Automata and Formal Languages — Homework 5

Due 20.11.2018

Exercise 5.1

For every $n \in \mathbb{N}$, let $L_n \subseteq \{a, b\}^*$ be the language described by the regular expression $(a+b)^* a(a+b)^n b(a+b)^*$.

- (a) Give an NFA A_n with n + 3 states that accepts L_n .
- (b) Decide algorithmically whether $baabba \in L(A_2)$ and $baabaa \in L(A_2)$.
- (c) If you make final and non final states of A_n respectively non final and final, do you obtain an NFA that accepts $\overline{L_n}$? Justify your answer.

Exercise 5.2

Consider the following NFAs A, B and C:

- (a) Use algorithm UnivNFA to determine whether $L(B) = \{a, b\}^*$ and $L(C) = \{a, b\}^*$.
- (b) Use algorithm *InclNFA* to determine whether $L(A) \subseteq L(B)$ and $L(A) \subseteq L(C)$.

Exercise 5.3

- (a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm *InclNFA* twice. Give an alternative algorithm, based on pairings, for testing equality.
- (b) Give two NFAs A and B for which exploring only the minimal states of [NFAtoDFA(A), NFAtoDFA(B)] is not sufficient to determine whether L(A) = L(B).
- (c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACEhard.

(a)

(b) The automaton A_2 is as follows:

Automaton A_2 accepts w = baabba since reading w in the DFA obtained from A_2 yields:

$$\{p\} \xrightarrow{b} \{p\} \xrightarrow{a} \{p,q\} \xrightarrow{a} \{p,q,r_1\} \xrightarrow{b} \{p,r_1,r_2\} \xrightarrow{b} \{p,r_2,s\} \xrightarrow{a} \{p,q,s\}$$

where s is final. However, A_2 rejects w' = baabaa since reading w' in the DFA obtained from A_2 yields:

$$\{p\} \xrightarrow{b} \{p\} \xrightarrow{a} \{p,q\} \xrightarrow{a} \{p,q,r_1\} \xrightarrow{b} \{p,r_1,r_2\} \xrightarrow{a} \{p,q,r_2\} \xrightarrow{a} \{p,q,r_1\}$$

where none of p, q and r_1 are final.

(c) No, it would accept $\{a, b\}^*$ since every word could be accepted in state p.

Solution 5.2

(a) The trace of the execution is as follows:

Iter.	Q	\mathcal{W}
0	Ø	$\{\{q_0\}\}$
1	$\{\{q_0\}\}$	$\{\{q_1, q_2\}\}$
2	$\{\{q_0\}, \{q_1, q_2\}\}$	$\{\{q_2, q_3\}\}$
3	$\{\{q_0\},\{q_1,q_2\},\{q_2,q_3\}\}\$	Ø

At the third iteration, the algorithm encounters state $\{q_3\}$ which is non final, and hence it returns *false*. Therefore, $L(B) \neq \{a, b\}^*$.

(b) The trace of the algorithm is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	Ø	$\{[p_0, \{q_0\}]\}$
1	$\{[p_0, \{q_0\}]\}$	$\{[p_1, \{q_0\}]\}$
2	$\{[p_0, \{q_0\}], [p_1, \{q_0\}]\}$	$\{[p_0, \{q_1, q_2\}]\}$
3	$\{[p_0, \{q_0\}], [p_1, \{q_0\}], [p_0, \{q_1, q_2\}]\}$	Ø

At the third iteration, \mathcal{W} becomes empty and hence the algorithm returns *true*. Therefore $L(A) \subseteq L(B)$.

```
Input: NFAs \overline{A} = (Q, \Sigma, \delta, Q_0, F) and \overline{A'} = (Q', \Sigma, \delta', Q'_0, F').
    Output: L(A) = L(A')?
 \mathbf{1} \ Q \leftarrow \emptyset
 2 W \leftarrow \{[Q_0, Q'_0]\}
 3 while W \neq \emptyset do
         pick [P, P'] from W
 \mathbf{4}
         if (P \cap F = \emptyset) \neq (P' \cap F' = \emptyset) then
 \mathbf{5}
               return false
 6
          for a \in \Sigma do
 7
               q \leftarrow [\delta(P, a), \delta'(P', a)]
 8
               if q \notin Q \land q \notin W then
 9
                    add q to W
10
11 return true
```

Solution 5.3

- (a) We construct the pairing [NFAtoDFA(A), NFAtoDFA(B)] on the fly. The algorithm returns false if it encounters a state [P, P'] such that only one of P and P' contains a final state. If no such state is encountered, the algorithm returns true.
- (b) Let A and B be the following NFAs:

The pairing of A and B is as follows:

State $[\{p\}, \{q\}]$ does not allow us to conclude anything since both p and q are non final. However, state $[\{p\}, \{q, r\}]$, which is not minimal, allows us to conclude that $L(A) \neq L(B)$ since r is final.

(c) To show PSPACE-hardness, it suffices to give a reduction from NFA universality. Let A be an NFA. Let B the one state DFA that accepts Σ^* . The following holds:

$$L(A) = \Sigma^* \iff L(A) = L(B).$$

Therefore, $\langle A \rangle \mapsto \langle A, B \rangle$ is a reduction from NFA universality to NFA/DFA equality.