Automata and Formal Languages - Homework 3

Due 06.11.2018

Exercise 3.1

Prove or disprove:
(a) A subset of a regular language is regular.
(b) A superset of a regular language is regular.
(c) If L_{1} and $L_{1} L_{2}$ are regular, then L_{2} is regular.
(d) If L_{2} and $L_{1} L_{2}$ are regular, then L_{1} is regular.

Exercise 3.2

Let $M_{n}=\left\{w \in\{0,1\}^{*} \mid \operatorname{msbf}(w)\right.$ is a multiple of $\left.n\right\}$ and let $L_{\mathrm{pal}}=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$ where Σ is some finite alphabet.
(a) Show that M_{3} has (exactly) three residuals, i.e. show that $\left|\left\{\left(M_{3}\right)^{w} \mid w \in\{0,1\}^{*}\right\}\right|=3$.
(b) Show that M_{4} has less than four residuals.
(c) \star Show that M_{p} has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$ for all prime numbers $p>2$. [Hint:
(d) Show that $L_{\text {pal }}$ has infinitely many residuals whenever $|\Sigma| \geq 2$.
(e) Show that L_{pal} is regular for $\Sigma=\{a\}$. Is L_{pal} also regular for larger alphabets?

Exercise 3.3

(a) Let $\Sigma=\{0,1\}$ be an alphabet.

Find a language $L \subseteq \Sigma^{*}$ that has infinitely many residuals and $\left|L^{w}\right|>0$ for all $w \in \Sigma^{*}$.
(b) Let $\Sigma=\{a\}$ be an alphabet.

Find a language $L \subseteq \Sigma^{*}$, such that $L^{w}=L^{w^{\prime}} \Longrightarrow w=w^{\prime}$ for all words $w, w^{\prime} \in \Sigma^{*}$.
What can you say about the residuals for such a language L ? Is such a language regular?

Exercise 3.4

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Exercise 3.5

Design an efficient algorithm $\operatorname{Res}(r, a)$, where r is a regular expression over an alphabet Σ and $a \in \Sigma$, that returns a regular expression satisfying $L(\operatorname{Res}(r, a))=(L(r))^{a}$. Extend your approach to arbitrary words $w \in \Sigma^{*}$.

Solution 3.1

All statements are false. Since \emptyset and Σ^{*} are both regular, any of the first two statements would imply that every language is regular, which is certainly not the case. For the third statement, take $L_{1}=a^{*}$ and take for L_{2} any non-regular language over $\{a\}$ (for instance, $L_{2}=\left\{a^{n^{2}} \mid n \geq 0\right\}$). Then $L_{1} L_{2}=a^{*}$, which is regular. For the fourth statement, take $L_{1}=\left\{a^{n^{2}} \mid n \geq 0\right\}$ and $L_{2}=a^{*}$.

Solution 3.2

(a) In exercise \#1.2(c), we have seen a DFA with three states that accepts M_{3}. Therefore, M_{3} has at most three residuals. We claim that M_{3} has at least three residuals. To prove this claim, it suffices to show that the ε-residual, 1-residual and 10 -residual of M_{3} are distinct. This holds since:

$$
\begin{array}{rrr}
\varepsilon \cdot \varepsilon \in M_{3}, & \varepsilon \cdot \varepsilon \in M_{3}, & 1 \cdot 1 \in M_{3}, \\
1 \cdot \varepsilon \notin M_{3}, & 10 \cdot \varepsilon \notin M_{3}, & 10 \cdot 1 \notin M_{3} .
\end{array}
$$

(b) In exercise \#1.2(b), we have seen a DFA with three states that accepts M_{4}. Therefore, M_{4} has at most three residuals.
(c) In exercise $\# 1.2(\mathrm{~g})$, we have seen a DFA with p states that accepts M_{p}. Therefore, M_{p} has at most p residuals. It remains to show that M_{p} has at least p residuals. For every $0 \leq i<p$, let u_{i} be the word such that $\left|u_{i}\right|=p-1$ and $\operatorname{msbf}\left(u_{i}\right)=i$. Note that u_{i} exists since the smallest encoding of i has at most $p-1$ bits, and it can be extended to length $p-1$ by padding with zeros on the left. Let us show that the u_{i}-residual and u_{j}-residual of M_{p} are distinct for every $0 \leq i, j<p$ such that $i \neq j$. Let $0 \leq k<p$, and let $\ell=(p-i) \bmod p$. We have:

$$
\begin{aligned}
\operatorname{msbf}\left(u_{k} u_{\ell}\right) & =2^{\left|u_{\ell}\right|} \cdot \operatorname{msbf}\left(u_{k}\right)+\operatorname{msbf}\left(u_{\ell}\right) \\
& =2^{p-1} \cdot k+((p-i) \bmod p) \\
& \equiv k+((p-i) \bmod p) \\
& \equiv k+p-i \\
& \equiv k-i .
\end{aligned}
$$

$$
\equiv k+((p-i) \bmod p) \quad \text { (by Fermat's little theorem) }
$$

Let $0 \leq i, j<p$ be such that $i \neq j$. We have $u_{i} u_{\ell} \in M_{p}$ since $\operatorname{msbf}\left(u_{i} u_{\ell}\right) \equiv i-i \equiv 0$, but we have $u_{j} u_{\ell} \notin M_{p}$ since $\operatorname{msbf}\left(u_{j} u_{\ell}\right) \equiv j-i \not \equiv 0$. Therefore, the u_{i}-residual and u_{j}-residual of M_{p} are distinct.
(d) Without loss of generality, we may assume that $a, b \in \Sigma$. For every $i \in \mathbb{N}$, let $u_{i}=a^{i} b$. Let $i, j \in \mathbb{N}$ be such that $i \neq j$. We claim that the u_{i}-residual and the u_{j}-residual of $L_{\text {pal }}$ differ. This shows that $L_{\text {pal }}$ has infinitely many residuals. To prove the claim, observe that $u_{i} a^{i} \in L_{\text {pal }}$ and that $u_{j} a^{i} \notin L_{\text {pal }}$.
\star To see why $u_{j} a^{i} \notin L_{\mathrm{pal}}$, assume for the sake of contradiction that $u_{j} a^{i} \in L_{\mathrm{pal}}$. Let $w=u_{j} a^{i}$. Since w is a palindrome, it must be the case that $w_{j+1}=b=w_{|w|-(j+1)+1}$. In particular, since w contains only a single b, we must have $|w|-(j+1)+1=j+1$. This yields a contradiction since

$$
\begin{aligned}
|w|-(j+1)+1 & =(i+j+1)-(j+1)+1 \\
& =i+1
\end{aligned}
$$

$$
\neq j+1 \quad(\text { by } i \neq j)
$$

(e) If $\Sigma=\{a\}$, then $L_{\mathrm{pal}}=\Sigma^{*}$ since every word is trivially a palindrome. Thus, L_{pal} is accepted by a DFA with a single state. If $|\Sigma|>1$, then by (d) we know that $L_{\text {pal }}$ has infinitely many residuals. A language is regular if and only if it has finitely many residuals, and hence L_{pal} is not regular.

Solution 3.3

(a) $L=\left\{w w \mid w \in \Sigma^{*}\right\}$. First we prove that L has infinitely many residuals by showing that for each pair of words of the infinite set $\left\{0^{i} 1 \mid i \geq 0\right\}$ the corresponding residuals are not equal. Let $u=0^{i} 1, v=0^{j} 1 \in \Sigma^{*}$ two words with $i<j$. Then $L^{u} \neq L^{v}$ since $u \in L^{u}$, but $u L^{v}$. For the second half consider some arbitrary word w. Then $w \in L^{w}$, which shows the statement.
(b) We observe that for all languages satisfying that property L^{w} has to be non-empty for all w and thus also infinite. Furthermore all these languages are not regular, since there are infinitely many residuals.
$L=\left\{a^{2^{n}} \mid n \geq 0\right\}$. Let a^{i} and a^{j} two distinct words. W.l.o.g. we assume $i<j$. Let now d_{i} and d_{j} denote the distance from i and j to resp. closest larger square number. If $d_{i}<d_{j}$ holds, we are immediately done since $a^{d_{i}} \in L^{a^{i}}$ and $a^{d_{i}} \notin L^{a^{j}} . d_{i}>d_{j}$ is analogous. Thus assume $d_{i}=d_{j}$. Let us then define d_{i}^{\prime} and d_{j}^{\prime} denote the distance from i and j to resp. second closest larger square number. These have to be unequal, since the gaps between the square numbers are strictly increasing and we can repeat the argument from before.

Solution 3.4

A) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}\right\},\left\{q_{4}\right\}$
1	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}\right\}$	$\left(b,\left\{q_{4}\right\}\right)$	$\left\{q_{0}, q_{2}, q_{6}\right\},\left\{q_{1}, q_{3}, q_{5}\right\},\left\{q_{4}\right\}$
2	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{2}, q_{6}\right\},\left\{q_{1}, q_{3}, q_{5}\right\},\left\{q_{4}\right\}\right\}$.
(b)

(c) $(a+b)^{*} a b$.
B) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}, q_{2}, q_{4}\right\}$
1	$\left\{q_{1}, q_{2}, q_{4}\right\}$	$\left(b,\left\{q_{1}, q_{2}, q_{4}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{4}\right\}$
2	$\left\{q_{2}, q_{4}\right\}$	$\left(a,\left\{q_{0}, q_{3}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}$
3	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}\right\}$.
(b)

(c) $(a a+b b)^{*}$ or $\left((a a)^{*}(b b)^{*}\right)^{*}$.

Solution 3.5

The solution to Exercise ... yields a linear-time algorithm to check if the language of a regular expression contains the empty word. We can easily transform it into an algorithm computing the function $E(r)$ defined by $E(r)=\varepsilon$ if $\varepsilon \in L(r)$, and $E(r)=\emptyset$ otherwise. Now we can define the function $\operatorname{Res}(r, a)$ recursively as follows:

- $\operatorname{Res}(\emptyset, a)=\operatorname{Res}(\varepsilon, a)=\emptyset ;$
- $\operatorname{Res}\left(r_{1}+r_{2}, a\right)=\operatorname{Res}\left(r_{1}, a\right)+\operatorname{Res}\left(r_{2}, a\right) ;$
- $\operatorname{Res}\left(r_{1} r_{2}, a\right)=\operatorname{Res}\left(r_{1}, a\right) r_{2}+E\left(r_{1}\right) \operatorname{Res}\left(r_{2}, a\right) ;$
- $\operatorname{Res}\left(r^{*}, a\right)=\operatorname{Res}(r) r^{*}$.

