Automata and Formal Languages — Homework 11

Due 15.01.2019

Exercise 11.1

Let $\inf(w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω -regular expressions for the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^\omega : \inf(w) \subseteq \{a, b\} \},$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \inf(w) = \{a, b\} \},\$
- (c) $L_3 = \{ w \in \Sigma^\omega : \{a, b\} \subseteq \inf(w) \},$
- (d) $L_4 = \{ w \in \Sigma^{\omega} : \inf(w) = \{ a, b, c \} \}.$

Exercise 11.2

Give deterministic Büchi automata recognizing the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : w \text{ contains at least one } c \},$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ every } a \text{ is immediately followed by a } b \},$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ between two successive } a \text{'s there are at least two } b \text{'s} \}.$

Exercise 11.3

Give deterministic Rabin automata, Muller automata and parity automata for the following language:

$$L = \{w \in \{a, b\}^{\omega} : w \text{ contains finitely many } a$$
's $\}.$

Exercise 11.4

Prove or disprove:

- (a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (c) There exists a Büchi automaton recognizing the finite ω -language $\{w\}$ such that $w \in \{0, 1, \dots, 9\}^{\omega}$ and w_i is the i^{th} decimal of $\sqrt{2}$.

Exercise 11.5

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Solution 11.1

(a) $(a + b + c)^*(a + b)^{\omega}$, and

★ It was asked in class whether there exists a deterministic Büchi automaton accepting L_1 . We show that it is not the case. For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B = (Q, \Sigma, \delta, q_0, F)$ such that $L_{\omega}(B) = L_1$. Since $cb^{\omega} \in L_1$, B must visit F infinitely often when reading cb^{ω} . In particular, this implies the existence of $m_1 > 0$ and $q_1 \in F$ such that $q_0 \xrightarrow{cb^{m_1}} q_1$. Similarly, since $b^{m_1}cb^{\omega} \in L_1$, there exist $m_2 > 0$ and $q_2 \in F$ such that $q_0 \xrightarrow{cb^{m_1}cb^{m_2}} q_2$. Since B is deterministic, we have $q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2$. By repeating this argument |Q| times, we can construct $m_1, m_2, \ldots, m_{|Q|} > 0$ and $q_1, q_2, \ldots, q_{|Q|} \in F$ such that

$$q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2 \cdots \xrightarrow{cb^{m_{|Q|}}} q_{|Q|}.$$

By the pigeonhole principle, there exist $0 \le i < j \le |Q|$ such that $q_i = q_j$. Let

$$u = cb^{m_1}cb^{m_2}\cdots cb^{m_i},$$

 $v = cb^{m_{i+1}}cb^{m_{i+2}}\cdots cb^{m_j}.$

We have $q_0 \xrightarrow{u} q_i \xrightarrow{v} q_i \xrightarrow{v} q_i \xrightarrow{u} \cdots$ which implies that $uv^{\omega} \in L_{\omega}(B)$. This is a contradiction since $uv^{\omega} \notin L_1$.

(b) $(a + b + c)^* (aa^*bb^*)^{\omega}$, and

(c) $((b+c)^*a(a+c)^*b)^{\omega}$, and

or

(d) $((b+c)^*a(a+c)^*b(a+b)^*c)^{\omega}$, and

Solution 11.2

(a)

(b)

(c)

or simply,

Solution 11.3

• We give the following Rabin automaton with acceptance condition $\{(\{q_1\}, \{q_0\})\}$, i.e. where q_1 must be visited infinitely often and q_0 must be visited finitely often:

• We give the following Muller automaton with acceptance condition $\{\{q_1\}\}\$, i.e. where precisely $\{q_1\}$ must be visited infinitely often:

• We give the following parity automaton with acceptance condition $(\{q_0\}, \{q_0, q_1\})$:

Solution 11.4

(a) True. The construction for NFAs still work for Büchi automata.

Let $B = (Q, \Sigma, \delta, Q_0, F)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B' = (Q \cup \{q_{\text{init}}\}, \Sigma, \delta', \{q_{\text{init}}\}, F)$ where

$$\delta'(q, a) = \begin{cases} \bigcup_{q_0 \in Q_0} \delta(q_0, a) & \text{if } q = q_{\text{init}}, \\ \delta(q, a) & \text{otherwise.} \end{cases}$$

We have $L_{\omega}(B) = L_{\omega}(B')$, since there exists $q_0 \in Q_0$ such that

$$q_0 \xrightarrow{a_1}_B q_1 \xrightarrow{a_2}_B q_2 \xrightarrow{a_3}_B \cdots$$

if and only if

$$q_{\text{init}} \xrightarrow{a_1}_{B'} q_1 \xrightarrow{a_2}_{B'} q_2 \xrightarrow{a_3}_{B'} \cdots$$

(b) False. Let $L=\{a^{\omega},b^{\omega}\}$. Suppose there exists a Büchi automaton $B=(Q,\{a,b\},\delta,Q_0,F)$ such that $L_{\omega}(B)=L$ and $F=\{q\}$. Since $a^{\omega}\in L$, there exist $q_0\in Q_0,\,m\geq 0$ and n>0 such that

$$q_0 \xrightarrow{a^m} q \xrightarrow{a^n} q$$
.

Similarly, since $b^{\omega} \in L$, there exist $q'_0 \in Q_0$, $m' \geq 0$ and n' > 0 such that

$$q_0' \xrightarrow{b^{m'}} q \xrightarrow{b^{n'}} q.$$

This implies that

$$q_0 \xrightarrow{a^m} q \xrightarrow{b^{n'}} q \xrightarrow{b^{n'}} \cdots$$

Therefore, $a^m(b^{n'})^{\omega} \in L$, which is a contradiction.

(c) False. Suppose there exists a Büchi automaton $B=(Q,\{0,1,\ldots,9\},\delta,Q_0,F)$ such that $L_{\omega}(B)=\{w\}$. There exist $u\in\{0,1,\ldots,9\}^*,\ v\in\{0,1,\ldots,9\}^+,\ q_0\in Q_0$ and $q\in F$ such that

$$q_0 \xrightarrow{u} q \xrightarrow{v} q$$
.

Therefore, $uv^{\omega} \in L_{\omega}(B)$ which implies that $w = uv^{\omega}$. Since w represents the decimals of π , we conclude that π is rational, which is a contradiction.