepting states infinitely often. Clearly,
A is nonempty if and only if its initial state is live. We describe an algorithm due to Emerson and
Lei for computing the set of live states. For every n ≥ 0, the n-live states of A are inductively
defined as follows:

• every state is 0-live;

• a state q is (n + 1)-live if some path containing at least one transition leads from q to an
accepting n-live state.

Loosely speaking, a state is n-live if starting at it it is possible to visit accepting states n-times. Let
L[n] denote the set of n-live states of A. We have:

Lemma 13.20 (a) L[n] ⊇ L[n + 1] for every n ≥ 0.

(b) The sequence L[0] ⊇ L[1] ⊇ L[2] . . . reaches a fixpoint L[i] (i.e., there is a least index i ≥ 0
such that L[i + 1] = L[i]), and L[i] is the set of live states.

Proof: We prove (a) by induction on n. The case n = 0 is trivial. Assume n > 0, and let
q ∈ L[n + 1]. There is a path containing at least one transition that leads from q to an accepting
state r ∈ L[n]. By induction hypothesis, r ∈ L[n − 1], and so q ∈ L[n].

To prove (b), first notice that, since Q is finite, the fixpoint L[i] exists. Let L be the set of live
states. Clearly, L ⊆ L[i] for every i ≥ 0. Moreover, since L[i] = L[i + 1], every state of L[i] has a
proper descendant that is accepting and belongs to L[i]. So L[i] ⊆ L.

Emerson-Lei’s algorithm computes the fixpoint L[i] of the sequence L[0] ⊇ L[1] ⊇ L[2] To
compute L[n + 1] given L[n] we observe that a state is n + 1-live if some nonempty path leads from
it to an n-live accepting state, and so

L[n + 1] = BackwardBFS(Pre(L[n] ∩ F))

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 291

The pseudocode for the algorithm is shown below on the left-hand-side; the variable L is used to
store the elements of the sequence L[0], L[1], L[2],

EmersonLei(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 L← Pre(OldL ∩ F)
5 L← BackwardBFS(L)
6 until L = OldL
7 if q0 ∈ L then report NEMP
8 else report NEMP

EmersonLei2(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 L← Pre(OldL ∩ F) \ OldL
5 L← BackwardBFS(L) ∪ OldL
6 until L = OldL
7 if q0 ∈ L then report NEMP
8 else report NEMP

The repeat loop is executed at most |Q| + 1-times, because each iteration but the last one removes
at least one state from L. Since each iteration takes O(|Q| + |δ|) time, the algorithm runs in O(|Q| ·
(|Q| + |δ|)) time.

The algorithm may compute the predecessors of a state twice. For instance, if q ∈ F and there
is a transition (q, q), then after line 4 is executed the state still belongs to L. The version on the
right avoids this problem.

Emerson-Lei’s algorithm can be easily generalized to NGAs (we give only the generalization
of the first version):

GenEmersonLei(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fm−1})
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 for i=0 to m − 1
5 L← Pre(OldL ∩ Fi)
6 L← BackwardBFS(L)
7 until L = OldL
8 if q0 ∈ L then report NEMP
9 else report NEMP

Proposition 13.21 GenEmersonLei(A) reports NEMP iff A is nonempty.

292 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Proof: For every k ≥ 0, redefine the n-live states of A as follows: every state is 0-live, and q is
(n + 1)-live if some path having at least one transition leads from q to a n-live state of F(n mod m).
Let L[n] denote the set of n-live states. Proceeding as in Lemma 13.20, we can easily show that
L[(n + 1) · m] ⊇ L[n · m] holds for every n ≥ 0.

We claim that the sequence L[0] ⊇ L[m] ⊇ L[2 · m] . . . reaches a fixpoint L[i · m] (i.e., there is
a least index i ≥ 0 such that L[(i + 1) · m] = L[i · m]), and L[i · m] is the set of live states. Since
Q is finite, the fixpoint L[i · m] exists. Let q be a live state. There is a path starting at q that visits
F j infinitely often for every j ∈ {0, . . . ,m − 1}. In this path, every occurrence of a state of F j is
always followed by some later occurrence of a state of F(j+1) mod m, for every i ∈ {0, . . . ,m− 1}. So
q ∈ L[i ·m]. We now show that every state of L[i ·m] is live. For every state q ∈ L[(i + 1) ·m] there
is a path π = πm−1πm−2π0 such that for every j ∈ {0, . . . ,m− 1} the segment π j contains at least one
transition and leads to a state of L[i ·m + j]∩ F j. In particular, π visits states of F0, . . . , Fm−1, and,
since L[(i + 1) ·m] = L[i ·m], it leads from a state of L[(i + 1) ·m] to another state of L[(i + 1) ·m].
So every state of L[(i + 1) · m] = L[i · m] is live, which proves the claim.

Since GenEmersonLei(A) computes the sequence L[0] ⊇ L[m] ⊇ L[2 · m] . . ., after termination
L contains the set of live states.

13.2.2 A Modified Emerson-Lei’s algorithm

There exist many variants of Emerson-Lei’s algorithm that have the same worst-case complexity,
but try to improve the efficiency, at least in some cases, by means of heuristics. We present here
one of these variants, which we call the Modified Emerson-Lei’s algorithm (MEL).

Given a set S ⊆ Q of states, let inf (S) denote the states q ∈ S such that some infinite path
starting at q contains only states of S . Instead of computing Pre(OldL ∩ F) at each iteration step,
MEL computes Pre(inf (OldL) ∩ Fi).

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 293

MEL(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fk−1})
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 L← Q;
2 repeat
3 OldL← L
4 L← inf (OldL)
5 L← Pre(L ∩ F)
6 L← BackwardBFS(L)
7 until L = OldL
8 if q0 ∈ L then report NEMP
9 else report NEMP

10 function inf(S)
11 repeat
12 OldS← S
13 S ← S ∩ Pre(S)
14 until S = OldS
15 return S

In the following we show that MEL is correct, and then compare it with Emerson-Lei’s al-
gorithm. As we shall see, while MEL introduces the overhead of repeatedly computing inf -
operations, it still makes sense in many cases because it reduces the number of executions of the
repeat loop.

To prove correctness we claim that after termination L contains the set of live states. Recall that
the set of live states is the fixpoint L[i] of the sequence L[0] ⊇ L[1] ⊇ L[2] By the definition
of liveness we have inf (L[i]) = L[i]. Define now L′[0] = Q, and L′[n + 1] = inf (pre+(L′[i] ∩ α)).
Clearly, MEL computes the sequence L′[0] ⊇ L′[1] ⊇ L′[2] Since L[n] ⊇ L′[n] ⊇ L[i] for
every n > 0, we have that L[i] is also the fixpoint of the sequence L′[0] ⊇ L′[1] ⊇ L′[2] . . ., and so
MEL computes L[i]. Since inf (S) can be computed in time O(|Q| + |δ|) for any set S , MEL runs in
O(|Q| · (|Q| + |δ|)) time.

Interestingly, we have already met Emerson-Lei’s algorithm in Chapter ??. In the proof of
Proposition 12.3 we defined a sequence D0 ⊇ D1 ⊇ D2 ⊇ . . . of infinite acyclic graphs. In
the terminology of this chapter, D2i+1 was obtained from D2i by removing all nodes having only
finitely many descendants, and D2i+2 was obtained from D2i+1 by removing all nodes having only
non-accepting descendants. This corresponds to D2i+1 := inf(D2i) and D2i+2 := pre+(D2i+1 ∩ α).
So, in fact, we can look at this procedure as the computation of the live states of D0 using MEL.

294 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

13.2.3 Comparing the algorithms

We give two families of examples showing that MEL may outperform Emerson-lei’s algorithm, but
not always.

A good case for MEL. Consider the automaton of Figure 13.9. The i-th iteration of Emnerson-
Lei’s algorithm removes qn−i+1 The number of calls to BackwardBFS is (n + 1), although a simple
modification allowing the algorithm to stop if L = ∅ spares the (n + 1)-th operation. On the other
hand, the first inf-operation of MEL already sets the variable L to the empty set of states, and so,
with the same simple modification, the algorithm stops after on iteration.

q0 q1 qn−1 qn• • •

Figure 13.9: An example in which the MEL-algorithm outperforms the Emerson-Lei algorithm

A good case for Emerson-Lei’s algorithm. Consider the automaton of Figure 13.10. The i-th
iteration, of Emerson-Lei’s algorithm removes q(n−i+1),1 and q(n−i+1),2, and so the algorithm calls
BackwardBFS (n + 1) times The i-th iteration of MEL-algorithm removes no state as result of the
inf -operation, and states q(n−i+1),1 and q(n−i+1),2 as result of the call to BackwardBFS. So in this
case the inf -operations are all redundant.

q0,1 q0,2 q1,1 q1,2 qn,1 qn,2• • •

Figure 13.10: An example in which the EL-algorithm outperforms the MEL-algorithm

Exercises

Exercise 139 Let B be the following Büchi automaton:

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 295

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

b

b

a

a
b

a

a b
a

1. Execute the emptiness algorithm NestedDFS on B.

2. Recall that NestedDFS is a non deterministic algorithm and different choices of runs may
return different lassos. Which lassos of B can be found by NestedDFS?

3. Show that NestedDFS is non optimal by exhibiting some search sequence on B.

4. Execute the emptiness algorithm TwoStack on B.

5. Which lassos of B can be found by TwoStack?

Exercise 140 A Büchi automaton is weak if none of its strongly connected components contains
both accepting and non-accepting states. Give an emptiness algorithm for weak Büchi automata.
What is the complexity of the algorithm?

Exercise 141 Consider Muller automata whose accepting condition contains one single set of
states F, i.e., a run ρ is accepting if inf (ρ) = F. Transform TwoStack into a linear algorithm
for checking emptiness of these automata.
Hint: Consider the version of TwoStack for NGAs.

Exercise 142 (1) Given R, S ⊆ Q, define pre+(R, S) as the set of ascendants q of R such that
there is a path from q to R that contains only states of S . Give an algorithm to compute
pre+(R, S).

(2) Consider the following modification of Emerson-Lei’s algorithm:

296 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

MEL2(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω(A) = ∅, NEMP other-
wise

1 L← Q
2 repeat
3 OldL← L
4 L← pre+(L ∩ F, L)
5 until L = OldL
6 if q0 ∈ L then report NEMP
7 else report NEMP

Is MEL2 correct? What is the difference between the sequences of sets computed by MEL
and MEL2?

Chapter 14

Applications I: Verification and
Temporal Logic

Recall that, intuitively, liveness properties are those stating that the system will eventually do some-
thing good. More formally, they are properties that are only violated by infinite executions of the
systems, i.e., by examining only a finite prefix of an infinite execution it is not possible to determine
whether the infinite execution violates the property or not. In this chapter we apply the theory of
Büchi automata to the problem of automatically verifying liveness properties.

14.1 Automata-Based Verification of Liveness Properties

In Chapter 8 we introduced some basic concepts about systems: configuration, possible execution,
and execution. We extend these notions to the infinite case. An ω-execution of a system is an
infinite sequence c0c1c2 . . . of configurations where c0 is some initial configuration, and for every
i ≥ 1 the configuration ci is a legal successor according to the semantics of the system of the
configuration ci−1. Notice that according to this definition, if a configuration has no legal successors
then it does not belong to any ω-execution. Usually this is undesirable, and it is more convenient
to assume that such a configuration c has exactly one legal successor, namely c itself. In this
way, every reachable configuration of the system belongs to some ω-execution. The terminating
executions are then the ω-executions of the form c0 . . . cn−1cωn for some terminating configuration
cn. The set of terminating configurations can usually be identified syntactically. For instance, in
a program the terminating configurations are usually those in which control is at some particular
program line.

In Chapter 8 we showed how to construct a system NFA recognizing all the executions of
a given system. The same construction can be used to define a system NBA recognizing all the
ω-executions.

Example 14.1 Consider the little program of Chapter 8.

297

298 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[3, 1, 1][2, 1, 1]

[1, 1, 0]
[1, 0, 1]

[1, 1, 1]

[1, 0, 0]

i

4, 0, 1

[1, 0, 1]

[4, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 14.1: System NBA for the program

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

Its system NFA is the automaton of 14.1, but without the red self-loops at states [5, 0, 0] and
[5, 0, 1]. The system NBA is the result of adding the self-loops

14.1.1 Checking Liveness Properties

In Chapter 8 we used Lamport’s algorithm to present examples of safety properties, and how they
can be automatically checked. We do the same now for liveness properties. Figure 14.2 shows
again the network of automata modelling the algorithm and its asynchronous product, from which
we can easily gain its system NBA. Observe that in this case every configuration has at least a
successor, and so no self-loops need to be added.

For i ∈ {0, 1}, let NCi,Ti,Ci be the sets of configurations in which process i is in the non-critical
section, is trying to access the critical section, and is in the critical section, respectively, and let Σ

stand for the set of all configurations. The finite waiting property for process i states that if process
i tries to access its critical section, it eventually will. The possible ω-executions that violate the
property for process i are represented by the ω-regular expression

vi = Σ∗ Ti (Σ \Ci)ω .

We can check this property using the same technique as in Chapter 8. We construct the sys-
tem NBA ωE recognizing the ω-executions of the algorithm (the NBA has just two states), and
transform the regular expression vi into an NBA Vi using the algorithm of Chapter 11. We then

14.1. AUTOMATA-BASED VERIFICATION OF LIVENESS PROPERTIES 299

b1 := 1

b1 := 0

0 1

b1 := 0
b1 = 0

b1 := 1
b1 = 1

nc0 t0 c0

b1 = 1

b0 ← 0

b0 ← 1 b1 = 0

nc1 t1 c1

q′1 q1

b0 = 0 b0 = 1

b1 ← 0

b1 ← 1 b0 = 0

b0 = 1

b1 ← 0

0, 0, nc0, nc1

1, 0, t0, nc1

0, 1, nc0, t1

1, 1, t0, t1

1, 1, c0, q1

0, 0, nc0, q′1

1, 0, c0, q′1

0, 1, nc0, q1

1, 1, t0, q1 1, 0, t0, q′1

b0 ← 1

b1 ← 1

b0 = 1
b1 = 1

1, 1, c0, t1

b0 ← 0

b1 ← 1 b0 ← 0

b1 ← 1

b1 ← 0

b1 = 1

b1 ← 0

b0 ← 0
b1 ← 0

b1 = 1

b1 = 1

b1 = 0

b0 ← 1

b0 ← 0

b1 = 0

b0 = 0

b0 = 1
b1 = 1

b1 = 1

b1 ← 0

b1 = 0
b1 ← 0

b1 = 0

b0 ← 1

b0 ← 0

b0 = 1

1, 0, c0, nc1

1, 1, t0, c1

0, 1, nc0, c1

Figure 14.2: Lamport’s algorithm and its asynchronous product.

300 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

construct an NBA for ωE ∩ Vi using intersNBA(), and check its emptiness using one of the algo-
rithms of Chapter 13.

Observe that, since all states of ωE are accepting, we do not need to use the special algorithm
for intersection of NBAs, and so we can apply the construction for NFAs.

The result of the check for process 0 yields that the property fails because for instance of the
ω-execution

[0, 0, nc0, nc1] [1, 0, t0, nc1] [1, 1, t0, t1]ω

In this execution both processes request access to the critical section, but from then on process
1 never makes any further step. Only process 0 continues, but all it does is continuously check
that the current value of b1 is 1. Intuitively, this corresponds to process 1 breaking down after
requesting access. But we do not expect the finite waiting property to hold if processes may break
down while waiting. So, in fact, our definition of the finite waiting property is wrong. We can repair
the definition by reformulating the property as follows: in any ω-execution in which both processes
execute infinitely many steps, if process 0 tries to access its critical section, then it eventually will.
The condition that both processes must move infinitely often is called a fairness assumption.

The simplest way to solve this problem is to enrich the alphabet of the system NBA. Instead of
labeling a transition only with the name of the target configuration, we also label it with the number
of the process responsible for the move leading to that configuration. For instance, the transition

[0, 0, nc0, nc1]
[1,0,t0,nc1]
−−−−−−−−−→[1, 0, t0, nc1] becomes

[0, 0, nc0, nc1]
([1,0,t0,nc1],0)
−−−−−−−−−−−→[1, 0, t0, nc1]

to reflect the fact that [1, 0, t0, nc1] is reached by a move of process 0. So the new alphabet of the
NBA is Σ × {0, 1}. If we denote M0 = Σ × {0} and M1 = Σ × {1} for the ‘moves” of process 0 and
process 1, respectively, then the regular expression

inf =
(

(M0 + M1)∗M0M1
)ω

represents all ω-executions in which both processes move infinitely often, and L (vi) ∩ L (inf)
(where vi is suitably rewritten to account for the larger alphabet) is the set of violations of the
reformulated finite waiting property. To check if some ω-execution is a violation, we can construct
NBAs for vi and inf, and compute their intersection. For process 0 the check yields that the properly
indeed holds. For process 1 the property still fails because of, for instance, the sequence

([0, 0, nc0, nc1] [0, 1, nc0, t1] [1, 1, t0, t1] [1, 1, t0, q1]
[1, 0, t0, q′1] [1, 0, c0, q′1] [0, 0, nc0, q′1])ω

in which process 1 repeatedly tries to access its critical section, but always lets process 0 access
first.

14.2. LINEAR TEMPORAL LOGIC 301

14.2 Linear Temporal Logic

In Chapter 8 and in the previous section we have formalized properties of systems using regular, or
ω-regular expressions, NFAs, or NBAs. This becomes rather difficult for all but the easiest prop-
erties. For instance, the NBA or the ω-regular expression for the modified finite waiting property
are already quite involved, and it is difficult to be convinced that they correspond to the intended
property. In this section we introduce a new language for specifying safety and liveness proper-
ties, called Linear Temporal Logic (LTL). LTL is close to natural language, but still has a formal
semantics.

Formulas of LTL are constructed from a set AP of atomic propositions. Intuitively, atomic
propositions are abstract names for basic properties of configurations, whose meaning is fixed only
after a concrete system is considered. Formally, given a system with a set C of configurations, the
meaning of the atomic propositions is fixed by a valuation function V : AP → 2C that assigns to
each abstract name the set of configurations at which it holds. We denote LTL(AP) the set of LTL
formulas over AP.

Atomic propositions are combined by means of the usual Boolean operators and the temporal
operators X (“next”) and U (“until”). Intuitively, as a first approximation Xϕ means “ϕ holds at
the next configuration” (the configuration reached after one step of the program), and ϕ U ψ means
“ϕ holds until a configuration is reached satisfying ψ”. Formally, the syntax of LTL(AP) is defined
as follows:

Definition 14.2 Let AP be a finite set of atomic propositions. LTL(AP), is the set of expressions
generated by the grammar

ϕ := true | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1 U ϕ2 .

Formulas are interpreted on sequences σ = σ0σ1σ2 . . ., where σi ⊆ AP for every i ≥ 0. We call
these sequences computations. The set of all computations over AP is denoted by C(AP). The
executable computations of a system are the computations σ for which there exists an ω-execution
c0c1c2 . . . such that for every i ≥ 0 the set of atomic propositions satisfied by ci is exactly σi. We
now formally define when a computationm satisfies a formula.

Definition 14.3 Given a computation σ ∈ C(AP), letσ j denote the suffix σ jσ j+1 σ j+2 . . . of σ. The
satisfaction relation σ |= ϕ (read “σ satisfies ϕ”) is inductively defined as follows:

• σ |= true.

• σ |= p iff p ∈ σ(0).

• σ |= ¬ϕ iff σ 6|= ϕ.

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2.

• σ |= Xϕ iff σ1 |= ϕ.

302 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

• σ |= ϕ1 U ϕ2 iff there exists k ≥ 0 such that σk |= ϕ2 and σi |= ϕ1 for every 0 ≤ i < k.

We use the following abbreviations:

• false,∨,→ and↔, interpreted in the usual way.

• Fϕ = true U ϕ (“eventually ϕ”). According to the semantics above, σ |= Fϕ iff there exists
k ≥ 0 such that σk |= ϕ,.

• Gϕ = ¬F¬ϕ (“always ϕ” or “globally ϕ”). According to the semantics above, σ |= Gϕ iff
σk |= ϕ for every k ≥ 0.

The set of computations that satisfy a formula ϕ is denoted by L (ϕ). A system satisfies ϕ if all
its executable computations satisfy ϕ.

Example 14.4 Consider the little program at the beginning of the chapter. We write some formulas
expressing properties of the possible ω-executions of the program. Observe that the system NBA
of Figure 14.1has exactly four ω-executions:

e1 = [1, 0, 0] [5, 0, 0]ω

e2 = ([1, 1, 0] [2, 1, 0] [4, 1, 0])ω

e3 = [1, 0, 1] [5, 0, 1]ω

e4 = [1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]ω

Let C be the set of configurations of the program. We choose

AP = {at 1, at 2, . . . , at 5, x=0, x=1, y=0, y=1}

and define the valuation function V : AP→ 2C as follows:

• V(at i) = {[`, x, y] ∈ C | ` = i} for every i ∈ {1, . . . , 5}.

• V(x=0) = {[`, x, y] ∈ C | x = 0}, and similarly for x = 1, y = 0, y = 1.

Under this valuation, at i expresses that the program is at line i, and x=j expresses that the current
value of x is j. The executable computations corresponding to the four ω-executions above are

σ1 = {at 1, x=0, y=0} {at 5, x=0, y=0}ω

σ2 = ({at 1, x=1, y=0} {at 2, x=1, y=0} {at 4, x=1, y=0})ω

σ3 = {at 1, x=0, y=1} {at 5, x=0, y=1}ω

σ4 = {at 1, x=1, y=1} {at 2, x=1, y=1} {at 3, x=1, y=1} {at 4, x=0, y=1}

{at 1, x=0, y=1} {at 5, x=0, y=1}ω

We give some examples of properties:

14.2. LINEAR TEMPORAL LOGIC 303

• ϕ0 = x=1 ∧ Xy=0 ∧ XXat 4. In natural language: the value of x in the first configura-
tion of the execution is 1, the value of y in the second configuration is 0, and in the third
configuration the program is at location 4. We have σ2 |= ϕ0, and σ1, σ3, σ4 6|= ϕ0.

• ϕ1 = Fx=0. In natural language: x eventually gets the value 0. We have σ1, σ2, σ4 |= ϕ1, but
σ3 6|= ϕ1.

• ϕ2 = x=0 U at 5. In natural language: x stays equal to 0 until the execution reaches location
5. Notice however that the natural language description is ambiguous: Do executions that
never reach location 5 satisfy the property? Do executions that set x to 1 immediately before
reaching location 5 satisfy the property? The formal definition removes the ambiguities:
the answer to the first question is ‘no’, to the second ‘yes’. We have σ1, σ3 |= ϕ2 and
σ2, σ4 6|= ϕ2.

• ϕ3 = y=1∧F(y=0 ∧ at 5) ∧ ¬(F(y=0 ∧ Xy=1)). In natural language: the first configuration
satisfies y = 1, the execution terminates in a configuration with y = 0, and y never decreases
during the execution. This is one of the properties we analyzed in Chapter 8, and it is not
satisfied by any ω-execution.

Example 14.5 We express several properties of the Lamport-Bruns algorithm (see Chapter 8) us-
ing LTL formulas. As system NBA we use the one in which transitions are labeled with the name
of the target configuration, and with the number of the process responsible for the move leading to
that configuration. We take AP = {NC0,T0,C0,NC1,T1,C1,M0,M1}, with the obvious valuation.

• The mutual exclusion property is expressed by the formula

G(¬C0 ∨ ¬C1)

The algorithm satisfies the formula.

• The property that process i cannot access the critical section without having requested it first
is expressed by

¬(¬Ti U Ci)

Both processes satisfy this property.

• The naı̈ve finite waiting property for process i is expressed by

G(Ti → FCi)

The modified version in which both processes must execute infinitely many moves is ex-
pressed

(GFM0 ∧GFM1)→ G(Ti → FCi)

304 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

Observe how fairness assumptions can be very elegantly expressed in LTL. The assumption
itself is expressed as a formula ψ, and the property that ω-executions satisfying the fairness
assumption also satisfy ϕ is expressed by ψ → ϕ.

None of the processes satisfies the naı̈ve version of the finite waiting property. Process 0
satisfies the modified version, but process 1 does not.

• The bounded overtaking property for process 0 is expressed by

G(T0 → (¬C1 U (C1 U (¬C1 U C0))))

The formula states that whenever T0 holds, the computation continues with a (possibly
empty!) interval at which we see ¬C1 holds, followed by a (possibly empty!) interval at
which C1 holds, followed by a point at which C0 holds. The property holds.

Example 14.6 Formally speaking, it is not correct to say “Xϕ means that the next configuration
satisfies ϕ” or “ϕ U ψ means that some future configuration satisfies ψ, and until then all configu-
rations satisfy ϕ”. The reason is that formulas do not hold at configurations, but at computations.
Correct is: “the suffix of the computation starting at the next configuration (which is also a com-
putation) satisfies ϕ”, and “some suffix of the computation satisfies ψ, and until then all suffixes
satisfy ϕ.

To illustrate this point, let AP = {p, q}, and consider the formula ϕ = GFp U q. Then the
computation

τ = ∅ ∅ {q} ∅ {p} ∅ω

satisfies ϕ. Indeed, the suffix {q} ∅ {p} ∅ω satisfies q, and all “larger” suffixes, that is, ∅ {q} ∅ {p} ∅ω

and τ itself, satisfy Fp.

14.3 From LTL formulas to generalized Büchi automata

We present an algorithm that, given a formula ϕ ∈ LTL(AP) returns a NGA Aϕ over the alphabet
2AP recognizing L (ϕ), and then derive a fully automatic procedure that, given a system and an LTL
formula, decides whether the executable computations of the system satisfy the formula.

14.3.1 Satisfaction sequences and Hintikka sequences

We define the satisfaction sequence and the Hintikka sequence of a computation σ and a formula
ϕ. We first need to introduce the notions of closure of a formula, and atom of the closure.

Definition 14.7 Given a formula ϕ, the negation of ϕ is the formula ψ if ϕ = ¬ψ, and the formula
¬ϕ otherwise. The closure cl(ϕ) of a formula ϕ is the set containing all subformulas of ϕ and their
negations. A nonempty set α ⊆ cl(ϕ) is an atom of cl(ϕ) if it satisfies the following properties:

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 305

(a0) If true ∈ cl(ϕ), then true ∈ α.

(a1) For every ϕ1 ∧ ϕ2 ∈ cl(ϕ): ϕ1 ∧ ϕ2 ∈ α if and only if ϕ1 ∈ α and ϕ2 ∈ α.

(a2) For every ¬ϕ1 ∈ cl(ϕ): ¬ϕ1 ∈ α if and only if ϕ1 < α.

The set of all atoms of cl(ϕ) is denoted by at(φ).

Observe that if α is the set of all formulas of cl(ϕ) satisfied by a computationσ, then α is necessarily
an atom. Indeed, every computation satisfies true; if a computation satisfies the conjunction of two
formulas, then it satisfies each of the conjuncts; finally, if a computation satisfies a formula, then it
does not satisfy its negation, and vice versa. Notice as well that, because of (a2), if cl(ϕ) contains
k formulas, then every atom of cl(ϕ) contains exactly k/2 formulas.

Example 14.8 The closure of the formula p ∧ (p U q) is

{ p, ¬p, q,¬q, p U q ,¬(p U q), p ∧ (p U q),¬
(
p ∧ (p U q)

)
} .

We claim that the only two atoms containing p ∧ (p U q) are

{ p, q, p U q, p ∧ (p U q) } and { p, ¬q, p U q, p ∧ (p U q) } .

Let us see why. By (a2), an atom always contains either a subformula or its negation, but not both.
So in principle there are 16 possibilities for atoms, since we have to choose exactly one of p and
¬p, q and ¬q, p U q and ¬(p U q), and p ∧ (p U q) and ¬

(
p ∧ (p U q)

)
. Since we look for atoms

containing p ∧ (p U q), we are left with 8 possibilities. But, by (a1), every atom α containing
p ∧ (p U q) must contain both p and p U q. So the only freedom left is the possibility to choose
q or ¬q. None of these choices violates any of the conditions, and so exactly two atoms contain
p ∧ (p U q).

Definition 14.9 The satisfaction sequence for a computation σ and a formula ϕ is the infinite
sequence of atoms

sats(σ, ϕ) = sats(σ, ϕ, 0) sats(σ, ϕ, 1) sats(σ, ϕ, 2) . . .

where sats(σ, ϕ, i) is the atom containing the formulas of cl(ϕ) satisfied by σi.

Intuitively, the satisfaction sequence of a computation σ is obtained by “completing” σ: while σ
only indicates which atomic propositions hold at each point in time, the satisfaction sequence also
indicates which atom holds at each moment.

Example 14.10 Let ϕ = p U q, and consider the computations σ1 = {p}ω, and σ2 = ({p} {q})ω.
We have

sats(σ1, ϕ) = { p, ¬q, ¬(p U q) }ω

sats(σ2, ϕ) =
(
{p, ¬q, p U q } { ¬p, q, p U q }

)ω

306 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

Observe that σ satisfies ϕ if and only if and only if ϕ ∈ sats(σ, ϕ, 0), i.e., if and only if ϕ belongs to
the first atom of σ.

Satisfaction sequences have a semantic definition: in order to know which atom holds at a point
one must know the semantics of LTL. Hintikka sequences provide a syntactic characterization of
satisfaction sequences. The definition of a Hintikka sequence does not involve the semantics of
LTL, i.e., someone who ignores the semantics can still determine whether a given sequence is a
Hintikka sequence or not. We prove that a sequence is a satisfaction sequence if and only if it is a
Hintikka sequence.

Definition 14.11 A pre-Hintikka sequence for ϕ is an infinite sequence α0α1α2 . . . of atoms satis-
fying the following conditions for every i ≥ 0:

(l1) For every Xϕ ∈ cl(ϕ): Xϕ ∈ αi if and only if ϕ ∈ αi+1.

(l2) For every ϕ1 U ϕ2 ∈ cl(ϕ): ϕ1 U ϕ2 ∈ αi if and only if ϕ2 ∈ αi or ϕ1 ∈ αi and ϕ1 U ϕ2 ∈ αi+1.

A pre-Hintikka sequence is a Hintikka sequence if it also satisfies

(g) For every ϕ1 U ϕ2 ∈ αi, there exists j ≥ i such that ϕ2 ∈ α j.

A pre-Hintikka or Hintikka sequence α matches a computation σ if σi ⊆ αi for every i ≥ 0.

Observe that conditions (l1) and (l2) are local: in order to determine if α satisfies them we only
need to inspect every pair αi, αi+1 of consecutive atoms. On the contrary, condition (g) is global,
since the distance between the indices i and j can be arbitrarily large.

Example 14.12 Let ϕ = ¬(p ∧ q) U (r ∧ s).

• Let α1 = { p, ¬q, r, s, ϕ }. The sequence αω1 is not a Hintikka sequence for ϕ, because α1
is not an atom; indeed, by (a1) every atom containing r and s must contain r ∧ s.

• Let α2 = { ¬p, r, ¬ϕ }ω. The sequence αω2 is not a Hintikka sequence for ϕ, because α2 is
not an atom; indeed, by (a2) every atom mut contains either q or ¬q, and either s or ¬s.

• Let α3 = { ¬p, q, ¬r, s, r ∧ s, ϕ}ω. The sequence αω3 is not a Hintikka sequence for ϕ,
because α3 is not an atom; indeed, by (a2) every atom must contian either (p∧q) or ¬(p∧q).

• Let α4 = { p, q, (p∧ q) r, s, r ∧ s, ¬ϕ}. The set α4 is an atom, but the sequence αω4 is not a
Hintikka sequence for ϕ, because it violates condition (l2): since α4 contains (r ∧ s), it must
also contain ϕ.

• Let α5 = { p, ¬q, ¬(p ∧ q), ¬r, s, ¬(r ∧ s), ϕ }ω. The set α5 is an atom, and the sequence
αω5 is a pre-Hintikka sequence. However, it is not a Hintikka sequence because it violates
condition (g): since α5 contains ϕ, some atom in the sequence must contain (r ∧ s), which is
not the case.

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 307

• Let α6 = { p, q, (p∧ q), r, s, (r ∧ s), ϕ }. The sequence
(
α5 α6)ω is a Hinktikka sequence

for ϕ.

It follows immediately from the definition of a Hintikka sequence that if α = α0α1α2 . . . is
a satisfaction sequence, then every pair αi, αi+1 satisfies (l1) and (l2), and the sequence α itself
satisfies (g). So every satisfaction sequence is a Hintikka sequence. The following theorem shows
that the converse also holds: every Hintikka sequence is a satisfaction sequence.

Theorem 14.13 Let σ be a computation and let ϕ be a formula. The unique Hintikka sequence for
ϕ matching σ is the satisfaction sequence sats(σ, ϕ).

Proof: As observed above, it follows immediately from the definitions that sats(σ, ϕ) is a Hintikka
sequence for ϕ matching σ. To show that no other Hintikka sequence matches sats(σ, ϕ), let α =

α0α1α2 . . . be a Hintikka sequence for ϕ matching σ, and let ψ be an arbitrary formula of cl(ϕ). We
prove that for every i ≥ 0: ψ ∈ αi if and only if ψ ∈ sats(σ, ϕ, i).

The proof is by induction on the structure of ψ.

• ψ = true. Then true ∈ sats(σ, ϕ, i) and, since αi is an atom, true ∈ αi.

• ψ = p for an atomic proposition p. Since α matches σ, we have p ∈ αi if and only if p ∈ σi.
By the definition of satisfaction sequence, p ∈ σi if and only if p ∈ sats(σ, ϕ, i). So p ∈ αi if
and only if p ∈ sats(σ, ϕ, i).

• ψ = ϕ1 ∧ ϕ2. We have

ϕ1 ∧ ϕ2 ∈ αi

⇔ ϕ1 ∈ αi and ϕ2 ∈ αi (condition (a1))
⇔ ϕ1 ∈ sats(σ, ϕ, i) and ϕ2 ∈ sats(σ, ϕ, i) (induction hypothesis)
⇔ ϕ1 ∧ ϕ2 ∈ sats(σ, ϕ, i) (definition of sats(σ, ϕ))

• ψ = ¬ϕ1 or ψ = Xϕ1. The proofs are very similar to the last one.

• ψ = ϕ1 U ϕ2. We prove:

(a) If ϕ1 U ϕ2 ∈ αi, then ϕ1 U ϕ2 ∈ sats(σ, ϕ, i).
By condition (l2) of the definition of a Hintikka sequence, we have to consider two cases:

– ϕ2 ∈ αi. By induction hypothesis, ϕ2 ∈ sats(σ, ϕ), and so ϕ1 U ϕ2 ∈ sats(σ, ϕ, i).

– ϕ1 ∈ αi and ϕ1 U ϕ2 ∈ αi+1. By condition (g), there is at least one index j ≥ i such
that ϕ2 ∈ α j. Let jm be the smallest of these indices. We prove the result by induction
on jm − i. If i = jm, then ϕ2 ∈ α j, and we proceed as in the case ϕ2 ∈ αi. If i < jm,
then since ϕ1 ∈ αi, we have ϕ1 ∈ sats(σ, ϕ, i) (induction on ψ). Since ϕ1 U ϕ2 ∈ αi+1,

308 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

we have either ϕ2 ∈ αi+1 or ϕ1 ∈ αi+1. In the first case we have ϕ2 ∈ sats(σ, ϕ, i + 1),
and so ϕ1 U ϕ2 ∈ sats(σ, ϕ, i). In the second case, by induction hypothesis (induction
on jm − i), we have ϕ1 U ϕ2 ∈ sats(σ, ϕ, i + 1), and so ϕ1 U ϕ2 ∈ sats(σ, ϕ, i).

(b) If ϕ1 U ϕ2 ∈ sats(σ, ϕ, i), then ϕ1 U ϕ2 ∈ αi.
We consider again two cases.

– ϕ2 ∈ sats(σ, ϕ, i). By induction hypothesis, ϕ2 ∈ αi, and so ϕ1 U ϕ2 ∈ αi.

– ϕ1 ∈ sats(σ, ϕ, i) and ϕ1 U ϕ2 ∈ sats(σ, ϕ, i + 1). By the definition of a satisfaction
sequence, there is at least one index j ≥ i such that ϕ2 ∈ sats(σ, ϕ, j). Proceed now as
in case (a).

14.3.2 Constructing the NGA for an LTL formula

Given a formula ϕ, we construct a generalized Büchi automaton Aϕ recognizing L (ϕ). By the
definition of a satisfaction sequence, a computation σ satisfies ϕ if and only if ϕ ∈ sats(σ, ϕ, 0).
Moreover, by Theorem 14.13 sats(σ, ϕ) is the (unique) Hintikka sequence for ϕ matching σ. So Aϕ
must recognize the computations σ satisfying: the first atom of the unique Hintikka sequence for
ϕ matching σ contains ϕ.

To achieve this, we apply the following strategy:

(a) Define the states and transitions of the automaton so that the runs of Aϕ are all the sequences

α0
σ0
−−−→α1

σ1
−−−→α2

σ2
−−−→ . . .

such that σ = σ0σ1 . . . is a computation, and α = α0α1 . . . is a pre-Hintikka sequence of ϕ
matching σ.

(b) Define the sets of accepting states of the automaton (recall that Aϕ is a NGA) so that a run is
accepting if and only its corresponding pre-Hintikka sequence is also a Hintikka sequence.

Condition (a) determines the alphabet, states, transitions, and initial state of Aϕ:

- The alphabet of Aϕ is 2AP.

- The states of Aϕ are atoms of ϕ.

- The initial states are the atoms α such that ϕ ∈ α.

- The output transitions of a state α (where α is an atom) are the triples α
σ
−−→ β such that σ

matches α, and the pair α, β satisfies conditions (l1) and (l2) (where α and β play the roles of
αi resp. αi+1).

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 309

The sets of accepting states of Aϕ are determined by condition (b). By the definition of a Hin-

tikka sequence, we must guarantee that in every run α0
σ0
−−−→α1

σ1
−−−→α2

σ2
−−−→ . . . , if any αi contains

a subformula ϕ1 U ϕ2, then there is j ≥ i such that ϕ2 ∈ α j. By condition (l2), this amounts to
guaranteeing that every run contains infinitely many indices i such that ϕ2 ∈ αi, or infinitely many
indices j such that ¬(ϕ1 U ϕ2) ∈ α j. So we choose the sets of accepting states as follows:

- The accepting condition contains a set Fϕ1 U ϕ2 of accepting states for each subformula
ϕ1 U ϕ2 of ϕ. An atom belongs to Fϕ1 U ϕ2 if it does not contain ϕ1 U ϕ2 or if it contains ϕ2.

The pseudocode for the translation algorithm is shown below.

LTLtoNGA(ϕ)
Input: formula ϕ of AP
Output: NGA Aϕ = (Q, 2AP,Q0, δ,F) with L

(
Aϕ

)
= L (ϕ)

1 Q0 ← {α ∈ at(φ) | ϕ ∈ α}; Q← ∅;δ← ∅
2 W ← Q0

3 while W , ∅ do
4 pick α from W
5 add α to Q
6 for all ϕ1 U ϕ2 ∈ cl(ϕ) do
7 if ϕ1 U ϕ2 < α or ϕ2 ∈ α then add α to Fϕ1 U ϕ2

8 for all β ∈ at(φ) do
9 if α, β satisfies (l1) and (l2) then

10 add (α, α ∩ AP, β) to δ
11 if β < Q then add β to W
12 F ← ∅

13 for all ϕ1 U ϕ2 ∈ cl(ϕ) do F ← F ∪ {Fϕ1 U ϕ2}

14 return (Q, 2AP,Q0, δ,F)

Example 14.14 We construct the automaton Aϕ for the formula ϕ = p U q. The closure cl(ϕ) has
eight atoms, corresponding to all the possible ways of choosing between p and ¬p, q and ¬q, and
p U q and ¬(p U q). However, we can easily see that the atoms {p, q,¬(p U q)}, {¬p, q,¬(p U q)},
and {¬p,¬q, p U q} have no output transitions, because those transitions would violate condition
(l2). So these states can be removed, and we are left with the five atoms shown in Figure 14.3. The
three atoms on the left contain p U q, and so they become the initial states. Figure 14.3 uses some
conventions to simplify the graphical representation. Observe that every transition of Aϕ leaving
an atom α is labeled by α ∩ AP. For instance, all transitions leaving the state {¬p, q, p U q} are
labeled with {q}, and all transitions leaving {¬p, ¬q, ¬(p U q)} are labeled with ∅. Therefore, since
the label of a transition can be deduced from its source state, we omit them in the figure. Moreover,
since ϕ only has one subformula of the form ϕ1 U ϕ2, the NGA is in fact a NBA, and we can
represent the accepting states as for NBAs. The accepting states of Fp U q are the atoms that do not

310 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

p, q, p U q

p,¬q,¬(p U q)

¬p,¬q,¬(p U q)

p,¬q, p U q

¬p, q, p U q

Figure 14.3: NGA (NBA) for the formula p U q.

contain p U q—the two atoms on the right—and the atoms containing q—the leftmost atom and
the atom at the top.

Consider for example the atoms α = {¬p,¬q,¬(p U q)} and β = {p,¬q, p U q}. Aϕ contains a

transition α
{p}
−−−→ β because {p} matches β, and α, β satisfy conditions (l1) and (l2). Condition (l1)

holds vacuously, because ϕ contains no subformulas of the form X ψ, while condition (l2) holds
because p U q < α and q < β and p < α. On the other hand, there is no transition from β to α
because it would violate condition (l2): p U q ∈ β, but neither q ∈ β nor p U q ∈ α.

NGAs obtained from LTL formulas by means of LTLtoNGA have a very particular structure:

• As observed above, all transitions leaving a state carry the same label.

• Every computation accepted by the NGA has one single accepting run.

By the definiiton of the NGA, if α0
σ0
−−−→α1

sigma1
−−−−−−→ · · · is an accepting run, then α0 α1 α2 . . .

is the satisfaction sequence of σ0 σ1 σ2 Since the satisfaction sequence of a given com-
putation is by definition unique, there can be only an accepting run.

• The sets of computations recognized by any two distinct states of the NGA are disjoint.
Let σ be a computation, and let sats(σ, ϕ) = sats(σ, ϕ, 0) sats(σ, ϕ, 1) . . . be its satisfaction
sequence. Then σ is only accepted from the state sats(σ, ϕ, 0).

14.3.3 Size of the NGA

Let n be the length of the formula ϕ. It is easy to see that the set cl(ϕ) has size O(n). Therefore, the
NGA Aϕ has at most O(2n) states. Since ϕ contains at most n subformulas of the form ϕ1 U ϕ2, the
automaton Aϕ has at most n sets of final states.

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 311

We now prove a matching lower bound on the number of states. We exhibit a family of formulas
{ϕn}n≥1 such that ϕn has length O(n), and every NGA recognizing Lω(ϕn) has at least 2n states. For
this, we exhibit a family {Dn}n≥1 of ω-languages over an alphabet Σ such that for every n ≥ 0:

(1) every NGA recognizing Dn has at least 2n states; and

(2) there is a formula ϕn ∈ LTL(Σ) of length O(n) such that Lω(ϕn) = Dn.

Notice that in (2) we are abusing language, because if ϕn ∈ LTL(Σ), then Lω(ϕn) contains words
over the alphabet 2Σ, and so Lω(ϕn) and Dn are languages over different alphabets. With Lω(ϕn) =

Dn we mean that for every computation σ ∈ (2Σ)ω we have σ ∈ Lω(ϕn) iff σ = {a1} {a2} {a3} · · ·

for some ω-word a1 a2 a3 . . . ∈ Dn.
We let Σ = {0, 1, #} and choose the language Dn as follows:

Dn = {w w #ω | w ∈ {0, 1}n}

(1) Every NGA recognizing Dn has at least 2n states.
Assume that a generalized Büchi automaton A = (Q, {0, 1, #}, δ, q0, {F1, . . . , Fk}) with |Q| <
2n recognizes Dn. Then for every word w ∈ {0, 1}n there is a state qw such that A ac-
cepts w #ω from qw. By the pigeonhole principle we have qw1 = qw2 for two distinct words
w1,w2 ∈ {0, 1}n. But then A accepts w1 w2 #ω, which does not belong to Dn, contradicting
the hypothesis.

(2) There is a formula ϕn ∈ LTL(Σ) of length O(n) such that Lω(ϕn) = Dn.
We first construct the following auxiliary formulas:

– ϕn1 = G
(

(0 ∨ 1 ∨ #) ∧ ¬(0 ∧ 1) ∧ ¬(0 ∧ #) ∧ ¬(1 ∧ #)
)
.

This formula expresses that at every position exactly one atomic proposition holds.

– ϕn2 = ¬ # ∧

2n−1∧
i=1

Xi¬ #

 ∧ X2nG #.

This formula expresses that # does not hold at any of the first 2n positions, and it holds
at all later positions.

– ϕn3 = G
((

0→ Xn(0 ∨ #)
)
∧ (1→ Xn(1 ∨ #)

))
.

This formula expresses that if the atomic proposition holding at a position is 0 or 1,
then n positions later the atomic proposition holding is the same one, or #.

Clearly, ϕn = ϕn1 ∧ ϕn2 ∧ ϕn3 is the formula we are looking for. Observe that ϕn contains
O(n) characters.

14.4 Automatic Verification of LTL Formulas

We can now sketch the procedure for the automatic verification of properties expressed by LTL
formulas. The input to the procedure is

312 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

• a system NBA As obtained either directly from the system, or by computing the asyn-
chronous product of a network of automata;

• a formula ϕ of LTL over a set of atomic propositions AP; and

• a valuation ν : AP → 2C , where C is the set of configurations of As, describing for each
atomic proposition the set of configurations at which the proposition holds.

The procedure follows these steps:

(1) Compute a NGA Av for the negation of the formula ϕ. Av recognizes all the computations
that violate ϕ.

(2) Compute a NGA Av ∩ As recognizing the executable computations of the system that violate
the formula.

(3) Check emptiness of Av ∩ As.

Step (1) can be carried out by applying LTLtoNGA, and Step (3) by, say, the two-stack algorithm.
For Step (2), observe first that the alphabets of Av and As are different: the alphabet of Av is 2AP,
while the alphabet of As is the set C of configurations. By applying the valuation ν we transform
Av into an automaton with C as alphabet. Since all the states of system NBAs are accepting, the
automaton Av ∩ As can be computed by interNFA.

It is important to observe that the three steps can be carried out simultaneously. The states of
Av ∩ As are pairs [α, c], where α is an atom of ϕ, and c is a configuration. The following algorithm
takes a pair [α, c] as input and returns its successors in the NGA Av ∩ As. The algorithm first
computes the successors of c in As. Then, for each successor c′ it computes first the set P of atomic
propositions satisfying c′ according to the valuation, and then the set of atoms β such that (a) β
matches P and (b) the pair α, β satisfies conditions (l1) and (l2). The successors of [α, c] are the
pairs [β, c′].

Succ([α, c])

1 S ← ∅
2 for all c′ ∈ δs(c) do
3 P← ∅
4 for all p ∈ AP do
5 if c′ ∈ ν(p) then add p to P
6 for all β ∈ at(φ) matching P do
7 if α, β satisfies (l1) and (l2) then add c′ to S
8 return S

This algorithm can be inserted in the algorithm for the emptiness check. For instance, if we use
TwoStack, then we just replace line 6

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 313

6 for all r ∈ δ(q) do

by a call to Succ:

6 for all [β, c′] ∈ Succ([α, c]) do

Exercises

Exercise 143 Prove formally the following equivalences:

1. ¬Xϕ ≡ X¬ϕ

2. ¬Fϕ ≡ G¬ϕ

3. ¬Gϕ ≡ F¬ϕ

4. XFϕ ≡ FXϕ

5. XGϕ ≡ GXϕ

Exercise 144 (Santos Laboratory). The weak until operator W has the following semantics:

• σ |= φ1 W φ2 iff there exists k ≥ 0 such that σk |= φ2 and σi |= φ1 for all 0 ≤ i < k, or
σk |= φ1 for every k ≥ 0.

Prove: p W q ≡ Gp ∨ (p U q) ≡ F¬p→ (p U q) ≡ p U (q ∨Gp).

Exercise 145 Let AP = {p, q} and let Σ = 2AP. Give LTL formulas defining the following lan-
guages:

1. {p, q} ∅ Σω

2. Σ∗ ({p} + {p, q}) Σ∗ {q} Σω

3. Σ∗ {q}ω

4. {p}∗ {q}∗ ∅ω

Exercise 146 (Santos Laboratory). Let AP = {p, q, r}. Give formulas that hold for the computa-
tions satisfying the following properties. If in doubt about what the property really means, choose
an interpretation, and explicitely indicate your choice. Here are two solved examples:

• p is false before q: Fq→ (¬p U q).

• p becomes true before q: ¬q W (p ∧ ¬q).

Now it is your turn:

• p is true between q and r.

• p precedes q before r.

• p precedes q after r.

314 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

• after p and q eventually r.

• p alternates between true and false.

Exercise 147 Let AP = {p, q} and let Σ = 2AP. Give Büchi automata for the ω-languages over Σ

defined by the following LTL formulas:

1. XG¬p

2. (GFp)→ (Fq)

3. p ∧ ¬(XFp)

4. G(p U (p→ q))

5. Fq→ (¬q U (¬q ∧ p))

Exercise 148 ich of the following equivalences hold?

1. X(ϕ ∨ ψ) ≡ Xϕ ∨ Xψ

2. X(ϕ ∧ ψ) ≡ Xϕ ∧ Xψ

3. X(ϕ U ψ) ≡ (Xϕ U Xψ)

4. F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

5. F(ϕ ∧ ψ) ≡ Fϕ ∧ Fψ

6. G(ϕ ∨ ψ) ≡ Gϕ ∨Gψ

7. G(ϕ ∧ ψ) ≡ Gϕ ∧Gψ

8. GF(ϕ ∨ ψ) ≡ GFϕ ∨GFψ

9. GF(ϕ ∧ ψ) ≡ GFϕ ∧GFψ

10. ρ U (ϕ ∨ ψ) ≡ (ρ U ϕ) ∨ (ρ U ψ)

11. (ϕ ∨ ψ) U ρ ≡ (ϕ U ρ) ∨ (ψ U ρ)

12. ρ U (ϕ ∧ ψ) ≡ (ϕ U ρ) ∧ (ψ U ρ)

13. (ϕ ∧ ψ) U ρ ≡ (ϕ U ρ) ∧ (ψ U ρ)

Exercise 149 Prove FGp ≡ VFGp and GFp ≡ VGFp for every sequence V ∈ {F,G}∗ of the
temporal operators F and G .

Exercise 150 (Schwoon). Which of the following formulas of LTL are tautologies? (A formula is
a tautology if all computations satisfy it.) If the formula is not a tautology, give a computation that
does not satisfy it.

• Gp→ Fp

• G(p→ q)→ (Gp→ Gq)

• F(p ∧ q)↔ (Fp ∧ Fq)

• ¬Fp→ F¬Fp

• (Gp→ Fq)↔ (p U (¬p ∨ q))

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 315

• (FGp→ GFq)↔ G(p U (¬p ∨ q))

• G(p→ Xp)→ (p→ Gp).

Exercise 151 In this exercise we show how to construct a deterministic Büchi automaton for
negation-free LTL formulas. Let ϕ be a formula of LTLAP of atomic propositions, and let ν ∈ 2AP.
We inductively define the formula af (ϕ, ν) as follows:

af (true, ν) = true
af (false, ν) = false

af (a, ν) =

{
true if a ∈ ν
false if a < ν

af (¬a, ν) =

{
false if a ∈ ν
true if a < ν

af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)
af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ

af (ϕ U ψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕ U ψ)

We extend the definition to finite words: af (ϕ, ε) = ϕ; and af (ϕ, νw) = af (af (ϕ, ν),w) for every
ν ∈ 2AP and every finite word w. Prove:

(a) For every formula ϕ, finite word w ∈
(
2AP

)∗
and ω-word w′ ∈

(
2AP

)ω
:

w w′ |= ϕ iff w′ |= af (ϕ,w) .

So, intuitively, af (ϕ,w) is the formula that must hold “after reading w” so that ϕ holds “at
the beginning” of the ω-word w w′.

(b) For every negation-free formula ϕ: w |= ϕ iff af (ϕ,w′) ≡ true for some finite prefix w′ of w.

(c) For every formula ϕ and ω-word w ∈
(
2AP

)ω
: af (ϕ,w) is a boolean combination of proper

subformulas of ϕ.

(d) For every formula ϕ of length n: the set of formulas {af (ϕ,w) | w ∈
(
2AP

)∗
} has at most 22n

equivalence classes up to LTL-equivalence.

(e) Use (b)-(d) to construct a deterministic Büchi automaton recognizing Lω(ϕ) with at most 22n

states.

Exercise 152 In this exercise we show that the reduction algorithm of Exercise ?? does not reduce
the Büchi automata generated from LTL formulas, and show that a little modification to LTLtoNGA
can alleviate this problem.

Let ϕ be a formula of LTL(AP), and let Aϕ = LTLtoNGA(ϕ).

(1) Prove that the reduction algorithm of Exercise ?? does not reduce A, that is, show that A =

A/CSR.

(2) Let Bϕ be the result of modifying Aϕ as follows:

316 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

– Add a new state q0 and make it the unique initial state.

– For every initial state q of Aϕ, add a transition q0
q∩AP
−−−−−→ q to Bϕ (recall that q is an atom

of cl(ϕ), and so q ∩ AP is well defined).

– Replace every transition q1
q1∩AP
−−−−−−→ q2 of Aϕ by q1

q2∩AP
−−−−−−→ q2.

Prove that Lω(Bϕ) = Lω(Aϕ).

(3) Construct the automaton Bϕ for the automaton of Figure 14.3.

(4) Apply the reduction algorithm of Exercise ?? to Bϕ.

Exercise 153 (Kupferman and Vardi) We prove that, in the worst case, the number of states of the
smallest deterministic Rabin automaton for an LTL formula may be double exponential in the size
of the formula. Let Σ0 = {a, b}, Σ1 = {a, b, #}, and Σ = {a, b, #, $}. For every n ≥ 0 define the
ω-language Ln ⊆ Σω as follows (we identify an ω-regular expression with its language):

Ln =
∑
w∈Σn

0

Σ∗1 # w # Σ∗1 $ w #ω

Informally, an ω-word belongs to Ln iff

• it contains one single occurrence of $;

• the word to the left of $ is of the form w0 # w1 # · · · # wk for some k ≥ 1 and (possibly empty)
words w0, . . . ,wk ∈ Σ∗0;

• the ω-word to the right of $ consists of a word w ∈ Σn
0 followed by an infinite tail #ω, and

• w is equal to at least one of w0, . . . ,wn.

The exercise has two parts:

(1) Exhibit an infinite family {ϕn}n≥0 of formulas of LTL(Σ) such that ϕn has size O(n2) and
Lω(ϕn) = Ln (abusing language, we write Lω(ϕn) = Ln for: σ ∈ Lω(ϕn) iffσ = {a1} {a2} {a3} · · ·

for some ω-word a1 a2 a3 . . . ∈ Ln).

(2) Show that the smallest DRA recognizing Ln has at least 22n
states.

The solution to the following two problems can be found in “The Blow-Up in Translating LTL to
Deterministic Automata”, by Orna Kupferman and Adin Rosenberg:

• Consider a variant L′n of Ln in which each block of length n before the occurrence of $ is
prefixed by a binary encoding of its position in the block. Show that L′n can be recognized
by a formula of length O(n log n) over a fixed-size alphabet, and that the smallest DRA
recognizing it has at least 22n

states.

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 317

• Consider a variant L′′n of Ln in which each block of length n before the occurrence of $ is
prefixed by a different letter. (So every language Ln has a different alphabet.) Show that
L′′n can be recognized by a formula of length O(n) over a linear size alphabet, and that the
smallest DRA recognizing it has at least 22n

states.

318 CHAPTER 14. APPLICATIONS I: VERIFICATION AND TEMPORAL LOGIC

Chapter 15

Applications II: Monadic Second-Order
Logic and Linear Arithmetic

In Chapter 9 we showed that the languages expressible in monadic second-order logic on finite
words were exactly the regular languages, and derived an algorithm that, given a formula, con-
structs an NFA accepting exactly the set of interpretations of the formula. We show that this result
can be easily extended to the case of infinite words: in Section 15.1 we show that the languages
expressible in monadic second-order logic on ω-words are exactly the ω-regular languages.

In Chapter 10 we introduced Presburger Arithmetic, a logical language for expressing proper-
ties of the integers, and showed how to construct for a given formula ϕ of Presburger Arithmetic an
NFA Aϕ recognizing the solutions of ϕ. In Section 15.2 we extend this result to Linear Arithmetic,
a language for describing properties of real numbers with exactly the same syntax as Presburger
arithmetic.

15.1 Monadic Second-Order Logic on ω-Words

Monadic second-oder logic on ω-words has the same syntax as and a very similar semantics to its
counterpart on finite words.

Definition 15.1 Let X1 = {x, y, z, . . .} and X2 = {X,Y,Z, . . .} be two infinite sets of first-order and
second-order variables. Let Σ = {a, b, c, . . .} be a finite alphabet. The set MSO(Σ) of monadic
second-order formulas over Σ is the set of expressions generated by the grammar:

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

An interpretation of a formula ϕ is a pair (w, I) where w ∈ Σω, and I is a mapping that assigns
every free first-order variable x a position I(x) ∈ N and every free second-order variable X a set
of positions I(X) ⊆ N. (The mapping may also assign positions to other variables.)

The satisfaction relation (w, I) |= ϕ between a formula ϕ of MSO(Σ) and an interpretation (w, I)
of ϕ is defined as follows:

319

320CHAPTER 15. APPLICATIONS II: MONADIC SECOND-ORDER LOGIC AND LINEAR ARITHMETIC

(w, I) |= Qa(x) iff w[I(x)] = a
(w, I) |= x < y iff I(x) < I(y)
(w, I) |= ¬ϕ iff (w, I) 6|= ϕ

(w, I) |= ϕ1 ∨ ϕ2 iff (w, I) |= ϕ1 or (w, I) |= ϕ2
(w, I) |= ∃x ϕ iff |w| ≥ 1 and some i ∈ N satisfies (w, I[i/x]) |= ϕ

(w, I) |= x ∈ X iff I(x) ∈ I(X)
(w, I) |= ∃X ϕ iff some S ⊆ N satisfies (w, I[S/X]) |= ϕ

where w[i] is the letter of w at position i, I[i/x] is the interpretation that assigns i to x and otherwise
coincides with I, and I[S/X] is the interpretation that assigns S to X and otherwise coincides with I

— whether I is defined for i, X or not. If (w, I) |= ϕ we say that (w, I) is a model of ϕ. Two formulas
are equivalent if they have the same models. The language L (ϕ) of a sentence ϕ ∈ MSO(Σ) is the
set L (ϕ) = {w ∈ Σω | w |= φ}. An ω-language L ⊆ Σω is MSO-definable if L = L (ϕ) for some
formula ϕ ∈ MSO(Σ).

15.1.1 Expressive power of MSO(Σ) on ω-words

We show that the ω-languages expressible in monadic second-order logic are exactly the ω-regular
languages. The proof is very similar to its counterpartfor languages of finite words (Proposition
9.12), even a bit simpler.

Proposition 15.2 If L ⊆ Σω is regular, then L is expressible in MSO(Σ).

Proof: Let A = (Q,Σ, δ,Q0, F) be a NBA with Q = {q0, . . . , qn} and L (A) = L. We construct a
formula ϕA such that for every w ∈ Σω, w |= ϕA iff w ∈ L (A).

We start with some notations. Let w = a1 a2 a3 . . . be an ω-word over Σ, and let

Pq =
{
i ∈ N | q ∈ δ̂(q0, a0 . . . ai)

}
.

In words, i ∈ Pq iff A can be in state q immediately after reading the letter ai. Then A accepts w iff
m ∈

⋃
q∈F Pq.

We construct a formula Visits(X0, . . . Xn) with free variables X0, . . . Xn exactly as in Proposition
9.12. The formula has the property that I(Xi) = Pqi holds for every model (w, I) and for every
0 ≤ i ≤ n. In words, Visits(X0, . . . Xn) is only true when Xi takes the value Pqi for every 0 ≤ i ≤ n.
So we can take

ϕA := ∃X0 . . .∃Xn Visits(X0, . . . Xn) ∧ ∀x ∃y

∨
qi∈F

y ∈ Xi


We proceed to prove that MSO-definable ω-languages are regular. Given a sentence ϕ ∈

MS O(Σ), we encode an interpretation (w, I) as an ω-word. We proceed as for finite words. Con-
sider for instance a formula with first-order variables x, y and second-order variables X,Y . Consider
the interpretation

15.2. LINEAR ARITHMETIC 321

a(ab)ω ,

x 7→ 2
y 7→ 6
X 7→ set of prime numbers
Y 7→ set of even numbers


We encode it as

x
y
X
Y

a
0
0
0
0

a
1
0
1
1

b
0
0
1
0

a
0
0
0
1

b
0
0
1
0

a
0
1
0
1

b
0
0
1
0

a
0
0
0
1

b
0
0
0
0

. . .

. . .

. . .

. . .

. . .

corresponding to the ω-word
a
0
0
0
0




a
1
0
1
1




b
0
0
1
0




a
0
0
0
1




b
0
0
1
0




a
0
1
0
1




b
0
0
1
0




a
0
0
0
1




b
0
0
0
0


. . .

. . .

. . .

over Σ × {0, 1}4

Definition 15.3 Let ϕ be a formula with n free variables, and let (w, I) be an interpretation of ϕ.
We denote by enc(w, I) the word over the alphabet Σ × {0, 1}ω described above. The ω-language of
ϕ is Lω(ϕ) = {enc(w, I) | (w, I) |= ϕ}.

We can now prove by induction on the structure of ϕ that Lω(ϕ) is ω-regular. The proof is a
straightforward modification of the proof for the case of finite words. The case of negation requires
to replace the complementation operation for NFAs by the complementation operation for NBAs.

15.2 Linear Arithmetic

Linear Arithmetic is a language for describing properties of real numbers. It has the same syntax
as Presburger arithmetic (see Chapter 10), but formulas are interpreted over the reals, instead of
over the naturals or the integers. Given a formula ϕ or real Presburger Arithmetic, we show how
to construct a NBA Aϕ recognizing the solutions of ϕ. Section 15.2.1 discusses how to encode real
numbers as strings, and Section 15.3 constructs the NBA.

15.2.1 Encoding Real Numbers

We encode real numbers as infinite strings in two steps. First we encode reals as pairs of numbers,
and then these pairs as strings.

322CHAPTER 15. APPLICATIONS II: MONADIC SECOND-ORDER LOGIC AND LINEAR ARITHMETIC

We encode a real number x ∈ R as a pair (xI , xF), where xI ∈ Z, xF ∈ [0, 1] and x = xI + xF .
We call xI and xF the integer and fractional parts of x. So, for instance, (1, 1/3) encodes 4/3,
and (−1, 2/3) encodes −1/3 (not −5/3). Every integer is encoded by two different pairs, e.g., 2 is
encoded by (1, 1) and (2, 0). We are not bothered by this. (In the standard decimal representation
of real numbers integers also have two representations, for example 2 is represented by both 2 and
1.9.)

We encode pairs (xI , xF) as infinite strings wI?wF . The string wi is a 2-complement encoding of
xI (see Chapter 10). However, unlike Chapter 10, we use the msbf instead of the lsbf encoding (this
is not essential, it leads to a more elegant construction.) So wI is any word wI = anan−1 . . . a0 . . . ∈

{0, 1}∗ satisfying

xI =

n−1∑
i=0

ai · 2i − a0 · 2n (15.1)

The string wF is any ω-word b1b2b3 . . . ∈ {0, 1}ω satisfying

xF =

∞∑
i=1

bi · 2−i (15.2)

The only word b1b2b3 . . . for which we have xF = 1 is 1ω. So, in particular, the encodings of the
integer 1 are 0∗01?0ω and 0∗0?1ω. Equation 15.2 also has two solutions for fractions of the form
2−k. For instance, the encodings of 1/2 are 0∗0? 10ω and 0∗0? 01ω. Other fractions have a unique
encoding: 0∗0 ? (01)ω is the unique encoding of 1/3.

Example 15.4 The encodings of 3 are 0∗011 ? 0ω and 0∗010 ? 1ω.
The encodings of 3.3 are 0∗011 ? (01)ω.
The encodings of −3.75 are 1 ∗ 100 ? 010ω and 1 ∗ 100 ? 001ω.

Tuples of reals are encoded using padding to make the ?-symbols fall on the same column. For
instance, the encodings of the triple (−6.75, 12.3, 3) are

10
0



∗ 11

0


01
0


00
1


10
1


??
?


00
0


11
0



00
0


01
0



ω

15.3 Constructing an NBA for the Real Solutions

Given a real Presburger formula ϕ, we construct a NBA Aϕ accepting the encodings of the solutions
of ϕ. If ϕ is a negation, disjunction, or existential qunatification, we proceed as in Chapter 10,
replacing the operations on NFAs and transducres by operations on NBAs.

Consider now an atomic formula ϕ = a · x ≤ b. The NBA Aϕ must accept the encodings of
all the tuples c ∈ Rn satisfying a · c ≤ b. We decompose the problem into two subproblems for

15.3. CONSTRUCTING AN NBA FOR THE REAL SOLUTIONS 323

integer and fractional parts. Given c ∈ Rn, let cI and cF be the integer and fractional part of c
for some encoding of c. For instance, if c = (2.3,−2.75, 1), then we can have cI = (2,−3, 1) and
cF = (0.3, 0.25, 0), corresponding to the encoding, say,

[010 ? (01)ω, 111 ? 010ω, 01 ? 0ω]

or cI = (2,−3, 0) and cF = (0.3, 0.25, 1), corresponding to, say,

[010 ? (01)ω, 11111 ? 001ω, 0 ? 1ω] .

Let α+ (α−) be the sum of the positive (negative) components of a; for instance, if a = (1,−2, 0, 3,−1)
then α+ = 4 and α− = −3. Since cF ∈ [0, 1]n, we have

α− ≤ a · cF ≤ α
+ (15.3)

and therefore, if c is a solution of ϕ, then

a · cI + a · cF ≤ b (15.4)

a · cI ≤ b − α− (15.5)

Putting together 15.3-15.5, we get that cI + cF is a solution of ϕ iff:

• a · cI ≤ b − α+ ; or

• a · cI ≤ β for some integer β ∈ [b − α+ + 1, b − α−] and a · cF ≤ b − β.

If we denote β+ = b − α+ + 1 and β− = b − α−, then we can decompose the solution space of ϕ as
follows:

Sol(ϕ) = {cI + cF | a · cI < β
+}

∪
⋃

β+≤β≤β−

{ cI + cF | a · cI = β and ß; a · cF ≤ b − β }

Example 15.5 We use ϕ = 2x − y ≤ 0 as running example. We have

α+ = 2 α− = 0
β+ = −1 β− = 0 .

So x, y ∈ R is a solution of ϕ iff:

• 2xI − yI ≤ −2; or

• 2xI − yI = −1 and 2xF − yF ≤ 1; or

• 2xI − yI = 0 and 2xF − yF ≤ 0.

324CHAPTER 15. APPLICATIONS II: MONADIC SECOND-ORDER LOGIC AND LINEAR ARITHMETIC

The solutions of a ·cI < β
+ and a ·cI = β can be computed using algorithms IneqZNFA and EqZNFA

of Section 10.3. Recall that both algorithms use the lsbf encoding, but it is easy to transform their
output into NFAs for the msbf encoding: since the algorithms deliver NFAs with exactly one final
state, it suffices to reverse the transitions of the NFA, and exchange the initial and final states: the
new automaton recognizes a word w iff the old one recognizes its reverse w−1, and so it recognizes
exactly the msbf-encodings.

Example 15.6 Figure 15.1 shows NFAs for the solutions of 2xI − yI ≤ −2 in lsbf (left) and msbf
encoding (right). The NFA on the right is obtained by reversing the transition, and exchanging the
initial and final state. Figure 15.2 shows NFAs for the solutions of 2xI − yI = −1, also in lsbf and
msbf encoding.

q f

−2

0

−1

[
0
0

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

] [
1
0

]
,

[
1
1

]
[
0
0

]
,

[
0
1

]
[
1
0

]

[
0
1

][
1
0

]
,

[
1
1

]

[
1
0

]

[
0
1

]

[
0
0

]
,

[
0
1

]

−1
[
0
0

]
,

[
1
1

]

[
0
1

]

[
0
0

]
,

[
0
1

]

−2

0

[
0
0

]
,

[
1
0

]
,

[
1
1

]

[
1
0

] [
0
0

]
,

[
0
1

]

[
0
1

][
1
0

]
,

[
1
1

]

[
1
0

]
[
1
0

]
,

[
1
1

]
q f

Figure 15.1: NFAs for the solutions of 2x−y ≤ −2 overZwith lbsf (left) and msbf (right) encodings.

15.3.1 A NBA for the Solutions of a · xF ≤ β

We construct a DBA recognizing the solutions of a · xF ≤ β. The algorithm is similar to AFtoNFA
in Section 10.2. The states of the DBA are integers. We choose transitions and final states so that
the following property holds:

State q ∈ Z recognizes the encodings of the tuples cF ∈ [0, 1]n such that a · cF ≤ q. (15.6)

However, recall that α− ≤ a · cF ≤ α
+ for every cF ∈ [0, 1]n, and therefore:

15.3. CONSTRUCTING AN NBA FOR THE REAL SOLUTIONS 325

0

[
0
1

]

[
1
1

]
[
1
1

]

q f

−1

[
1
0

]
[
0
0

]
0

−1

[
0
0

]

[
1
1

]
[
1
1

]
q f

[
1
0

][
0
1

]

Figure 15.2: NFAs for the solutions of 2x−y = −1 overZwith lbsf (left) and msbf (right) encodings.

• all states q ≥ α+ accept all tuples of reals in [0, 1]n, and can be merged with the state α+;

• all states q < α− accept no tuples in [0, 1]n, and can be merged with the state α− − 1.

Calling these two merged states all and none, the possible states of the DBA (not all of them may
be reachable from the initial state) are

all , none , and {q ∈ Z | α− ≤ q ≤ α+ − 1} .

All these states but none are final, and the initial state is β. Let us now define the set of transitions.
Given a state q and a letter ζ ∈ {0, 1}n, let us determine the target state q′ of the unique transition

q
ζ
−−→ q′. Clearly, if q = all, then q′ = all, and if q = none, then q′ = none. If q ∈ Z, we compute

the value v that q′ must have in order to satisfy property 15.6, and then: If v ∈ [α−, α+ − 1], we set
q′ = v; if v < α−, we set q′ = none, and if q > α+ − 1, we set q′ = all. To compute v, recall that
a word w ∈ ({0, 1}n)∗ is accepted from q′ iff the word ζw is accepted from q. So the tuple c′ ∈ Rn

encoded by w and the tuple c ∈ Rn of real numbers encoded by ζw are linked by the equation

c =
1
2
ζ +

1
2

c′ (15.7)

Since c′ is accepted from q′ iff c is accepted by q, to fulfil property 15.6 we must choose v so that
a · (1

2ζ + 1
2 c′) ≤ q holds iff a · c′ ≤ v holds. We get v = q − a · ζ, and so we define the transition

function of the DBA as follows:

δ(q, ζ) =


none if q = none or q − a · ζ < α−

q − a · ζ if α− ≤ q − a · ζ ≤ α+ − 1
all if q = all or α+ − 1 < q − a · ζ

Example 15.7 Figure 15.3 shows the DBA for the solutions of 2xF − yF ≤ 1 (the state none has
been omitted). Since α+ = 2 and α− = −1, the possible states of the DBA are all, none, and

326CHAPTER 15. APPLICATIONS II: MONADIC SECOND-ORDER LOGIC AND LINEAR ARITHMETIC

−1, 0, 1. The initial state is 1. Let us determine the target state of the transitions leaving state 1. We
instantiate the definition of δ(q, ζ) with q = 1, α+ = 2 and α− = −1, and get

δ(1, ζ) =


none if 2ζx + ζy < −2

1 − 2ζx + ζy if −2 ≤ −2ζx + ζy ≤ 0
all if 0 < −2ζx + ζy

which leads to

δ(1, ζ) =


1 if ζx = 0 and ζy = 0

all if ζx = 0 and ζy = 1
−1 if ζx = 1 and ζy = 0

0 if ζx = 1 and ζy = 1

Recall that, by property 15.6, a state q ∈ Z accepts the encodings of the pairs (xF , yF) ∈ [0, 1]n

such that 2xF − yF ≤ q. This allows us to immediately derive the DBAs for 2xF − yF ≤ 0 or
2xF − yF ≤ −1: it is the DBA of Figure 15.3, with 0 or −1 as initial state, respectively.

0

1 [
1
0

][
0
1

] [
1
1

]
all

−1[
0
0

] [
0
1

]
[
1
1

]

[
0
0

]

[
0
1

][
0
0

] [
0
0

]
, . . . ,

[
1
1

]

Figure 15.3: DBA for the solutions of 2x − y ≤ 1 over [0, 1] × [0, 1].

Example 15.8 Consider again ϕ = 2x − y ≤ 0. Recall that (x, y) ∈ R2 is a solution of ϕ iff:

(i) 2xI − yI ≤ −2; or

(ii) 2xI − yI = −1 and 2xF − yF ≤ 1; or

(iii) 2xI − yI = 0 and 2xF − yF ≤ 0.

Figure 15.4 shows at the top a DBA for the x, y satisfying (i). It is easily obtained from the NFA
for the solutions of 2xI − yI ≤ −2 shown on the right of Figure 15.1.

15.3. CONSTRUCTING AN NBA FOR THE REAL SOLUTIONS 327

The DBA at the bottom of Figure 15.4 recognizes the x, y ∈ R satisfying (ii) or (iii). To construct
it, we “concatenate” the DFA on the right of Figure 15.2, and the DBA of Figure 15.3. The DFA
recognizes the integer solutions of 2xI − yI = −1, which is adequate for (ii), but changing the final
state to 0 we get a DFA for the integer solutions of 2xI − yI = 0, adequate for (iii). Simarly with the
DBA, and so it suffices to link state −1 of the DFA to state 1 of the DBA, and state 0 of the DFA to
state 0 of the DBA.

−1
[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

]

−2

0

[
1
0

] [
0
0

]
,

[
0
1

]

[
0
1

][
1
0

]
,

[
1
1

]

[
1
0

]
,

[
1
1

]
[
1
0

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

?

[
0
1

] [
0
0

]
,

[
1
1

]

0

−1

[
0
0

]

[
1
1

]

[
0
1

]
[
1
1

]
[
1
0

]

[
0
0

]

[
0
0

]
, . . . ,

[
1
1

]

0

1 [
1
0

][
0
1

] [
1
1

]

−1[
0
1

]
[
1
1

]

[
0
0

]

[
0
1

][
0
0

]
?

?

Figure 15.4: DBA for the real solutions of 2x − y ≤ 0 satisfying (i) (top) and (ii) or (iii) (bottom).

328CHAPTER 15. APPLICATIONS II: MONADIC SECOND-ORDER LOGIC AND LINEAR ARITHMETIC

Part III

Solutions to exercises

329

	Introduction and Outline
	I Automata on Finite Words
	Automata Classes and Conversions
	Regular expressions: a language to describe languages
	Automata classes
	Deterministic finite automata
	Non-deterministic finite automata
	Non-deterministic finite automata with -transitions
	Non-deterministic finite automata with regular expressions
	A normal form for automata

	Conversion Algorithms between Finite Automata
	From NFA to DFA.
	From NFA- to NFA.

	Conversion algorithms between regular expressions and automata
	From regular expressions to NFA-
	From NFA- to regular expressions

	 A Tour of Conversions

	Minimization and Reduction
	Minimal DFAs
	Minimizing DFAs
	Computing the language partition
	Quotienting
	Hopcroft's algorithm

	Reducing NFAs
	The reduction algorithm

	A Characterization of the Regular Languages

	Operations on Sets: Implementations
	Implementation on DFAs
	Membership.
	Complement.
	Binary Boolean Operations
	Emptiness.
	Universality.
	Inclusion.
	Equality.

	Implementation on NFAs
	Membership.
	Complement.
	Union and intersection.
	Emptiness and Universality.
	Inclusion and Equality.

	Applications I: Pattern matching
	The general case
	The word case
	Lazy DFAs

	Operations on Relations: Implementations
	Encodings
	Transducers and Regular Relations
	Implementing Operations on Relations
	Projection
	Join, Post, and Pre

	Relations of Higher Arity

	Finite Universes
	Fixed-length Languages and the Master Automaton
	A Data Structure for Fixed-length Languages
	Operations on fixed-length languages
	Determinization and Minimization
	Operations on Fixed-length Relations
	Decision Diagrams
	Decision Diagrams and Kernels
	Operations on Kernels

	Applications II: Verification
	The Automata-Theoretic Approach to Verification
	Programs as Networks of Automata
	Parallel Composition
	Asynchonous Product
	State- and event-based properties.

	Concurrent Programs
	Expressing and Checking Properties

	Coping with the State-Explosion Problem
	On-the-fly verification.
	Compositional Verification
	Symbolic State-space Exploration

	Safety and Liveness Properties

	Automata and Logic
	First-Order Logic on Words
	Expressive power of FO()

	Monadic Second-Order Logic on Words
	Expressive power of MSO()

	Applications III: Presburger Arithmetic
	Syntax and Semantics
	An NFA for the Solutions over the Naturals.
	Equations

	An NFA for the Solutions over the Integers.
	Equations
	Algorithms

	II Automata on Infinite Words
	Classes of -Automata and Conversions
	-languages and -regular expressions
	Büchi automata
	From -regular expressions to NBAs and back
	Non-equivalence of NBAs and DBAs

	Generalized Büchi automata
	Other classes of -automata
	Co-Büchi Automata
	Muller automata
	Rabin automata
	Streett automata
	Parity automata
	Conclusion

	Boolean operations: Implementations
	Union and intersection
	Complement
	The problems of complement
	Rankings and level rankings
	A (possibly infinite) complement automaton
	The size of A

	Emptiness check: Implementations
	Algorithms based on depth-first search
	The nested-DFS algorithm
	The two-stack algorithm

	Algorithms based on breadth-first search
	Emerson-Lei's algorithm
	A Modified Emerson-Lei's algorithm
	Comparing the algorithms

	Applications I: Verification and Temporal Logic
	Automata-Based Verification of Liveness Properties
	Checking Liveness Properties

	Linear Temporal Logic
	From LTL formulas to generalized Büchi automata
	Satisfaction sequences and Hintikka sequences
	Constructing the NGA for an LTL formula
	Size of the NGA

	Automatic Verification of LTL Formulas

	Applications II: Monadic Second-Order Logic and Linear Arithmetic
	Monadic Second-Order Logic on -Words
	Expressive power of MSO() on -words

	Linear Arithmetic
	Encoding Real Numbers

	Constructing an NBA for the Real Solutions
	A NBA for the Solutions of a xF

	III Solutions to exercises

