Automata and Formal Languages - Homework 11

Due 15.01.2019

Exercise 11.1

Let $\inf (w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω-regular expressions for the following ω-languages over $\Sigma=\{a, b, c\}$:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}: \inf (w) \subseteq\{a, b\}\right\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}: \inf (w)=\{a, b\}\right\}$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$,
(d) $L_{4}=\left\{w \in \Sigma^{\omega}: \inf (w)=\{a, b, c\}\right\}$.

Exercise 11.2

Give deterministic Büchi automata recognizing the following ω-languages over $\Sigma=\{a, b, c\}$:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}: w\right.$ contains at least one $\left.c\right\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}\right.$: in w, every a is immediately followed by a $\left.b\right\}$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}:\right.$ in w, between two successive a 's there are at least two b 's $\}$.

Exercise 11.3

Give deterministic Rabin automata, Muller automata and parity automata for the following language:

$$
L=\left\{w \in\{a, b\}^{\omega}: w \text { contains finitely many } a \text { 's }\right\}
$$

Exercise 11.4

Prove or disprove:
(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A)=L_{\omega}(B) ;$
(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A)=L_{\omega}(B)$;
(c) There exists a Büchi automaton recognizing the finite ω-language $\{w\}$ such that $w \in\{0,1, \ldots, 9\}^{\omega}$ and w_{i} is the $i^{\text {th }}$ decimal of $\sqrt{2}$.

Exercise 11.5

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Solution 11.1

(a) $(a+b+c)^{*}(a+b)^{\omega}$, and

\star It was asked in class whether there exists a deterministic Büchi automaton accepting L_{1}. We show that it is not the case. For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L_{\omega}(B)=L_{1}$. Since $c b^{\omega} \in L_{1}, B$ must visit F infinitely often when reading $c b^{\omega}$. In particular, this implies the existence of $m_{1}>0$ and $q_{1} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}}} q_{1}$. Similarly, since $b^{m_{1}} c b^{\omega} \in L_{1}$, there exist $m_{2}>0$ and $q_{2} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}} c b^{m_{2}}} q_{2}$. Since B is deterministic, we have $q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2}$. By repeating this argument $|Q|$ times, we can construct $m_{1}, m_{2}, \ldots, m_{|Q|}>0$ and $q_{1}, q_{2}, \ldots, q_{|Q|} \in F$ such that

$$
q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2} \cdots \xrightarrow{c b^{m_{|Q|}}} q_{|Q|} .
$$

By the pigeonhole principle, there exist $0 \leq i<j \leq|Q|$ such that $q_{i}=q_{j}$. Let

$$
\begin{aligned}
u & =c b^{m_{1}} c b^{m_{2}} \cdots c b^{m_{i}} \\
v & =c b^{m_{i+1}} c b^{m_{i+2}} \cdots c b^{m_{j}}
\end{aligned}
$$

We have $q_{0} \xrightarrow{u} q_{i} \xrightarrow{v} q_{i} \xrightarrow{v} q_{i} \xrightarrow{u} \cdots$ which implies that $u v^{\omega} \in L_{\omega}(B)$. This is a contradiction since $u v^{\omega} \notin L_{1}$.
(b) $(a+b+c)^{*}\left(a a^{*} b b^{*}\right)^{\omega}$, and

(c) $\left((b+c)^{*} a(a+c)^{*} b\right)^{\omega}$, and

or

(d) $\left((b+c)^{*} a(a+c)^{*} b(a+b)^{*} c\right)^{\omega}$, and

Solution 11.2
(a)

(b)

(c)

or simply,

Solution 11.3

- We give the following Rabin automaton with acceptance condition $\left\{\left(\left\{q_{1}\right\},\left\{q_{0}\right\}\right)\right\}$, i.e. where q_{1} must be visited infinitely often and q_{0} must be visited finitely often:

- We give the following Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$, i.e. where precisely $\left\{q_{1}\right\}$ must be visited infinitely often:

- We give the following parity automaton with acceptance condition $\left(\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\}\right)$:

Solution 11.4

(a) True. The construction for NFAs still work for Büchi automata.

Let $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B^{\prime}=\left(Q \cup\left\{q_{\text {init }}\right\}, \Sigma, \delta^{\prime},\left\{q_{\text {init }}\right\}, F\right)$ where

$$
\delta^{\prime}(q, a)= \begin{cases}\bigcup_{q_{0} \in Q_{0}} \delta\left(q_{0}, a\right) & \text { if } q=q_{\mathrm{init}} \\ \delta(q, a) & \text { otherwise }\end{cases}
$$

We have $L_{\omega}(B)=L_{\omega}\left(B^{\prime}\right)$, since there exists $q_{0} \in Q_{0}$ such that

$$
q_{0}{\xrightarrow{a_{1}}}_{B} q_{1}{\xrightarrow{a_{2}}}_{B} q_{2}{\xrightarrow{a_{3}}}_{B} \cdots
$$

if and only if

$$
q_{\text {init }}{\xrightarrow{a_{1}}}_{B^{\prime}} q_{1}{\xrightarrow{a_{2}}}_{B^{\prime}} q_{2}{\xrightarrow{a_{3}}}_{B^{\prime}} \cdots
$$

(b) False. Let $L=\left\{a^{\omega}, b^{\omega}\right\}$. Suppose there exists a Büchi automaton $B=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=L$ and $F=\{q\}$. Since $a^{\omega} \in L$, there exist $q_{0} \in Q_{0}, m \geq 0$ and $n>0$ such that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{a^{n}} q .
$$

Similarly, since $b^{\omega} \in L$, there exist $q_{0}^{\prime} \in Q_{0}, m^{\prime} \geq 0$ and $n^{\prime}>0$ such that

$$
q_{0}^{\prime} \xrightarrow{b^{m^{\prime}}} q \xrightarrow{b^{n^{\prime}}} q .
$$

This implies that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{b^{n^{\prime}}} q \xrightarrow{b^{n^{\prime}}} \cdots
$$

Therefore, $a^{m}\left(b^{n^{\prime}}\right)^{\omega} \in L$, which is a contradiction.
(c) False. Suppose there exists a Büchi automaton $B=\left(Q,\{0,1, \ldots, 9\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=\{w\}$. There exist $u \in\{0,1, \ldots, 9\}^{*}, v \in\{0,1, \ldots, 9\}^{+}, q_{0} \in Q_{0}$ and $q \in F$ such that

$$
q_{0} \xrightarrow{u} q \xrightarrow{v} q .
$$

Therefore, $u v^{\omega} \in L_{\omega}(B)$ which implies that $w=u v^{\omega}$. Since w represents the decimals of π, we conclude that π is rational, which is a contradiction.

