Automata and Formal Languages - Homework 6

Due 27.11.2018

Exercise 6.1

(a) Let $n \in \mathbb{N}$ be such that $n \geq 2$. Show that $L_{n}=\left\{w \in\{a, b\}^{*}| | w \mid \equiv 0(\bmod n)\right\}$ has exactly n residuals, without constructing any automaton for L_{n}.
(b) Consider the following "proof" showing that L_{2} is non regular:

Let $i, j \in \mathbb{N}$ be such that i is even and j is odd. By definition of L_{2}, we have $\varepsilon \in\left(L_{2}\right)^{a^{i}}$ and $\varepsilon \notin\left(L_{2}\right)^{a^{j}}$. Therefore, the a^{i}-residual and a^{j}-residual of L_{2} are distinct. Since there are infinitely many even numbers i and odd numbers j, this implies that L_{2} has infinitely many residuals, and hence that L_{2} is not regular.

Language L_{2} is regular, so this "proof" must be incorrect. Explain what is wrong with the "proof".

Exercise 6.2

(a) Build B_{p} and C_{p} for the word pattern $p=a b r a b a b r a$.
(b) How many transitions are taken when reading $t=a b r a r$ in B_{p} and C_{p} respectively?
(c) Let $n>0$. Find a text $t \in\{a, b\}^{*}$ and a word pattern $p \in\{a, b\}^{*}$ such that testing whether p occurs in t takes n transitions in B_{p} and $2 n-1$ transitions in C_{p}.

Exercise 6.3

In order to make pattern-matching robust to typos we want to include also "similar" words in our results. For this we consider words with a small Levenshtein-distance (edit-distance) "similar".

We transform a word w to a new word w^{\prime} using the following operations (with $a_{i}, b \in \Sigma$):

- replace (R): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} b a_{i+1} \ldots a_{l}$
- delete (D): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} \varepsilon a_{i+1} \ldots a_{l}$
- insert (I): $a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{l} \rightarrow a_{1} \ldots a_{i-1} a_{i} b a_{i+1} \ldots a_{l}$

The Levenshtein-distance (denoted $\Delta\left(w, w^{\prime}\right)$) of w and w^{\prime} is the minimal number of operations (R,D,I) needed to transform w into w^{\prime}. We denote with $\Delta_{L, i}=\left\{w \in \Sigma^{*} \mid \exists w^{\prime} \in L . \Delta\left(w^{\prime}, w\right) \leq i\right\}$ the language of all words with edit-distance at most i to some word of L.
(a) Compute $\Delta(a b c d e, a c c d)$.
(b) Prove the following statement: If L is a regular language, then $\Delta_{L, n}$ is a regular language.
(c) Let p be the pattern otto. Construct an NFA locating the pattern or variations of it with edit-distance 1.

Exercise 6.4

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. A word $w \in \Sigma^{*}$ is a synchronizing word of A if reading w from any state of A leads to a common state, i.e. if there exists $q \in Q$ such that for every $p \in Q, p \xrightarrow{w} q$. A DFA is synchronizing if it has a synchronizing word.
(a) Show that the following DFA is synchronizing:

(b) Give a DFA that is not synchronizing.
(c) Give an exponential time algorithm (reusing constructions from the lecture) to decide whether a DFA is synchronizing. [Hint:
(d) Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. We say that A is (p, q)-synchronizing if there exist $w \in \Sigma^{*}$ and $r \in Q$ such that $p \xrightarrow{w} r$ and $q \xrightarrow{w} r$. Show that A is synchronizing if and only if it is (p, q)-synchronizing for every $p, q \in Q$.
(e) Give a polynomial time algorithm to test whether a DFA is synchronizing. [Hint:
(f) Show, from (d), that every synchronizing DFA with n states has a synchronizing word of length at most $\left(n^{2}-1\right)(n-1)$. [Hint:
(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word of length $(4-1)^{2}$ for the following DFA:

Solution 6.1

(a) We claim that the residuals of L_{n} are

$$
\begin{equation*}
\left(L_{n}\right)^{a^{0}},\left(L_{n}\right)^{a^{1}}, \ldots,\left(L_{n}\right)^{a^{n-1}} \tag{1}
\end{equation*}
$$

Let us first show that for every word w we have $\left(L_{n}\right)^{w}=\left(L_{n}\right)^{a^{|w| \bmod n}}$. Let $w \in\{a, b\}^{*}$. For every $u \in\{a, b\}^{*}$, we have

$$
\begin{aligned}
u \in\left(L_{n}\right)^{w} & \Longleftrightarrow w u \in L_{n} \\
& \Longleftrightarrow|w u| \equiv 0(\bmod n) \\
& \Longleftrightarrow|w|+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow(|w| \bmod n)+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow\left|a^{|w| \bmod n}\right|+|u| \equiv 0(\bmod n) \\
& \Longleftrightarrow\left|a^{|w| \bmod n} u\right| \equiv 0(\bmod n) \\
& \Longleftrightarrow a^{|w| \bmod n} u \in L_{n} \\
& \Longleftrightarrow u \in\left(L_{n}\right)^{a^{|w|} \bmod n}
\end{aligned}
$$

It remains to show that the residuals of (1) are distinct. Let $0 \leq i, j<n$ be such that $i \neq j$. We have $a^{n-i} \in\left(L_{n}\right)^{a^{i}}$, and $a^{n-i} \notin\left(L_{n}\right)^{a^{j}}$ since $\left|a^{j} a^{n-i}\right| \bmod n=j-i \neq 0$. Therefore, $\left(L_{n}\right)^{a^{i}} \neq\left(L_{n}\right)^{a^{j}}$.
(b) The part of the "proof" showing that $\left(L_{2}\right)^{a^{i}} \neq\left(L_{2}\right)^{a^{j}}$, for every even i and odd j, is correct. However, this only shows that L_{2} has at least two residuals. Indeed, even if there are infinitely many even and odd numbers, the following is not ruled out:

$$
\begin{aligned}
& \left(L_{2}\right)^{a^{0}}=\left(L_{2}\right)^{a^{2}}=\left(L_{2}\right)^{a^{4}}=\cdots, \\
& \left(L_{2}\right)^{a^{1}}=\left(L_{2}\right)^{a^{3}}=\left(L_{2}\right)^{a^{5}}=\cdots,
\end{aligned}
$$

In order to show that a language has infinitely many residuals, one must exhibit an infinite subset of residuals that are pairwise distinct.
(c) We claim that the residuals $P^{a^{1}}, P^{a^{2}}, P^{a^{4}}, P^{a^{8}}, \ldots$ are pairwise distinct. Let $i, j \in \mathbb{N}$ be such that $i \neq j$. Let us show that $P^{a^{2^{i}}} \neq P^{a^{2^{j}}}$. We have $a^{2^{i}} \in P^{a^{2^{i}}}$ since $\left|a^{2^{i}} a^{2^{i}}\right|=2^{i+1}$. Moreover, $a^{2^{i}} \notin P^{2^{j}}$ since $\left|a^{2^{j}} a^{2^{i}}\right|=2^{i}+2^{j}$ which is not a power of two since it lies in between two consecutive powers of two:

$$
2^{\max (i, j)}<2^{i}+2^{j}<2^{\max (i, j)}+2^{\max (i, j)}=2^{\max (i, j)+1} .
$$

The language $P \cap\{a\}^{*}$ is also non regular since the above proof does not ever make use of letter b.

Solution 6.2

(a) A_{p} :

B_{p} :

$C_{p}:$

(b) Five transitions taken in $B_{p}:\{0\} \xrightarrow{a}\{0,1\} \xrightarrow{b}\{0,2\} \xrightarrow{r}\{0,3\} \xrightarrow{a}\{0,1,4\} \xrightarrow{r}\{0\}$. Seven transitions taken in $C_{p}: 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{r} 3 \xrightarrow{a} 4 \xrightarrow{r} 1 \xrightarrow{r} 0 \xrightarrow{r} 0$.
(c) $t=a^{n-1} b$ and $p=a^{n}$. The automata B_{p} and C_{p} are as follows:
$B_{p}:$

C_{p} :

The runs over t on B_{p} and C_{p} are respectively:

$$
\{0\} \xrightarrow{a}\{0,1\} \xrightarrow{a}\{0,1,2\} \xrightarrow{a} \cdots \xrightarrow{a}\{0,1, \ldots, n-1\} \xrightarrow{b}\{0\},
$$

and

$$
0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} \cdots \xrightarrow{a}(n-1) \xrightarrow{b}(n-2) \xrightarrow{b}(n-3) \xrightarrow{b} \cdots \xrightarrow{b} 0 \xrightarrow{b} 0 .
$$

Solution 6.3

1. $\Delta(a b c d e, a c c d)=2$.
2. Sei $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ ein DFA für L. Wir erhalten einen NFA- ϵN für $\Delta_{L, n}$, in dem wir n Fehlerebenen einführen. Der Automat darf nicht-deterministisch einen Fehler machen muss dann aber zu einer höheren Fehlerebene wechseln. Formal:

$$
N=\left(Q \times[0, n], \Sigma, \delta^{\prime},\left(q_{0}, 0\right), F \times[0, n]\right)
$$

mit

$$
\begin{aligned}
\delta^{\prime} & =\{((q, i), a,(p, i)) \mid q, p \in Q \wedge i \leq n \wedge a \in \Sigma \wedge \delta(q, a)=p\} & & \text { kein Fehler } \\
& \cup\{((q, i), \varepsilon,(p, i+1)) \mid q, p \in Q \wedge i<n \wedge(\exists a \in \Sigma . \delta(q, a)=p)\} & & \text { Delete } \\
& \cup\{((q, i), a,(q, i+1)) \mid q \in Q \wedge i<n \wedge a \in \Sigma\} & & \text { Insert } \\
& \cup\{((q, i), b,(p, i+1)) \mid q, p \in Q \wedge i<n \wedge(\exists a \in \Sigma \backslash\{b\} . \delta(q, a)=p)\} & & \text { Replace }
\end{aligned}
$$

3. Anhand der bekannten Algorithmen berechnen wir $\delta^{\prime}\left(\left(q_{0}, 0\right), w\right) \cap F \times[0, n]$ und wählen ein (q, i) mit minimaler Fehlerebene i. Wir betrachten nun einen akzeptierenden Lauf für w der in (q, i) endet. Immer wenn eine "Fehlerkante" benutzt wird, ändern wir das Wort w zu w^{\prime} ab, so dass der Lauf in Ebene 0 in den entsprechenden Zielzustand wechseln kann.
4. Wörter w mit $\Delta(b, w)=1: ~ \varepsilon, a, a b, b a, b b$.

Figure 1: Konstruierter NFA- ϵ für L. Delete: rot, Insert: grün, Replace: blau.

Solution 6.4

(a) $a b b$ is a synchronizing word:

$$
\begin{gathered}
p \xrightarrow{a} q \xrightarrow{b} r \xrightarrow{b} s, \\
q \xrightarrow{a} q \xrightarrow{b} r \xrightarrow{b} s, \\
r \xrightarrow{a} q \xrightarrow{b} r \xrightarrow{b} s, \\
s \xrightarrow{a} p \xrightarrow{b} s \xrightarrow{b} s .
\end{gathered}
$$

* As seen in class, $a a$ and $b b$ are also synchronizing words. In fact, one can prove that the set of synchronizing words of the automaton is: $(a+b)^{*}(a a+b b)(a+b)^{*}$.
(b) The following DFA is not synchronizing:

(c) Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA, and let $A_{q}=(Q, \Sigma, \delta, q, F)$ for every $q \in Q$. A word w is synchronizing for A if and only if reading w from each automaton A_{q} leads to the same state. Therefore, we may construct a DFA B that simulates all automata A_{q} simultaneously and tests whether a common state can be reached.

More formally, let $B=\left(\mathcal{P}(Q), \Sigma, \delta^{\prime},\{Q\}, F^{\prime}\right)$ where

- $\delta^{\prime}(P, a)=\{\delta(q, a): q \in P\}$, and
- $F^{\prime}=\{\{q\}: q \in Q\}$.

Automaton A is synchronizing if and only if $L(B) \neq \emptyset$. It is possible to compute B by adapting the algorithm $N F A t o D F A(A)$ seen in class:

```
Input: DFAs \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\).
Output: Is \(A\) synchronizing?
\(Q^{\prime} \leftarrow \emptyset\)
\(W \leftarrow\{Q\}\)
while \(W \neq \emptyset\) do
    pick \(P\) from \(W\)
    if \(|P|=1\) then
            return true
        else
            add \(P\) to \(Q^{\prime}\)
        for \(a \in \Sigma\) do
            \(P^{\prime} \leftarrow\{\delta(q, a): q \in P\}\)
            if \(P^{\prime} \notin Q^{\prime}\) and \(P^{\prime} \notin W\) then
                add \(P^{\prime}\) to \(W\)
    return false
```

$(\mathrm{d}) \Rightarrow)$ Immediate.
$\Leftarrow)$ Let $Q=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$. Let us extend δ to words, i.e. $\delta\left(q_{i}, w\right)=r$ where $q_{i} \xrightarrow{w} r$. For every $i, j \in[n]$, let $w(i, j) \in \Sigma^{*}$ be such that $\delta\left(q_{i}, w(i, j)\right)=\delta\left(q_{j}, w(i, j)\right)$. Let us define the following sequence of words:

$$
\begin{aligned}
& u_{1}=w\left(q_{0}, q_{1}\right) \\
& u_{\ell}=w\left(\delta\left(q_{\ell}, u_{1} u_{2} \cdots u_{\ell-1}\right), \delta\left(q_{\ell-1}, u_{1} u_{2} \cdots u_{\ell-1}\right)\right) \quad \text { for every } 2 \leq \ell \leq n
\end{aligned}
$$

We claim that $u_{1} u_{2} \cdots u_{n}$ is a synchronizing word. To see that, let us prove by induction on ℓ that for every $i, j \in[\ell]$,

$$
\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell}\right)=\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right) .
$$

For $\ell=1$, the claims holds by definition of u_{1}. Let $2 \leq \ell \leq n$. Assume the claim holds for $\ell-1$. Let $i, j \in[\ell]$. If $i, j<\ell$, then

$$
\begin{aligned}
\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell}\right) & =\delta\left(\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) \\
& =\delta\left(\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) \quad \text { (by induction hypothesis) } \\
& =\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right) .
\end{aligned}
$$

If $i=\ell$ and $j<\ell$, then

$$
\begin{aligned}
\delta\left(q_{\ell}, u_{1} u_{2} \cdots u_{\ell}\right) & =\delta\left(\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \\
& =\delta\left(\delta\left(q_{i-1}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \text { (by definition of } \left.u_{\ell}\right) \\
& =\delta\left(\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \text { (by induction hypothesis) } \\
& =\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right) . & &
\end{aligned}
$$

The case were $i<\ell$ and $i=\ell$ is symmetric, and the case where $i=j=\ell$ is trivial.
(e) We use the approach used in (c), but instead of simulating all automata A_{q} at once, we simulate all pairs A_{p} and A_{q}. From (d), this is sufficient. The adapted algorithm is as follows:

```
Input: DFAs \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\).
Output: \(A\) is synchronizing?
for \(p, q \in Q\) s.t. \(p \neq q\) do
        if \(\neg\) pair-synchronizable \((p, q)\) then
            return false
return true
pair-synchronizable ( \(p, q\) ):
        \(Q^{\prime} \leftarrow \emptyset\)
        \(W \leftarrow\{\{p, q\}\}\)
        while \(W \neq \emptyset\) do
        pick \(P\) from \(W\)
        if \(|P|=1\) then
            return true
        else
            add \(P\) to \(Q^{\prime}\)
        for \(a \in \Sigma\) do
                \(P^{\prime} \leftarrow\{\delta(q, a): q \in P\}\)
                if \(P^{\prime} \notin Q^{\prime}\) and \(P^{\prime} \notin W\) then
                    add \(P^{\prime}\) to \(W\)
        return false
```

The for loop at line 1 is iterated at most $|Q|^{2}$ times. The while loop of pair-synchronizable (p, q) is iterated at most $|Q|^{2}$ times, the for loop at line 15 is taken iterated at most $|\Sigma|$ times, and line 16 requires time $O(|Q|)$. Hence, the total running time of the algorithm is in $O\left(|Q|^{5} \cdot|\Sigma|\right)$.
\star In class, I mentioned that we should use the pairing $\left[A_{p}, A_{q}\right]$ to test whether A is (p, q)-synchronizing in polynomial time. This indeed works. However, using the approach of (c) as it is done above, i.e. starting from $\{p, q\}$ instead of $[p, q]$, also takes polynomial time. This works because A is deterministic and hence any reachable subset contains at most two states.

* Our proof of (d) is constructive and yields an algorithm working in time $O\left(|Q|^{4}+|Q|^{3} \cdot|\Sigma|\right)$ to compute a sychronizing word of length $O\left(|Q|^{3}\right)$, if there exists one. See synchronizing.py for an implementation in Python. It is possible to do better. An algorithm presented in [1] computes a synchronizing word of length $O\left(|Q|^{3}\right)$, if there exists one, in time $O\left(|Q|^{3}+|Q|^{2} \cdot|\Sigma|\right)$.
(f) In the proof of (d), we built a synchronizing word $w=u_{1} u_{2} \cdots u_{|Q|-1}$ where each u_{i} is a (p, q)-synchronizing word for some $p, q \in Q$. We claim that if there exists a (p, q)-synchronizing word, then there exists one of length at most $|Q|^{2}-1$. This leads to the overall $(|Q|-1)\left(|Q|^{2}-1\right)$ upper bound.

To see that the claim holds, assume for the sake of contradiction that every (p, q)-synchronizing word has length at least $|Q|^{2}$. Let w be such a minimal word. Let $r=\delta(p, w)$. We have

$$
\begin{aligned}
& p \xrightarrow{w} r, \\
& q \xrightarrow{w} r .
\end{aligned}
$$

This yields the following run in $[A, A]$:

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{w}\left[\begin{array}{l}
r \\
r
\end{array}\right]
$$

Since $|w(p, q)| \geq|Q|^{2}$, by the pigeonhole principle, there exist $s, t \in Q, x, z \in \Sigma^{*}$ and $y \in \Sigma^{+}$such that $w=x y z$ and

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{x}\left[\begin{array}{l}
s \\
t
\end{array}\right] \xrightarrow{y}\left[\begin{array}{l}
s \\
t
\end{array}\right] \xrightarrow{z}\left[\begin{array}{l}
r \\
r
\end{array}\right] .
$$

Hence, $x z$ is a smaller (p, q)-synchronizing word, which is a contradiction.
(g) $b a^{3} b a^{3} b$ is such a word. It can be obtained, e.g., from the algorithm designed in (c):

The Černý conjecture states that every synchronizing DFA has a synchronizing word of length at most $(|Q|-1)^{2}$. Since 1964, no one has been able to prove or disprove this conjecture. To this day, the best upper bound on the length of minimal synchronizing words is $\left(\left(|Q|^{3}-|Q|\right) / 6\right)-1$ (see [2]).

References

[1] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500-510, 1990. Available online at http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-90.pdf.
[2] Jean-Éric Pin. On two combinatorial problems arising from automata theory. volume 17 of Annals of Discrete Mathematics, pages 535-548. North-Holland, 1983. Available online at https://hal.archives-ouvertes. fr/hal-00143937/document.

