
Technische Universität München Winter term 2018/19
I7
Prof. J. Esparza / S. Sickert 25.10.2018

Automata and Formal Languages — Homework 2

Due 30.10.2018

Exercise 2.1

Consider the regular expression r = (a+ ab)
∗
.

(a) Convert r into an equivalent NFA-ε A.

(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAεtoNFA)

(c) Convert B into an equivalent DFA C.

(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).

(e) Convert D into an equivalent regular expression r′.

(f) Prove formally that L(r) = L(r′).

Exercise 2.2

Convert the following NFA-ε to an NFA using the algorithm NFAεtoNFA from the lecture notes (see Sect. 2.3,
p. 33). You may verify your answer with the Python program nfa-eps2nfa.

p q

rs

ε

εa, ε

b

b

Exercise 2.3

For every n ∈ N, let Ln = {w ∈ {0, 1}∗ : |w| ≥ n and w|w|−n+1 = 1}.

(a) Exhibit an NFA with O(n) states that accepts Ln.

(b) Exhibit a DFA with Ω(2n) states that accepts Ln.

(c) Show that any DFA that accepts Ln has at least 2n states.

Exercise 2.4

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting.
This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all
runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal
accepting condition. Notice that a DFA accepts the same language with both the existential and the universal
accepting conditions.

Intuitively, we can visualize an automaton with universal accepting condition as executing all runs in parallel.
After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and
accepts if all those states are accepting.

Give an algorithm that transforms an automaton with universal accepting condition into a DFA recognizing the
same language. This shows that automata with universal accepting condition recognize the regular languages.

Exercise 2.5

 Prove or Disprove:

Assume we have an NFA-ε A = (Q,Σ, δ, Q0, F). Then translating by removing ε-transitions and adding new
transition into an NFA B adds in the worst-case O(n2) transitions if the original automaton had n transitions.
Formally the resulting NFA B should have the definition B = (Q,Σ, (δ \ {(q, ε, p) | p, q ∈ Q}) ∪ δ′, Q0, F

′) and
the translation is only allowed to define δ′ and F ′.

Consider the family of languages defined by the family of regular expressions rn = (a1 +)(a2 +) . . . (a2 +)
over the alphabet Σ = {a1, a2, . . . an}.

Solution 2.1

(a)

Iter. Automaton obtained Rule applied

1 p q
(a+ ab)∗

Initial automaton from reg. expr.

2
p q r

ε

a+ ab

ε

p q

⇝
p q

r∗

ε ε

r

3 p q r
ε

a

ab

ε

p q

⇝

p q

r1 + r2

r1

r2

4

p q r

s

ε

a

a b

ε
p q

⇝

p q

r1 r2

r1 r1

(b)

Iter. Automaton obtained Rule applied

1
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

⇝

σ ε

σ ε

σ

⇝
ε σ

ε σ

σ

where σ ∈ Σ ∪ {ε}

2
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

Initial states that can reach a final state
through ε-transitions are made final.

3
p q r

s

a

a

a b

a

a b

a

Remove ε-transitions.
Remove states non reachable from ini-
tial state.

(c)

p q, r, s q, ra

a

b

a

(d) States {p} and {q, r} have the exact same behaviours, so we can merge them. Indeed, both states are
final and δ({p},σ) = δ({q, r}),σ) for every σ ∈ {a, b}. We obtain:

a

b

a

(e)

Iter. Automaton obtained Rule applied

1

i p q f

a

b

a
ε ε

ε

Add single initial and final states.

2

i q f

a

ba

a ε

b

ε

p

i q

q f⇝

i q

i f

q q

q f

ε

b

a

ε

a

ε

ba

b

3 i q f

a+ ba

a ε+ b

ε

p q

⇝

p q

r1

r2

r1 + r2

4

i f
a(a+ ba)∗(ε+ b)

ε

qi f⇝
i f

a

a+ ba

ε+ b

a(a+ ba)∗(ε+ b)

5 i f
ε+ a(a+ ba)∗(ε+ b)

p q
⇝

p q

r1

r2

r1 + r2

6 ε+ a(a+ ba)
∗
(ε+ b)

Extract regular expression from
the unique transition.

(f) Let us first show that a(a + ba)i = (a + ab)ia for every i ∈ N. We proceed by induction on i. If i = 0,
then the claim trivially holds. Let i > 0. Assume the claims holds at i− 1. We have

a(a+ ba)i = a(a+ ba)i−1(a+ ba)

= (a+ ab)i−1a(a+ ba) (by induction hypothesis)

= (a+ ab)i−1(aa+ aba) (by distributivity)

= (a+ ab)i−1(a+ ab)a (by distributivity)

= (a+ ab)ia.

This implies that
a(a+ ba)∗ = (a+ ab)∗a. (1)

We may now prove the equivalence of the two regular expressions:

ε+ a(a+ ba)∗(ε+ b) = ε+ (a+ ab)∗a(ε+ b) (by (1))

= ε+ (a+ ab)∗(a+ ab) (by distributivity)

= ε+ (a+ ab)+

= (a+ ab)∗.

Solution 2.2

Iter. B = (Q′,Σ, δ′, Q′
0, F

′) δ′′ (ε-transitions) Workset W and next (q1,α, q2)

0

p

{(p, ε, q), (p, ε, s), (p, a, s)}

1

p p qε

{(p, ε, s), (p, a, s), (p, ε, r)}

2

p p q

s

ε

ε {(p, a, s), (p, ε, r), (p, b, s), (p, b, r)}

3

p

s

a

p q

s

ε

ε {(p, ε, r), (p, b, s), (p, b, r), (s, b, s), (s, b, r)}

4

p

s

a

p q

s r

ε

ε
ε {(p, b, s), (p, b, r), (s, b, s), (s, b, r)}

5

p

s

a, b

p q

s r

ε

ε
ε {(p, b, r), (s, b, s), (s, b, r)}

6

p

s r

a, b
b

p q

s r

ε

ε
ε {(s, b, s), (s, b, r)}

7

p

s r

a, b
b

b

p q

s r

ε

ε
ε {(s, b, r)}

8

p

s r

a, b
b

b

b

p q

s r

ε

ε
ε ∅

The resulting NFA is:

p

s r

a, b
b

b

b

which corresponds to the output of nfa-eps2nfa:

Q’ = {’p’, ’r’, ’s’}

S = {’a’, ’b’}

d’ = {(’p’, ’a’, ’s’), (’s’, ’b’, ’s’), (’p’, ’b’, ’s’), (’s’, ’b’, ’r’), (’p’, ’b’, ’r’)}

Q0’ = {’p’}

F’ = {’p’, ’r’}

Solution 2.3

(a)

q0 q1 q2 qn

0, 1

1 0, 1 0, 1

(b) We build a DFA that remembers the last n letters and accepts if the n to last last letter is a 1. More
formally, let An = (Q,Σ, δ, q0, F) be such that

Q = {qu : u ∈ {0, 1}∗, |u| ≤ n},
Σ = {0, 1},
q0 = qε,

F = {q1u : u ∈ {0, 1}∗, |u| = n− 1},

and such that

δ(qu, a) =

qua if |u| < n,

qva if u = bv for some b ∈ {0, 1} and v ∈ {0, 1}n−1.

Note that An has
n

i=0 2
i = 2n+1 − 1 states.

(c) Let n ∈ N. For the sake of contradiction, assume there exists a DFA B = (Q, {0, 1}, δ, q0, F) such that
L(B) = Ln and |Q| < 2n. By the pigeonhole principle, there exist u, v ∈ {0, 1}n and q ∈ Q such that
u ∕= v and

q0
u−→ q and q0

v−→ q. (2)

Since u ∕= v, there exists 1 ≤ i ≤ n such that ui ∕= vi. Without loss of generality, we may assume that
ui = 1 and vi = 0. We have u · 0i−1 ∈ Ln and v · 0i−1 ∕∈ L. This is a contradiction since, by (2), u · 0i−1

and v · 0i−1 lead to the same state from q0.

Solution 2.4

1. We use that v ∈ Ln iff for every 1 ≤ i ≤ n the i-th and i+n-th letters of v coincide. This is a conjunction of
conditions. We construct a universal automaton that has a run on v for each of these conditions, and the run
accepts iff the condition holds.

The automaton has a spine of states q0, q1, . . . , qn, with transitions qi0, 1qi+1 for every 0 ≤ i ≤ n− 1. At every
state qi the automaton can leave the spine remembering the (i + 1)-th letter by means of transitions qi001

and qi111. The automaton then reads the next n − 1 letters by transitions 0i0, 10i+1 and 1i0, 11i+1 for every
1 ≤ i ≤ n − 1, and checks whether the (i + n)-th letter matches the (i + 1)-th letter by transitions 0n0qf and
1n1qf , where qf is the unique final state.

2. We use the same technique as in Exercise ??. Let A be an NFA recognizing Ln. Then, for every ww ∈2n, the
automaton A has at least one accepting run on ww. Let qw be the state reached by this run (if there are several
accepting runs pick anyone). We claim that for any two different words w,w′ of length n the states qw, qw′ are
also different. Assume qw = qw′ . Then, A has an accepting run on ww′, obtained by concatenating the first
half of the accepting run on ww and the second half of the accepting run on ww′. But ww′ /∈ Ln, contradicting
the assumption that A recognizes Ln, and the claim is proved. So A has a different state qw for each word w
of length n, and so it has at least 2n states.

3. It suffices to replace line 6 of NFAtoDFA by : if Q′ ⊆ F then add Q′ to F .

