Automata and Formal Languages - Homework 5

Due 20.11.2018

Exercise 5.1

For every $n \in \mathbb{N}$, let $L_{n} \subseteq\{a, b\}^{*}$ be the language described by the regular expression $(a+b)^{*} a(a+b)^{n} b(a+b)^{*}$.
(a) Give an NFA A_{n} with $n+3$ states that accepts L_{n}.
(b) Decide algorithmically whether baabba $\in L\left(A_{2}\right)$ and baabaa $\in L\left(A_{2}\right)$.
(c) If you make final and non final states of A_{n} respectively non final and final, do you obtain an NFA that accepts $\overline{L_{n}}$? Justify your answer.

Exercise 5.2

Consider the following NFAs A, B and C :

(a) Use algorithm UnivNFA to determine whether $L(B)=\{a, b\}^{*}$ and $L(C)=\{a, b\}^{*}$.
(b) Use algorithm InclNFA to determine whether $L(A) \subseteq L(B)$ and $L(A) \subseteq L(C)$.

Exercise 5.3

(a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm InclNFA twice. Give an alternative algorithm, based on pairings, for testing equality.
(b) Give two NFAs A and B for which exploring only the minimal states of $[N F A t o D F A(A), N F A t o D F A(B)]$ is not sufficient to determine whether $L(A)=L(B)$.
(c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACEhard.

Solution 5.1

(a)

(b) The automaton A_{2} is as follows:

Automaton A_{2} accepts $w=b a a b b a$ since reading w in the DFA obtained from A_{2} yields:

$$
\{p\} \xrightarrow{b}\{p\} \xrightarrow{a}\{p, q\} \xrightarrow{a}\left\{p, q, r_{1}\right\} \xrightarrow{b}\left\{p, r_{1}, r_{2}\right\} \xrightarrow{b}\left\{p, r_{2}, s\right\} \xrightarrow{a}\{p, q, s\}
$$

where s is final. However, A_{2} rejects $w^{\prime}=b a a b a a$ since reading w^{\prime} in the DFA obtained from A_{2} yields:

$$
\{p\} \xrightarrow{b}\{p\} \xrightarrow{a}\{p, q\} \xrightarrow{a}\left\{p, q, r_{1}\right\} \xrightarrow{b}\left\{p, r_{1}, r_{2}\right\} \xrightarrow{a}\left\{p, q, r_{2}\right\} \xrightarrow{a}\left\{p, q, r_{1}\right\}
$$

where none of p, q and r_{1} are final.
(c) No, it would accept $\{a, b\}^{*}$ since every word could be accepted in state p.

Solution 5.2

(a) The trace of the execution is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	\emptyset	$\left\{\left\{q_{0}\right\}\right\}$
1	$\left\{\left\{q_{0}\right\}\right\}$	$\left\{\left\{q_{1}, q_{2}\right\}\right\}$
2	$\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}\right\}\right\}$	$\left\{\left\{q_{2}, q_{3}\right\}\right\}$
3	$\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}, q_{3}\right\}\right\}$	\emptyset

At the third iteration, the algorithm encounters state $\left\{q_{3}\right\}$ which is non final, and hence it returns false. Therefore, $L(B) \neq\{a, b\}^{*}$.
(b) The trace of the algorithm is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	\emptyset	$\left\{\left[p_{0},\left\{q_{0}\right\}\right]\right\}$
1	$\left\{\left[p_{0},\left\{q_{0}\right\}\right]\right\}$	$\left\{\left[p_{1},\left\{q_{0}\right\}\right]\right\}$
2	$\left\{\left[p_{0},\left\{q_{0}\right\}\right],\left[p_{1},\left\{q_{0}\right\}\right]\right\}$	$\left\{\left[p_{0},\left\{q_{1}, q_{2}\right\}\right]\right\}$
3	$\left\{\left[p_{0},\left\{q_{0}\right\}\right],\left[p_{1},\left\{q_{0}\right\}\right],\left[p_{0},\left\{q_{1}, q_{2}\right\}\right]\right\}$	\emptyset

At the third iteration, \mathcal{W} becomes empty and hence the algorithm returns true. Therefore $L(A) \subseteq L(B)$.

```
Input: NFAs \(A=\left(Q, \Sigma, \delta, Q_{0}, F\right)\) and \(A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)\).
Output: \(L(A)=L\left(A^{\prime}\right)\) ?
\(Q \leftarrow \emptyset\)
\(W \leftarrow\left\{\left[Q_{0}, Q_{0}^{\prime}\right]\right\}\)
while \(W \neq \emptyset\) do
    pick \(\left[P, P^{\prime}\right]\) from \(W\)
        if \((P \cap F=\emptyset) \neq\left(P^{\prime} \cap F^{\prime}=\emptyset\right)\) then
            return false
        for \(a \in \Sigma\) do
            \(q \leftarrow\left[\delta(P, a), \delta^{\prime}\left(P^{\prime}, a\right)\right]\)
            if \(q \notin Q \wedge q \notin W\) then
                add \(q\) to \(W\)
    return true
```


Solution 5.3

(a) We construct the pairing $[N F A t o D F A(A), N F A t o D F A(B)]$ on the fly. The algorithm returns false if it encounters a state $\left[P, P^{\prime}\right]$ such that only one of P and P^{\prime} contains a final state. If no such state is encountered, the algorithm returns true.
(b) Let A and B be the following NFAs:

The pairing of A and B is as follows:

State $[\{p\},\{q\}]$ does not allow us to conclude anything since both p and q are non final. However, state $[\{p\},\{q, r\}]$, which is not minimal, allows us to conclude that $L(A) \neq L(B)$ since r is final.
(c) To show PSPACE-hardness, it suffices to give a reduction from NFA universality. Let A be an NFA. Let B the one state DFA that accepts Σ^{*}. The following holds:

$$
L(A)=\Sigma^{*} \Longleftrightarrow L(A)=L(B)
$$

Therefore, $\langle A\rangle \mapsto\langle A, B\rangle$ is a reduction from NFA universality to NFA/DFA equality.

