## Automata and Formal Languages - Homework 4

Due 12.11.2018

## Exercise 4.1

Let $A$ and $B$ be respectively the following NFAs:

(a) Compute the coarsest stable refinements (CSR) of $A$ and $B$. This is computed by the algorithm for reducing NFAs presented in the lecture.
(b) Construct the quotients of $A$ and $B$ with respect to their CSRs.
(c) Show that

$$
\begin{aligned}
& L(A)=\left\{w \in\{a, b\}^{*} \mid w \text { starts and ends with } a\right\} \\
& L(B)=\left\{w \in\{a, b\}^{*} \mid w \text { starts with } a c \text { and ends with } a b\right\}
\end{aligned}
$$

(d) Are the automata obtained in (b) minimal?

## Exercise 4.2

Consider the following DFAs $A, B$ and $C$ :


Use pairings to decide algorithmically whether $L(A) \cap L(B) \subseteq L(C)$.

## Exercise 4.3

Let $L \subseteq \Sigma^{*}$ be a language accepted by an NFA $A$. For every $u, v \in \Sigma^{*}$, we say that $u \preceq v$ if and only if $u$ can be obtained by deleting zero, one or multiple letters of $v$. For example, $a b c \preceq a b c a, a b c \preceq a c b a c, a b c \preceq a b c$, $\varepsilon \preceq a b c$ and $a a b \npreceq a c b a c$. Consider the following NFA A. Give an NFA- $\varepsilon$ for each of the following languages and then generalize your approach to any NFA:

(a) $\downarrow L=\left\{w \in \Sigma^{*} \mid w \preceq w^{\prime}\right.$ for some $\left.w^{\prime} \in L\right\}$,
(b) $\uparrow L=\left\{w \in \Sigma^{*} \mid w^{\prime} \preceq w\right.$ for some $\left.w^{\prime} \in L\right\}$,
(c) $\sqrt{L}=\left\{w \in \Sigma^{*} \mid w w \in L\right\}$,
(d) $\operatorname{Cyc}(L)=\left\{v u \in \Sigma^{*} \mid u v \in L\right\}$.

## Exercise 4.4

Let $\Sigma_{1}$ and $\Sigma_{2}$ be alphabets. A morphism is a function $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that $h(\varepsilon)=\varepsilon$ and $h(u v)=h(u) \cdot h(v)$ for every $u, v \in \Sigma_{1}^{*}$. In particular, $h\left(a_{1} a_{2} \cdots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \cdots h\left(a_{n}\right)$ for every $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$. Hence, a morphism $h$ is entirely determined by its image over letters.
(a) Let $L \subseteq \Sigma_{1}^{*}$ be accepted by some NFA $A_{1}$. Give an NFA- $\varepsilon B_{2}$ that accepts $h(L)=\{h(w) \mid w \in L\}$.
(b) Show that $L=\left\{(a a b)^{n} e^{m}(c a d)^{n} e f(f e)^{n} \mid m, n \in \mathbb{N}\right\}$ is not regular by using (a) and the fact that $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not regular.

## Solution 4.1

A) (a)

| Iter. | Block to split | Splitter | New partition |
| :---: | :---: | :---: | :---: |
| 0 | - | - | $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$ |
| 1 | $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ | $\left(a,\left\{q_{5}\right\}\right)$ | $\left\{q_{0}\right\},\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$ |
| 2 | none, partition is stable | - | - |

The CSR is $P=\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}\right\}$.
(b)

(c) It follows immediately from the fact that $A$ accepts the same language as the automaton obtained in (b).
(d) Yes. By (c), the language accepted by $A$ is $a(a+b)^{*} a$. An NFA with one state can only accept $\emptyset,\{\varepsilon\}, a^{*}, b^{*}$ and $\{a, b\}^{*}$. Suppose there exists an NFA $A^{\prime}=\left(\left\{q_{0}, q_{1}\right\},\{a, b\}, \delta, Q_{0}, F\right)$ accepting $L(A)$. Without loss of generality, we may assume that $q_{0}$ is initial. $A^{\prime}$ must respect the following properties:

- $q_{0} \notin F$, since $\varepsilon \notin L(A)$,
- $q_{1} \in F$, since $L(A) \neq \emptyset$,
- $q_{1} \notin Q_{0}$, since $\varepsilon \notin L(A)$,
- $q_{1} \in \delta\left(q_{0}, a\right)$, otherwise it is impossible to accept $a a$ which is in $L(A)$.

This implies that $A^{\prime}$ accepts $a$, yet $a \notin L(A)$. Therefore, no two states NFA accepts $L(A)$.
B) $(\mathrm{a})$

| Iter. | Block to split | Splitter | New partition |
| :---: | :---: | :---: | :---: |
| 0 | - | - | $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$ |
| 1 | $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ | $\left(a,\left\{q_{5}\right\}\right)$ | $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$ |
| 2 | $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$ | $\left(a,\left\{q_{4}\right\}\right)$ | $\left\{q_{0}, q_{1}\right\},\left\{q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$ |
| 3 | $\left\{q_{0}, q_{1}\right\}$ | $\left(c,\left\{q_{2}, q_{3}\right\}\right)$ | $\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$ |
| 4 | $\left\{q_{2}, q_{3}\right\}$ | $\left(a,\left\{q_{0}\right\}\right)$ | $\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$ |

The CSR is $P=\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}\right\}$.
(b) The automaton remains unchanged.
(c) $\subseteq$ ) Let $w \in L(B)$. Every path from $q_{0}$ to $q_{5}$ first goes through $q_{1}$ and $q_{2}$ and ends up going through $\bar{q}_{4}$ and $q_{5}$. This implies that $w \in L\left(a c(a+b+c)^{*} a b\right)$.
$\supseteq)$ First note that for every $u \in\{a, b, c\}^{*}$, there exists $q \in\left\{q_{2}, q_{3}\right\}$ such that $q_{2} \xrightarrow{u} q$. This can be shown by induction on $|u|$. Let $w \in L\left(a c(a+b+c)^{*} a b\right)$. There exists $u \in\{a, b, c\}^{*}$ such that $w=$ acuab. Let $q \in\left\{q_{2}, q_{3}\right\}$ be such that $q_{2} \xrightarrow{u} q$. We have $q_{0} \xrightarrow{a} q_{1} \xrightarrow{c} q_{2} \xrightarrow{u} q \xrightarrow{a} q_{4} \xrightarrow{b} q_{5}$. Therefore, $w \in L(B)$.
(d) No. We have seen a DFA with five states accepting the same language in Exercise \#1.1.

## Solution 4.2

We first build the pairing accepting $L(A) \cap L(B)$. Note that it is not necessary to explore the implicit trap states of $A$ and $B$ as they cannot lead to final states in the pairing. We obtain:


Now, we build the pairing accepting $(L(A) \cap L(B)) \backslash L(C)$ from the above automaton and $C$. Note that we must explore the implicit trap state of $C$ as it may be part of final states in the pairing. We obtain:


Since the above automaton contains final states, its language is non empty and hence $L(A) \cap L(B) \nsubseteq L(C)$. Note that we can reach this conclusion as soon as we construct state $\left(p_{1}, q_{1}, r_{1}\right)$.

## Solution 4.3

Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NFA that accepts $L$.
(a) We add a $\varepsilon$-transition "parallel" to every transition of $A$. This simulates the deletion of letters from words of $L$. More formally, let $B=\left(Q, \Sigma, \delta^{\prime}, Q_{0}, F\right)$ be such that, for every $q \in Q$ and $a \in \Sigma \cup\{\varepsilon\}$,

$$
\delta^{\prime}(q, a)= \begin{cases}\delta(q, a) & \text { if } a \in \Sigma, \\ \{q \in Q: q \in \delta(q, b) \text { for some } b \in \Sigma\} & \text { if } a=\varepsilon\end{cases}
$$

(b) For every state of $Q$, we add self-loops for each letter of $\Sigma$. This corresponds to the insertion of letters in words of $L$. More formally, let $B=\left(Q, \Sigma, \delta^{\prime}, Q_{0}, F\right)$ be such that $\delta^{\prime}(q, a)=\delta(q, a) \cup\{q\}$ for every $q \in Q$ and $a \in \Sigma$.
(c) Intuitively, we construct an automaton $B$ that guesses an intermediate state $p$ and then reads $w$ simultaneously from an initial state $q_{0}$ and from $p$. The automaton accepts if it simultaneously reaches $p$ and and an accepting state $q_{F}$. More formally, let $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ be such that

$$
\begin{aligned}
Q^{\prime} & =Q \times Q \times Q \\
Q_{0}^{\prime} & =\left\{(p, q, p): p \in Q, q \in Q_{0}\right\} \\
F^{\prime} & =\{(p, p, q): p \in Q, q \in F\}
\end{aligned}
$$

and, for every $p, q, r \in Q$ and $a \in \Sigma$,

$$
\delta^{\prime}((p, q, r), a)=\left\{\left(p, q^{\prime}, r^{\prime}\right): q^{\prime} \in \delta(q, a), r^{\prime} \in \delta(r, a)\right\} .
$$

(d) Intuitively, we construct an automaton $B$ that guesses a state $p$ and reads a prefix $v$ of the input word until it reaches a final state. Then, $B$ moves non deterministically to an initial state from which it reads the remainder $u$ of the input word, and it accepts if it reaches $p$. More formally, let $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ be such that

$$
\begin{aligned}
Q^{\prime} & =Q \times\{0,1\} \times Q, \\
Q_{0}^{\prime} & =\{(p, 0, p) \mid p \in Q\}, \\
F^{\prime} & =\{(p, 1, p) \mid p \in Q\},
\end{aligned}
$$

and, for every $p, q \in Q$ and $a \in \Sigma \cup\{\varepsilon\}$,

$$
\delta^{\prime}((p, b, q), a)= \begin{cases}\left\{\left(p, b, q^{\prime}\right): q^{\prime} \in \delta(q, a)\right\} & \text { if } a \in \Sigma \\ \left\{\left(p, 1, q^{\prime}\right): q^{\prime} \in Q_{0}\right\} & \text { if } a=\varepsilon, b=0 \text { and } q \in F, \\ \emptyset & \text { otherwise }\end{cases}
$$

## Solution 4.4

(a) Since $h$ is determined by its image over letters, we replace each transition $(p, a, q)$ of $A$ by a sequence of transitions from $p$ to $q$ labeled by $h(a)$. Some $\varepsilon$-transitions may be introduced if $h(a)=\varepsilon$ for some $a \in \Sigma$.
(b) Let $A=\left(Q, \Sigma_{2}, \delta, Q_{0}, F\right)$. We keep the states of $A$ unchanged, but we remove its transitions. For each $p, q \in Q$ and $a \in \Sigma_{1}$, we add a transition $(p, a, q)$ to $B$ for every state $q$ that can be reached from state $p$ by reading $h(a)$ in $A$. More formally, let $B=\left(Q, \Sigma_{1}, \delta^{\prime}, Q_{0}, F\right)$ be such that

$$
\delta^{\prime}(p, a)=\left\{q \in Q: p \xrightarrow{h(a)}_{A} q\right\} .
$$

(c) For the sake of contradiction, suppose $L$ is regular. There exists an NFA $A$ that accepts $L$. Let $g$ be the morphism such that $g(a)=a, g(b)=b, g(c)=c, g(d)=d$ and $g(e)=g(f)=\varepsilon$. We have

$$
g(L)=\left\{(a a b)^{n}(c a d)^{n}: n \in \mathbb{N}\right\}
$$

By (a), language $g(L)$ is regular. Let $h$ be the morphism such that $h(a)=a a b, h(b)=c a d, h(c)=c$, $h(d)=d, h(e)=e$ and $h(f)=f$. We have

$$
h^{-1}(g(L))=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

By (b), language $h^{-1}(g(L))$ is regular, which is a contradiction.
$\star$ As discussed in class, there is a simpler solution. Suppose $L$ is regular and let $h$ be the morphism such that $h(b)=a, h(c)=b$ and $h(a)=h(d)=h(e)=h(f)=\varepsilon$. We have

$$
h(L)=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\} .
$$

By (a), language $h(L)$ is regular, which is a contradiction.

