
Presburger Arithmetic



• Which arithmetical problems can be solved 
using automata?

• Presburger arithmetic (PA): a logical language to 
define arithmetical properties of (tuples of) 
natural numbers 



ݔ3 − ݕ4 = 5
ݔ− + ݕ	 = 3		

Is there an integer solution?



ݔ2 + 	ݕ3 ≥ 5
ݔ− + 	ݕ4 ≤ 3		

Is there an integer solution?



Are there integers ݕ,ݔ such that

	ݔ3 − ݕ4 = 5
ݔ− + ݕ = 3		

but not

ݔ2 + 	ݕ3 ≥ 2
ݔ− + 	ݕ4 ≤ 4		 ?



For every integer solution ݕ ,ݔ of

ݔ2 + 	ݕ3 ≥ 5

ݔ− + 	ݕ4 ≤ 3		

is there is an integer solution ݑ ,ݖ of

	ݖ3 − 	ݑ2 ≥ 3

ݖ− + 	ݑ4 ≤ −2		

such that  ݔ + 	ݖ = ݕ	 + ݑ ?



Syntax of PA

• Symbols: 
Variables x, y, z ...
Constants 0, 1
Arithmetical symbols +, ≤
Logical symbols ∨,	¬,	∃ (∧,	∀,	→,…)
Parenthesis ( , )

• Terms:   
Variables, 0 and 1 are terms.
If  ݐ and  ݑ are terms, then  ݐ	 + .is  a term		ݑ	



Syntax of PA

• Atomic formulas:  
	ݐ ≤ ݐ  where ,	ݑ	 and  ݑ are terms

• Formulas:   
Atomic formulas are formulas.
If ߮ଵ,߮ଶ are formulas, then so are ߮ଵ∨߮ଶ, ¬߮ଵ, ∃߮ݔଵ

• Free and bound variables: 
A variable is bound if it is in the scope of an existential 
quatifier, otherwise it is free.

• Sentences: formulas without free variables.



Abbreviations

• Logical abbrevations:  
߮ଵ ∧	߮ଶ 	≡	¬(¬߮ଵ∨¬߮ଶ)
߮ଵ →߮ଶ ≡	¬߮ଵ∨߮ଶ
߮ଵ ↔߮ଶ ≡	¬(߮ଵ∨߮ଶ) ∨ ¬(¬߮ଵ∨ ¬	߮ଶ)
ݔ∀ ߮ ≡ ¬ ݔ∃ ¬ ߮

• Arithmetic abbreviations:   



Semantics (intuition)

• The semantics of a sentence is true or false.
• The semantics of a formula with free variables 

,ଵݔ … , ௞ݔ is the set containing all tuples  
(݊ଵ, … ,݊௞)	of natural numbers that ‘’satisfy the 
formula’’ 



Semantics (more formally)

• An interpretation of a formula ߮ is a function ओ
that assigns a natural number to every free 
variable appearing in ߮ (and perhaps also to 
others).

• Given an interpretation ओ, a variable ݔ, and a 
number ݊, we denote  by ओ[݊/ݔ]		the 
interpretation that assigns to  ݔ the number ݊, 
and to all other variables the same value as ओ.



Semantics (more formally)

• We inductively define when an interpretation ओ
satisfies a formula ߮, denoted by ओ ⊨ ߮	:



Semantics (more formally)

• Lemma: If two interpretations of a formula ߮ assign the 
same values to all free variables of ߮, then either both 
satisfy ߮ or none satisfy ߮.

• Corollary: if ߮ is a sentence, either all interpretations                              
satisfy ߮, or none satisfy ߮.

• A sentence is true if it is satisfied by all interpretations, 
and false if it is not satisfied by any interpretation.

• A model or solution of ߮ is the projection of an 
interpretation that satisfies ߮	onto the free variables of 
߮. The set of solutions or solution space is denoted by 
.(߮)݈݋ܵ



Formulating questions

Are there integers  ݕ ,ݔ such that

ݔ2 + 	ݕ3 ≥ 5						

ݔ− + 	ݕ4 ≤ 3			?		

ݕ∃ݔ∃ ݔ2) + 	ݕ3 ≥ 5 ݔ−	∧ + 	ݕ4 ≤ 3)	



Formulating questions

For every solution ݕ ,ݔ of

ݔ2 + 	ݕ3 ≥ 5

ݔ− + 	ݕ4 ≤ 3		

is there is a solution ݑ ,ݖ of

	ݖ3 − 	ݑ2 ≥ 3

ݖ− + 	ݑ4 ≤ −2		

such that  ݔ + 	ݖ = ݕ	 + ݑ ?

∀ ݕ	∀	ݔ

ݔ2) + 	ݕ3 ≥ 5 ݔ−	∧ + 	ݕ4 ≤ 3)	
→

ݑ	∃	ݖ	∃	)			

	ݖ3 ) − 	ݑ2 ≥ 3 					∧	

	ݖ− + ݑ4 ≤ −2			 ∧

ݔ + 	ݖ = ݕ	 + ݑ )   )



Language of a formula

• We encode natural numbers with the ݂ܾݏ݈
encoding.

• If ߮	has free variables ݔଵ, … , ௞ݔ , we encode a 
solution of ߮ as a word over 0,1 ௞ in the usual 
way. E.g, the encoding of ݔଵ, ,ଶݔ ଷݔ = (5,10,0) is 

• The language of ߮, denoted by ܮ(߮), is the set of 
encodings of the solutions of ߮. 



An NFA for the solution space

• Given ߮, we construct an NFA ܣఝ	such that ܮ ఝܣ = (߮)ܮ
• We can take:

߮¬ܣ ∶= CompNFA(ܣఝ)

	(ఝభ∨ఝమ)ܣ ∶=	 UnionNFA(ܣఝభ, (ఝమܣ

௫ఝ∃ܣ ∶=	 Projection_ݔ(ܣఝ)

where Projection_ݔ projects onto all variables but ݔ
• It remains to construct ܣఝ for an atomic formula ߮.



DFA for atomic formulas

• Every atomic formula has the same solutions as 
a formula of the form

ܽଵݔଵ + 	… + ܽ௡ݔ௡ 	≤ ܾ	 ≔ ܽ ∙ ݔ ≤ ܾ
where the ܽ௜ and ܾ are arbitrary integers 
(possibly negative).

• Given ܽ ∙ ݔ ≤ ܾ	 we construct a DFA with 
integers as states and b as initial state satisfying:

Each state 	ݍ ∈ ℤ recognizes the 
tuples 	c ∈ ℕ௡ such that ܽ ∙ ܿ ≤ ݍ



• Given ݍ ∈ ℤ and a letter ߞ ∈ 0,1 ௡ we compute the 
target state ݍ′ ∈ ℤ of the transition ݍ, ,ߞ ᇱݍ .

• For every word ݓ ∈ ( 0,1 ௡)∗ we have:
ݓ is accepted from ݍ′ iff ݓߞ is accepted from ݍ

and so for every tuple ܿ ∈ ℕ௡:
ܿ is accepted from ݍ′ iff 2ܿ + ߞ is accepted from ݍ

• Hence we choose ′ݍ so that
ܽ ∙ ܿ ≤ ᇱݍ iff   ܽ ∙ (2ܿ + (ߞ ≤ ݍ

• Since 	ܽ ∙ (2ܿ + (ߞ ≤ ݍ iff 2(ܽ ∙ ܿ) + ܽ ∙ ߞ ≤ ݍ we take

ᇱݍ =
1
2 ݍ)	 − ܽ ∙ (ߞ

Transitions



Final states

• A state is final iff it accepts the empty word
• So ݍ ∈ ℤ is final iff it accepts  0, … , 0 ∈ ℕ௡

• So we take ݍ ∈ ℤ final iff ܽ ∙ (0, … , 0) ≤ ݍ iff ݍ ≥ 0





Example:  3ݔ − 	ݕ2 ≥ 6

Conversion: −3ݔ + 	ݕ2 ≤ −6
ܽ = ିଷ

ଶ 	, 	ܾ = −6
Initial state: −6

Transition from state -6  with letter  1
1 :

ᇱݍ =
1
2
ݍ)	 − ܽ ∙ (ߞ

ᇱݍ =
1
2
	(	−6 − (−3,2) ∙

1
1
	) =

1
2
	(	−6 + 1) = −3



Example:  2ݔ − ݕ ≤ 2



Example:  ݔ + ݕ ≥ 4



Termination of AFtoDFA

• Lemma:  Let 		߮ = ܽ ∙ ܿ ≤ ݍ and  ݏ = 	 ∑ |ܽ௜|௡
௜ୀଵ . 

All states  ݏ௝ 	 added by  AFtoDFA(߮) satisfy
− ܾ − ݏ ≤ ݆ ≤ ܾ + ݏ

Proof: Holds for the first state added: ݏ௕
Assume ݏ௝ is added to the workset when processing ݏ௞.   
By ind. hyp.:  − ܾ − ݏ ≤ ݇ ≤ ܾ + .ݏ

Together with 	݆ = ଵ
ଶ
	(݇ − ܽ ∙ (ߞ we get



Some arithmetic yields

and together we get



Solving a system of inequations

• We compute all solutions of

	ݔ2 − ݕ ≤ 2 
ݔ + ݕ ≥ 2 

s.t. ,ݔ ݕ are multiples of 4. They are the solutions of

ݔ	ݖ∃ = ݖ4 	∧ ݕ	ݓ∃ = ݓ4 ∧ ݔ2) − ݕ ≤ 2) ∧ ݔ) + ݕ ≥ 4)	



• DFA for ∃ݖ	ݔ = ݖ4 	∧ ݕ	ݓ∃ = ݓ4



• Final result 


