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Exercise 3.1

Prove or disprove:

(a) A subset of a regular language is regular.

(b) A superset of a regular language is regular.

(c) If L1 and L1L2 are regular, then L2 is regular.

(d) If L2 and L1L2 are regular, then L1 is regular.

Exercise 3.2

Let Mn = {w ∈ {0, 1}∗ | msbf(w) is a multiple of n} and let Lpal = {w ∈ Σ∗ | w is a palindrome} where Σ is
some finite alphabet.

(a) Show that M3 has (exactly) three residuals, i.e. show that |{(M3)w | w ∈ {0, 1}∗}| = 3.

(b) Show that M4 has less than four residuals.

(c) F Show that Mp has (exactly) p residuals for every prime number p. You may use the fact that, by
Fermat’s little theorem, 2p−1 ≡ 1 (mod p) for all prime numbers p > 2. [Hint: For every 0 ≤ i < p,
consider the word ui such that |ui| = p− 1 and msbf(ui) = i.]

(d) Show that Lpal has infinitely many residuals whenever |Σ| ≥ 2.

(e) Show that Lpal is regular for Σ = {a}. Is Lpal also regular for larger alphabets?

Exercise 3.3

(a) Let Σ = {0, 1} be an alphabet.

Find a language L ⊆ Σ∗ that has infinitely many residuals and |Lw| > 0 for all w ∈ Σ∗.

(b) Let Σ = {a} be an alphabet.

Find a language L ⊆ Σ∗, such that Lw = Lw′
=⇒ w = w′ for all words w,w′ ∈ Σ∗.

What can you say about the residuals for such a language L? Is such a language regular?

Exercise 3.4

Let A and B be respectively the following DFAs:



q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

q0 q1

q2 q3

q4

b

a a b b

a

b

a

a, b

(a) Compute the language partitions of A and B.

(b) Construct the quotients of A and B with respect to their language partitions.

(c) Give regular expressions for L(A) and L(B).

Exercise 3.5

Design an efficient algorithm Res(r, a), where r is a regular expression over an alphabet Σ and a ∈ Σ, that returns
a regular expression satisfying L

(
Res(r, a)

)
=

(
L(r)

)a
. Extend your approach to arbitrary words w ∈ Σ∗.



Solution 3.1

All statements are false. Since ∅ and Σ∗ are both regular, any of the first two statements would imply that
every language is regular, which is certainly not the case. For the third statement, take L1 = a∗ and take for
L2 any non-regular language over {a} (for instance, L2 = {an2 | n ≥ 0}). Then L1L2 = a∗, which is regular.

For the fourth statement, take L1 = {an2 | n ≥ 0} and L2 = a∗.

Solution 3.2

(a) In exercise #1.2(c), we have seen a DFA with three states that accepts M3. Therefore, M3 has at most
three residuals. We claim that M3 has at least three residuals. To prove this claim, it suffices to show
that the ε-residual, 1-residual and 10-residual of M3 are distinct. This holds since:

ε · ε ∈M3, ε · ε ∈M3, 1 · 1 ∈M3,

1 · ε 6∈M3, 10 · ε 6∈M3, 10 · 1 6∈M3.

(b) In exercise #1.2(b), we have seen a DFA with three states that accepts M4. Therefore, M4 has at most
three residuals.

(c) In exercise #1.2(g), we have seen a DFA with p states that accepts Mp. Therefore, Mp has at most p
residuals. It remains to show that Mp has at least p residuals. For every 0 ≤ i < p, let ui be the word
such that |ui| = p− 1 and msbf(ui) = i. Note that ui exists since the smallest encoding of i has at most
p− 1 bits, and it can be extended to length p− 1 by padding with zeros on the left. Let us show that the
ui-residual and uj-residual of Mp are distinct for every 0 ≤ i, j < p such that i 6= j. Let 0 ≤ k < p, and
let ` = (p− i) mod p. We have:

msbf(uku`) = 2|u`| ·msbf(uk) + msbf(u`)

= 2p−1 · k + ((p− i) mod p)

≡ k + ((p− i) mod p) (by Fermat’s little theorem)

≡ k + p− i

≡ k − i.

Let 0 ≤ i, j < p be such that i 6= j. We have uiu` ∈ Mp since msbf(uiu`) ≡ i − i ≡ 0, but we have
uju` 6∈Mp since msbf(uju`) ≡ j− i 6≡ 0. Therefore, the ui-residual and uj-residual of Mp are distinct.

(d) Without loss of generality, we may assume that a, b ∈ Σ. For every i ∈ N, let ui = aib. Let i, j ∈ N be
such that i 6= j. We claim that the ui-residual and the uj-residual of Lpal differ. This shows that Lpal has
infinitely many residuals. To prove the claim, observe that uia

i ∈ Lpal and that uja
i 6∈ Lpal.

F To see why uja
i 6∈ Lpal, assume for the sake of contradiction that uja

i ∈ Lpal. Let w = uja
i. Since w

is a palindrome, it must be the case that wj+1 = b = w|w|−(j+1)+1. In particular, since w contains only a
single b, we must have |w| − (j + 1) + 1 = j + 1. This yields a contradiction since

|w| − (j + 1) + 1 = (i + j + 1)− (j + 1) + 1

= i + 1

6= j + 1 (by i 6= j).

(e) If Σ = {a}, then Lpal = Σ∗ since every word is trivially a palindrome. Thus, Lpal is accepted by a DFA
with a single state. If |Σ| > 1, then by (d) we know that Lpal has infinitely many residuals. A language
is regular if and only if it has finitely many residuals, and hence Lpal is not regular.

Solution 3.3

(a) L = {ww | w ∈ Σ∗}. First we prove that L has infinitely many residuals by showing that for each pair of
words of the infinite set {0i1 | i ≥ 0} the corresponding residuals are not equal. Let u = 0i1, v = 0j1 ∈ Σ∗

two words with i < j. Then Lu 6= Lv since u ∈ Lu, but u 6 Lv. For the second half consider some arbitrary
word w. Then w ∈ Lw, which shows the statement.

(b) We observe that for all languages satisfying that property Lw has to be non-empty for all w and thus also
infinite. Furthermore all these languages are not regular, since there are infinitely many residuals.



L = {a2n | n ≥ 0}. Let ai and aj two distinct words. W.l.o.g. we assume i < j. Let now di and dj denote
the distance from i and j to resp. closest larger square number. If di < dj holds, we are immediately done

since adi ∈ Lai

and adi /∈ Laj

. di > dj is analogous. Thus assume di = dj . Let us then define d′i and d′j
denote the distance from i and j to resp. second closest larger square number. These have to be unequal,
since the gaps between the square numbers are strictly increasing and we can repeat the argument from
before.

Solution 3.4

A) (a)

Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q5, q6}, {q4}
1 {q0, q1, q2, q3, q5, q6} (b, {q4}) {q0, q2, q6}, {q1, q3, q5}, {q4}
2 none, partition is stable — —

The language partition is P` = {{q0, q2, q6}, {q1, q3, q5}, {q4}}.
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(c) (a + b)∗ab.

B) (a)

Iter. Block to split Splitter New partition

0 — — {q0, q3}, {q1, q2, q4}
1 {q1, q2, q4} (b, {q1, q2, q4}) {q0, q3}, {q1}, {q2, q4}
2 {q2, q4} (a, {q0, q3}) {q0, q3}, {q1}, {q2}, {q4}
3 none, partition is stable — —

The language partition is P` = {{q0, q3}, {q1}, {q2}, {q4}}.
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Solution 3.5

The solution to Exercise ... yields a linear-time algorithm to check if the language of a regular expression
contains the empty word. We can easily transform it into an algorithm computing the function E(r) defined by
E(r) = ε if ε ∈ L(r), and E(r) = ∅ otherwise. Now we can define the function Res(r, a) recursively as follows:

• Res(∅, a) = Res(ε, a) = ∅;

• Res(r1 + r2, a) = Res(r1, a) + Res(r2, a);

• Res(r1r2, a) = Res(r1, a) r2 + E(r1)Res(r2, a);

• Res(r∗, a) = Res(r) r∗.


