Automata and Formal Languages — Homework 10

Due 08.01.2019

Exercise 10.1

Let $\Sigma = \{a, b\}$. Give formulations in plain English of the languages described by the following formulas of FO(Σ), and give a corresponding regular expression:

- (a) $\exists x. first(x)$
- (b) $\forall x. first(x)$

(c) $\neg \exists x. \exists y. (x < y \land Q_a(x) \land Q_b(y)) \land \forall x. (Q_b(x) \rightarrow \exists y. x < y \land Q_a(y)) \land \exists x. \neg \exists y. x < y$

Exercise 10.2

Let $\Sigma = \{a, b\}$. Give an MSO(Σ) sentence for the following languages:

- (a) The set of words with an a at every odd position.
- (b) The set of words with an even number of occurrences of a's.
- (c) The set of words of odd length with an even number of occurrences of a's.

Exercise 10.3

Give a $MSO(\Sigma)$ formula $Odd_Card(X)$ expressing that the cardinality of the set of positions X is odd.

Exercise 10.4

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

 $\begin{array}{lll} (w,\mathcal{J}) & \models & X \subseteq Q_a & \text{iff} & w[p] = a \text{ for every } p \in \mathcal{J}(X) \\ (w,\mathcal{J}) & \models & X < Y & \text{iff} & p < p' \text{ for every } p \in \mathcal{J}(X), p' \in \mathcal{J}(Y) \\ (w,\mathcal{J}) & \models & X \subseteq Y & \text{iff} & p \in \mathcal{J}(Y) \text{ for every } p \in \mathcal{J}(X) \end{array}$

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $PureMSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $PureMSO(\Sigma)$, and vice versa.

Exercise 10.5

Let Σ be a finite alphabet. A language $L \subseteq \Sigma^*$ is *star-free* if it can be expressed by a star-free regular expression, i.e. a regular expression where the Kleene star operation is forbidden, but complementation is allowed. For example, Σ^* is star-free since $\Sigma^* = \overline{\emptyset}$, but $(aa)^*$ is not.

(a) Give star-free regular expressions and $FO(\Sigma)$ sentences for the following star-free languages:

(i) Σ^+ .

- (ii) $\Sigma^* A \Sigma^*$ for some $A \subseteq \Sigma$.
- (iii) A^* for some $A \subseteq \Sigma$.
- (iv) $(ab)^*$.
- (v) $\{w \in \Sigma^* \mid w \text{ does not contain } aa \}$.
- (b) Show that finite and cofinite languages are star-free.
- (c) Show that for every sentence $\varphi \in FO(\Sigma)$, there exists a formula $\varphi^+(x, y)$, with two free variables x and y, such that for every $w \in \Sigma^+$ and for every $1 \le i \le j \le w$,

$$w \models \varphi^+(i,j)$$
 iff $w_i w_{i+1} \cdots w_j \models \varphi$.

- (d) Give a polynomial time algorithm that decides whether the empty word satisfies a given sentence of $FO(\Sigma)$.
- (e) Show that every star-free language can be expressed by an $FO(\Sigma)$ sentence.