Automata and Formal Languages - Homework 12

Due 22.01.2019

Exercise 12.1

Implement the Büchi complementation construction seen in the class using 0wl ${ }^{1}$.
The exercise template can be found in the branch buchi-complementation ${ }^{2}$ and is called Complementation.java. Fill in the three locations marked with // CODE HERE computing the initial state, the transitions, and the accepting states.

You can test the correctness of your implementation by executing ./gradlew test in the top-level directory of the project. Note that Java 11 is the required minimal version for building and running the code.

Exercise 12.2

Consider the following automaton A :

(a) Interpret A as a Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\},\left\{q_{0}, q_{2}\right\}\right\}$. Use algorithms NMAtoNGA and $N G A t o N B A$ from the lecture notes to construct a Büchi automaton that recognizes the same language as A.
(b) Interpret A as a Rabin automaton with acceptance condition $\left\{\left\langle\left\{q_{0}, q_{2}\right\},\left\{q_{1}\right\}\right\rangle\right\}$. Follow the approach presented in class to construct a Büchi automaton that recognizes the same language as A.

Exercise 12.3

(a) Give deterministic Büchi automata for L_{a}, L_{b}, L_{c} where $L_{\sigma}=\left\{w \in\{a, b, c\}^{\omega}: w\right.$ contains infinitely many $\left.\sigma^{\prime} s\right\}$, and intersect these automata.
(b) Give Büchi automata for the following ω-languages:

- $L_{1}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains infinitely many a 's $\}$,

[^0]- $L_{2}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many b 's $\}$,
- $L_{3}=\left\{w \in\{a, b\}^{\omega}\right.$: each occurrence of a in w is followed by a $\left.b\right\}$,
and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.

Exercise 12.4

Consider the following Büchi automaton over $\Sigma=\{a, b\}$:

(a) Sketch $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Let r_{w} be the ranking of $\operatorname{dag}(w)$ defined by

$$
r_{w}(q, i)= \begin{cases}1 & \text { if } q=q_{0} \text { and }\left\langle q_{0}, i\right\rangle \text { appears in } \operatorname{dag}(w) \\ 0 & \text { if } q=q_{1} \text { and }\left\langle q_{1}, i\right\rangle \text { appears in } \operatorname{dag}(w) \\ \perp & \text { otherwise. }\end{cases}
$$

Are $r_{a b a b b^{\omega}}$ and $r_{(a b)^{\omega}}$ odd rankings?
(c) Show that r_{w} is an odd ranking if and only if $w \notin L_{\omega}(B)$.
(d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. [Hint:

Solution 12.2

(a) We must first construct two generalized Büchi automata A and B for $\left\{q_{1}\right\}$ and $\left\{q_{0}, q_{2}\right\}$ respectively. Automaton A is as follows with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$:

Automaton B is as follows with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{2}\right\}\right\}$:

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a standard Büchi automaton, it suffices to make state $\left[q_{1}, 1\right]$ accepting. However, it remains to convert B into a standard Büchi automaton B^{\prime} :

* Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of both automata, i.e. have them side by side instead of adding a single new initial.

Solution 12.3

(a) The following deterministic Büchi automata respectively accept L_{a}, L_{b} and L_{c} :

* As seen in $\# 11.1(\mathrm{~d}), L_{a} \cap L_{b} \cap L_{b}$ is accepted by a smaller deterministic Büchi automaton:

(b) The following Büchi automata respectively accept L_{1}, L_{2} and L_{3} :

Taking the intersection of these automata leads to the following Büchi automaton:

Note that the language of this automaton is the empty language.

Solution 12.4

(a) $\operatorname{dag}\left(a b a b^{\omega}\right)$:

$\operatorname{dag}\left((a b)^{\omega}\right):$

(b) - r is not an odd rank for $\operatorname{dag}\left(a b a b^{\omega}\right)$ since

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{1}, 4\right\rangle \xrightarrow{b}\left\langle q_{1}, 5\right\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}\left(a b a b^{\omega}\right)$ not visiting odd nodes infinitely often.

- r is an odd rank for $\operatorname{dag}\left((a b)^{\omega}\right)$ since it has a single infinite path:

$$
\left\langle q_{0}, 0\right\rangle \stackrel{a}{\rightarrow}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{0}, 4\right\rangle \xrightarrow{a}\left\langle q_{0}, 5\right\rangle \xrightarrow{b} \cdots
$$

which only visits odd nodes.
(c) $\Rightarrow)$ Let $w \in L_{\omega}(B)$. We have $w=u b^{\omega}$ for some $u \in\{a, b\}^{*}$. This implies that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{0},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}(w)$. Since this path does not visit odd nodes infinitely often, r is not odd for $\operatorname{dag}(w)$.
$\Leftarrow)$ Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of $\operatorname{dag}(w)$ that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\left\langle q_{1}, i\right\rangle$. Therefore, there exists $u \in\{a, b\}^{*}$ such that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{1},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

This implies that $w=u b^{\omega} \in L_{\omega}(B)$ which is contradiction.
(d) By (c), for every $w \in\{a, b\}^{\omega}$, if $\operatorname{dag}(w)$ has an odd ranking, then it has one ranging over 0 and 1 . Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 . We obtain the following Büchi automaton:

\star By (c), it would have even been sufficient to only explore the blue states as they correspond to the family of rankings $\left\{r_{w}: w \in \Sigma^{\omega}\right\}$.

[^0]: ${ }^{1}$ https://owl.model.in.tum.de
 ${ }^{2}$ https://gitlab.lrz.de/i7/owl/commits/buchi-complementation

