
Technische Universität München Winter term 2018/19
I7
Prof. J. Esparza / S. Sickert 23.11.2018

Automata and Formal Languages — Homework 6

Due 27.11.2018

Exercise 6.1

(a) Let n ∈ N be such that n ≥ 2. Show that Ln = {w ∈ {a, b}∗ | |w| ≡ 0 (mod n)} has exactly n residuals,
without constructing any automaton for Ln.

(b) Consider the following “proof” showing that L2 is non regular:

Let i, j ∈ N be such that i is even and j is odd. By definition of L2, we have ε ∈ (L2)a
i

and ε 6∈ (L2)a
j

. Therefore, the ai-residual and aj-residual of L2 are distinct. Since there are
infinitely many even numbers i and odd numbers j, this implies that L2 has infinitely many
residuals, and hence that L2 is not regular.

Language L2 is regular, so this “proof” must be incorrect. Explain what is wrong with the “proof”.

Exercise 6.2

(a) Build Bp and Cp for the word pattern p = abrababra.

(b) How many transitions are taken when reading t = abrar in Bp and Cp respectively?

(c) Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}∗ such that testing whether p occurs in t
takes n transitions in Bp and 2n− 1 transitions in Cp.

Exercise 6.3

In order to make pattern-matching robust to typos we want to include also “similar” words in our results. For
this we consider words with a small Levenshtein-distance (edit-distance) “similar”.

We transform a word w to a new word w′ using the following operations (with ai, b ∈ Σ):

• replace (R): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1bai+1 . . . al

• delete (D): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1εai+1 . . . al

• insert (I): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1aibai+1 . . . al

The Levenshtein-distance (denoted ∆(w,w′)) of w and w′ is the minimal number of operations (R,D,I) needed
to transform w into w′. We denote with ∆L,i = {w ∈ Σ∗ | ∃w′ ∈ L.∆(w′, w) ≤ i} the language of all words
with edit-distance at most i to some word of L.

(a) Compute ∆(abcde, accd).

(b) Prove the following statement: If L is a regular language, then ∆L,n is a regular language.

(c) Let p be the pattern otto. Construct an NFA locating the pattern or variations of it with edit-distance 1.

Exercise 6.4

Let A = (Q,Σ, δ, q0, F) be a DFA. A word w ∈ Σ∗ is a synchronizing word of A if reading w from any state of

A leads to a common state, i.e. if there exists q ∈ Q such that for every p ∈ Q, p
w−→ q. A DFA is synchronizing

if it has a synchronizing word.

(a) Show that the following DFA is synchronizing:

p

q r

s

a

b

a

b

a

b

a

b

(b) Give a DFA that is not synchronizing.

(c) Give an exponential time algorithm (reusing constructions from the lecture) to decide whether a DFA is
synchronizing. [Hint: use the powerset construction.]

(d) Let A = (Q,Σ, δ, q0, F) be a DFA. We say that A is (p, q)-synchronizing if there exist w ∈ Σ∗ and r ∈ Q
such that p

w−→ r and q
w−→ r. Show that A is synchronizing if and only if it is (p, q)-synchronizing for

every p, q ∈ Q.

(e) Give a polynomial time algorithm to test whether a DFA is synchronizing. [Hint: use (d).]

(f) Show, from (d), that every synchronizing DFA with n states has a synchronizing word of length at most
(n2 − 1)(n− 1). [Hint: you might need to reason in terms of the product construction.]

(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word of length (4− 1)2

for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

Solution 6.1

(a) We claim that the residuals of Ln are

(Ln)a
0

, (Ln)a
1

, . . . , (Ln)a
n−1

. (1)

Let us first show that for every word w we have (Ln)w = (Ln)a
|w| mod n

. Let w ∈ {a, b}∗. For every
u ∈ {a, b}∗, we have

u ∈ (Ln)w ⇐⇒ wu ∈ Ln

⇐⇒ |wu| ≡ 0 (mod n)

⇐⇒ |w|+ |u| ≡ 0 (mod n)

⇐⇒ (|w| mod n) + |u| ≡ 0 (mod n)

⇐⇒ |a|w| mod n|+ |u| ≡ 0 (mod n)

⇐⇒ |a|w| mod nu| ≡ 0 (mod n)

⇐⇒ a|w| mod nu ∈ Ln

⇐⇒ u ∈ (Ln)a
|w| mod n

.

It remains to show that the residuals of (1) are distinct. Let 0 ≤ i, j < n be such that i 6= j. We have

an−i ∈ (Ln)a
i

, and an−i 6∈ (Ln)a
j

since |ajan−i| mod n = j − i 6= 0. Therefore, (Ln)a
i 6= (Ln)a

j

.

(b) The part of the “proof” showing that (L2)a
i 6= (L2)a

j

, for every even i and odd j, is correct. However,
this only shows that L2 has at least two residuals. Indeed, even if there are infinitely many even and odd
numbers, the following is not ruled out:

(L2)a
0

= (L2)a
2

= (L2)a
4

= · · · ,

(L2)a
1

= (L2)a
3

= (L2)a
5

= · · · .

In order to show that a language has infinitely many residuals, one must exhibit an infinite subset of
residuals that are pairwise distinct.

(c) We claim that the residuals P a1

, P a2

, P a4

, P a8

, . . . are pairwise distinct. Let i, j ∈ N be such that i 6= j.

Let us show that P a2i 6= P a2j

. We have a2
i ∈ P a2i

since |a2ia2i | = 2i+1. Moreover, a2
i 6∈ P a2j

since

|a2ja2i | = 2i + 2j which is not a power of two since it lies in between two consecutive powers of two:

2max(i,j) < 2i + 2j < 2max(i,j) + 2max(i,j) = 2max(i,j)+1.

The language P ∩ {a}∗ is also non regular since the above proof does not ever make use of letter b.

Solution 6.2

(a) Ap :

0 1 2 3 4 5 6 7 8 9

Σ

a b r a b a b r a

Bp :

0 0, 1 0, 2 0, 3 0, 1, 4 0, 2, 5 0, 1, 6 0, 2, 7 0, 3, 8 0, 1, 4, 9

Σ \ {a}

a b

a

Σ \ {a, b}

r

a

Σ \ {a, r}

a

Σ \ {a}

b

a

Σ \ {a, b}

a

r

Σ \ {a, r}

b

a

Σ \ {a, b}

r

a

b

a

Σ \ {a}

a b

Σ \ {a, b}

Cp :

0 1 2 3 4 5 6 7 8 9

Σ \ {a};R

a;R b;R

Σ \ {b};N

r;R

Σ \ {r};N

a;R

Σ \ {a};N

b;R

Σ \ {b};N

a;R

Σ \ {a};N

b

Σ \ {b};N

r;R

Σ \ {r};N

a;R

Σ \ {a};N

Σ;N

(b) Five transitions taken in Bp: {0} a−→ {0, 1} b−→ {0, 2} r−→ {0, 3} a−→ {0, 1, 4} r−→ {0}.

Seven transitions taken in Cp: 0
a−→ 1

b−→ 2
r−→ 3

a−→ 4
r−→ 1

r−→ 0
r−→ 0.

(c) t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a

a

b

b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;N b;N a, b;N

a;R

b;N

The runs over t on Bp and Cp are respectively:

{0} a−→ {0, 1} a−→ {0, 1, 2} a−→ · · · a−→ {0, 1, . . . , n− 1} b−→ {0},

and
0

a−→ 1
a−→ 2

a−→ · · · a−→ (n− 1)
b−→ (n− 2)

b−→ (n− 3)
b−→ · · · b−→ 0

b−→ 0.

Solution 6.3

1. ∆(abcde, accd) = 2.

2. Sei M = (Q,Σ, δ, q0, F) ein DFA für L. Wir erhalten einen NFA-ε N für ∆L,n, in dem wir n Fehlerebenen
einführen. Der Automat darf nicht-deterministisch einen Fehler machen muss dann aber zu einer höheren
Fehlerebene wechseln. Formal:

N = (Q× [0, n],Σ, δ′, (q0, 0), F × [0, n])

mit

δ′ = {((q, i), a, (p, i)) | q, p ∈ Q ∧ i ≤ n ∧ a ∈ Σ ∧ δ(q, a) = p} kein Fehler

∪ {((q, i), ε, (p, i+ 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ. δ(q, a) = p)} Delete

∪ {((q, i), a, (q, i+ 1)) | q ∈ Q ∧ i < n ∧ a ∈ Σ} Insert

∪ {((q, i), b, (p, i+ 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ \ {b}. δ(q, a) = p)} Replace

3. Anhand der bekannten Algorithmen berechnen wir δ′((q0, 0), w) ∩ F × [0, n] und wählen ein (q, i) mit
minimaler Fehlerebene i. Wir betrachten nun einen akzeptierenden Lauf für w der in (q, i) endet. Immer
wenn eine “Fehlerkante” benutzt wird, ändern wir das Wort w zu w′ ab, so dass der Lauf in Ebene 0 in
den entsprechenden Zielzustand wechseln kann.

4. Wörter w mit ∆(b, w) = 1: ε, a, ab, ba, bb.

Figure 1: Konstruierter NFA-ε für L. Delete: rot, Insert: grün, Replace: blau.

Solution 6.4

(a) abb is a synchronizing word:

p
a−→ q

b−→ r
b−→ s,

q
a−→ q

b−→ r
b−→ s,

r
a−→ q

b−→ r
b−→ s,

s
a−→ p

b−→ s
b−→ s.

F As seen in class, aa and bb are also synchronizing words. In fact, one can prove that the set of
synchronizing words of the automaton is: (a+ b)∗(aa+ bb)(a+ b)∗.

(b) The following DFA is not synchronizing:

q0 q1

a

a

(c) Let A = (Q,Σ, δ, q0, F) be a DFA, and let Aq = (Q,Σ, δ, q, F) for every q ∈ Q. A word w is synchronizing
for A if and only if reading w from each automaton Aq leads to the same state. Therefore, we may
construct a DFA B that simulates all automata Aq simultaneously and tests whether a common state can
be reached.

More formally, let B = (P(Q),Σ, δ′, {Q}, F ′) where

• δ′(P, a) = {δ(q, a) : q ∈ P}, and

• F ′ = {{q} : q ∈ Q}.

Automaton A is synchronizing if and only if L(B) 6= ∅. It is possible to compute B by adapting the
algorithm NFAtoDFA(A) seen in class:

Input: DFAs A = (Q,Σ, δ, q0, F).
Output: Is A synchronizing?

1 Q′ ← ∅
2 W ← {Q}
3 while W 6= ∅ do
4 pick P from W
5 if |P | = 1 then
6 return true
7 else
8 add P to Q′

9 for a ∈ Σ do
10 P ′ ← {δ(q, a) : q ∈ P}
11 if P ′ 6∈ Q′ and P ′ 6∈W then
12 add P ′ to W

13 return false

(d) ⇒) Immediate.

⇐) Let Q = {q0, q1, . . . , qn}. Let us extend δ to words, i.e. δ(qi, w) = r where qi
w−→ r. For every i, j ∈ [n],

let w(i, j) ∈ Σ∗ be such that δ(qi, w(i, j)) = δ(qj , w(i, j)). Let us define the following sequence of words:

u1 = w(q0, q1)

u` = w(δ(q`, u1u2 · · ·u`−1), δ(q`−1, u1u2 · · ·u`−1)) for every 2 ≤ ` ≤ n.

We claim that u1u2 · · ·un is a synchronizing word. To see that, let us prove by induction on ` that for
every i, j ∈ [`],

δ(qi, u1u2 · · ·u`) = δ(qj , u1u2 · · ·u`).

For ` = 1, the claims holds by definition of u1. Let 2 ≤ ` ≤ n. Assume the claim holds for ` − 1. Let
i, j ∈ [`]. If i, j < `, then

δ(qi, u1u2 · · ·u`) = δ(δ(qi, u1u2 · · ·u`−1), u`)

= δ(δ(qj , u1u2 · · ·u`−1), u`) (by induction hypothesis)

= δ(qj , u1u2 · · ·u`).

If i = ` and j < `, then

δ(q`, u1u2 · · ·u`) = δ(δ(qi, u1u2 · · ·u`−1), u`)

= δ(δ(qi−1, u1u2 · · ·u`−1), u`) (by definition of u`)

= δ(δ(qj , u1u2 · · ·u`−1), u`) (by induction hypothesis)

= δ(qj , u1u2 · · ·u`) .

The case were i < ` and i = ` is symmetric, and the case where i = j = ` is trivial.

(e) We use the approach used in (c), but instead of simulating all automata Aq at once, we simulate all pairs
Ap and Aq. From (d), this is sufficient. The adapted algorithm is as follows:

Input: DFAs A = (Q,Σ, δ, q0, F).
Output: A is synchronizing?

1 for p, q ∈ Q s.t. p 6= q do
2 if ¬ pair-synchronizable(p, q) then
3 return false

4 return true
5

6 pair-synchronizable(p, q):
7 Q′ ← ∅
8 W ← {{p, q}}
9 while W 6= ∅ do

10 pick P from W
11 if |P | = 1 then
12 return true
13 else
14 add P to Q′

15 for a ∈ Σ do
16 P ′ ← {δ(q, a) : q ∈ P}
17 if P ′ 6∈ Q′ and P ′ 6∈W then
18 add P ′ to W

19 return false

The for loop at line 1 is iterated at most |Q|2 times. The while loop of pair-synchronizable(p, q)
is iterated at most |Q|2 times, the for loop at line 15 is taken iterated at most |Σ| times, and line 16
requires time O(|Q|). Hence, the total running time of the algorithm is in O(|Q|5 · |Σ|).

F In class, I mentioned that we should use the pairing [Ap, Aq] to test whether A is (p, q)-synchronizing in
polynomial time. This indeed works. However, using the approach of (c) as it is done above, i.e. starting
from {p, q} instead of [p, q], also takes polynomial time. This works because A is deterministic and hence
any reachable subset contains at most two states.

F Our proof of (d) is constructive and yields an algorithm working in time O(|Q|4 + |Q|3 · |Σ|) to compute
a sychronizing word of length O(|Q|3), if there exists one. See synchronizing.py for an implementation
in Python. It is possible to do better. An algorithm presented in [1] computes a synchronizing word of
length O(|Q|3), if there exists one, in time O(|Q|3 + |Q|2 · |Σ|).

(f) In the proof of (d), we built a synchronizing word w = u1u2 · · ·u|Q|−1 where each ui is a (p, q)-synchronizing
word for some p, q ∈ Q. We claim that if there exists a (p, q)-synchronizing word, then there exists one of
length at most |Q|2 − 1. This leads to the overall (|Q| − 1)(|Q|2 − 1) upper bound.

To see that the claim holds, assume for the sake of contradiction that every (p, q)-synchronizing word has
length at least |Q|2. Let w be such a minimal word. Let r = δ(p, w). We have

p
w−→ r,

q
w−→ r.

This yields the following run in [A,A]: [
p
q

]
w−→

[
r
r

]
.

Since |w(p, q)| ≥ |Q|2, by the pigeonhole principle, there exist s, t ∈ Q, x, z ∈ Σ∗ and y ∈ Σ+ such that
w = xyz and [

p
q

]
x−→

[
s
t

]
y−→

[
s
t

]
z−→

[
r
r

]
.

Hence, xz is a smaller (p, q)-synchronizing word, which is a contradiction.

(g) ba3ba3b is such a word. It can be obtained, e.g., from the algorithm designed in (c):

q0, q1,
q2, q3

q0, q1,
q2

q1,
q2, q3

q0,
q2, q3

q0, q1,
q3

q0, q1q1,
q2q2, q3

q0,
q3

q0

b

a a a

b

aaa

b

a

b

b

a

bb

b

b
b

a

The Černý conjecture states that every synchronizing DFA has a synchronizing word of length at most
(|Q| − 1)2. Since 1964, no one has been able to prove or disprove this conjecture. To this day, the best
upper bound on the length of minimal synchronizing words is ((|Q|3 − |Q|)/6)− 1 (see [2]).

References

[1] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500–510,
1990. Available online at http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-90.pdf.

[2] Jean-Éric Pin. On two combinatorial problems arising from automata theory. volume 17 of Annals of Discrete
Mathematics, pages 535–548. North-Holland, 1983. Available online at https://hal.archives-ouvertes.
fr/hal-00143937/document.

http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-90.pdf
https://hal.archives-ouvertes.fr/hal-00143937/document
https://hal.archives-ouvertes.fr/hal-00143937/document

