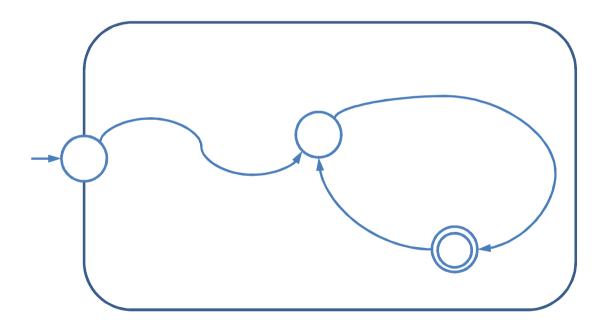
Checking emptiness of Büchi automata

Accepting lassos

A NBA is nonempty iff it has an accepting lasso



Setting

- We want on-the-fly algorithms that search for an accepting lasso of a given NBA while constructing it.
- The algorithms know the initial state, and have access to an oracle that, called with a state q returns all successors of q (and for each successor whether it is accepting or not).
- We think big: the NBA may have tens of millions of states.

Two approaches

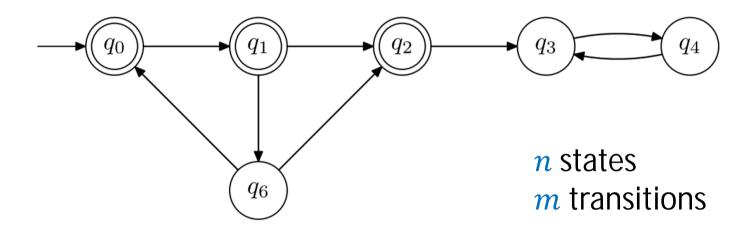
1. Compute the set of accepting states, and for each accepting state, check if it belongs to some cycle.

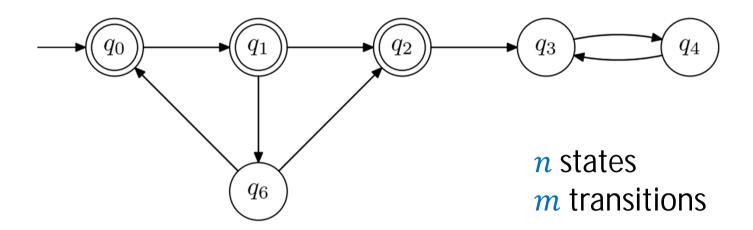
Nested-depth-first-search algorithm

2. Compute the set of states that belong to some cycle, and for each of them, check if it is accepting.

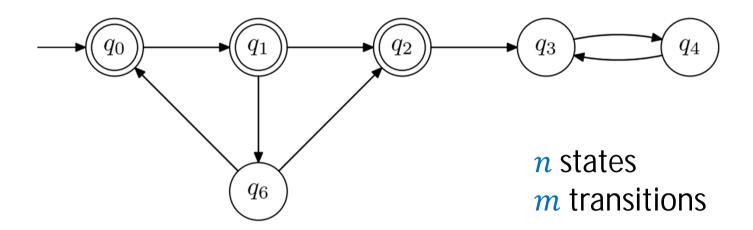
Two-stack algorithm

- 1. Compute the set of accepting states by means of a graph search (DFS, BFS, ...).
- 2. For each accepting state q, conduct a second search (DFS, BFS,...) starting at q to decide if q belongs to a cycle.



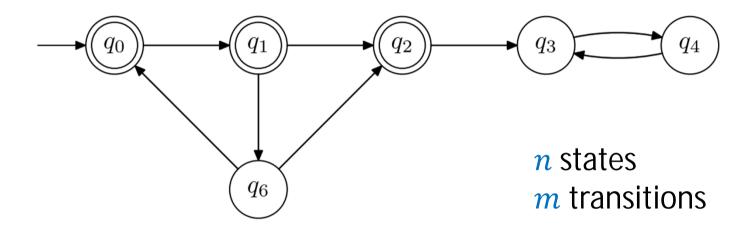


Runtime of the first search: O(m)



Runtime of the first search: O(m)

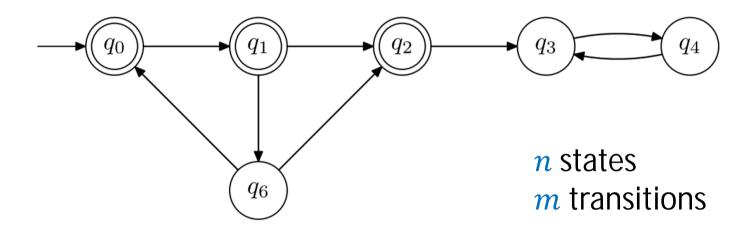
Number of searches in the second step: O(n)



Runtime of the first search: O(m)

Number of searches in the second step: O(n)

Overall runtime of the second step: O(nm)

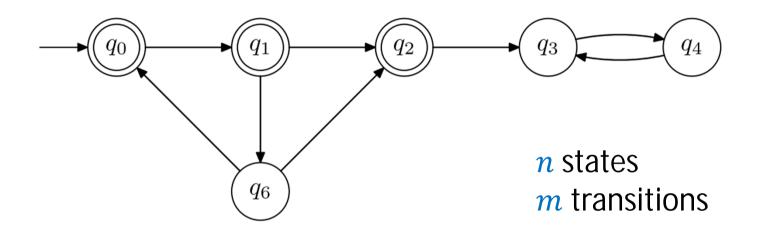


Runtime of the first search: O(m)

Number of searches in the second step: O(n)

Overall runtime of the second step: O(nm)

Overall runtime: O(nm). Too high!



Runtime of the first search: O(m)

Number of searches in the second step: O(n)

Overall runtime of the second step: O(nm)

Overall runtime: O(nm). Too high!

We want an O(m) algorithm.

• Similar to a workset algorithm

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.
- Depth-first search: workset is implemented as a stack (first in last out)

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.
- Depth-first search: workset is implemented as a stack (first in last out)
- Breadth-first search: workset is implemented as a queue (first in first out)

States are discovered by the search.

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];
 - a finishing time f[q];

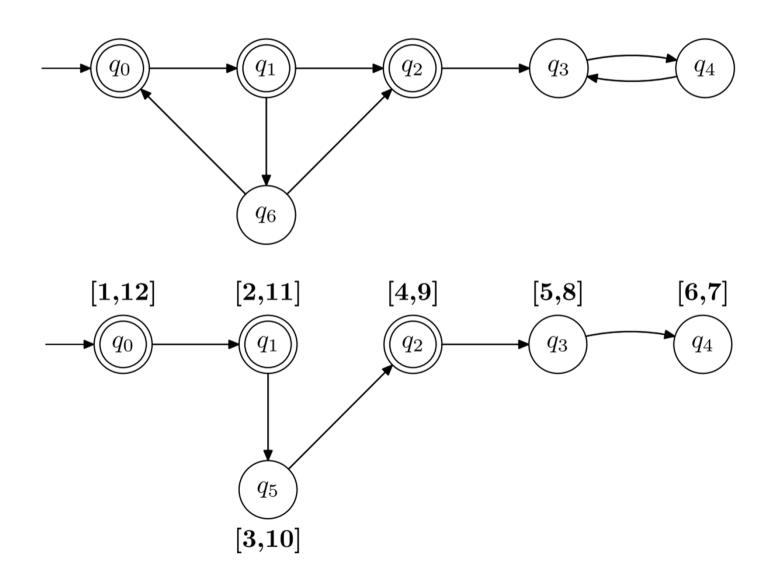
- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered.

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered.
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t \le d[q]$

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t \le d[q]$
 - grey: discovered, but at least one successor not yet fully explored, $d[q] < t \le f[q]$

- States are discovered by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state q:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t \le d[q]$
 - grey: discovered, but at least one successor not yet fully explored, $d[q] < t \le f[q]$
 - black: search has already backtracked from q, $f(q) < t \le 2n$

An example



Recursive implementation of DFS

```
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)

1 S \leftarrow \emptyset

2 dfs(q_0)

3 proc dfs(q)

4 add q to S

5 for all r \in \delta(q) do

6 if r \notin S then dfs(r)

7 return
```

```
DFS\_Tree(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: Time-stamped tree (S, T, d, f)
      S \leftarrow \emptyset
 2 T \leftarrow \emptyset; t \leftarrow 0
  3 dfs(q_0)
      \operatorname{proc} dfs(q)
         t \leftarrow t + 1; d[q] \leftarrow t
          add q to S
          for all r \in \delta(q) do
             if r \notin S then
                 add (q, r) to T; dfs(r)
          t \leftarrow t + 1; f[q] \leftarrow t
10
11
          return
```

• I(q) denotes the interval (d[q], f[q]].

- I(q) denotes the interval (d[q], f[q]].
- $I(q) \prec I(r)$ denotes that f[q] < d[r] holds (i.e., I(q) is to the left of I(r) and does not overlap with it).

- I(q) denotes the interval (d[q], f[q]].
- I(q) ≺ I(r) denotes that f[q] < d[r] holds
 (i.e., I(q) is to the left of I(r) and does not overlap with it).
- $q \Rightarrow r$ denotes that r is a DFS-descendant of q in the DFS-tree.

- I(q) denotes the interval (d[q], f[q]].
- I(q) ≺ I(r) denotes that f[q] < d[r] holds
 (i.e., I(q) is to the left of I(r) and does not overlap with it).
- $q \Rightarrow r$ denotes that r is a DFS-descendant of q in the DFS-tree.
- Parenthesis theorem. In a DFS-tree, for any two states q and r, exactly one of the following conditions hold:
 - $-I(q) \subseteq I(r)$ and $r \Rightarrow q$.
 - $-I(r) \subseteq I(q)$ and $q \Rightarrow r$.
 - -I(q) < I(r), and none of q, r is a descendant of the other
 - -I(r) < I(q), and none of q, r is a descendant of the other

White-path and grey-path theorems

• White-path theorem. $q \Rightarrow r$ (and so $I(r) \subseteq I(q)$) iff at time d[q] state r can be reached from q along a path of white states.

White-path and grey-path theorems

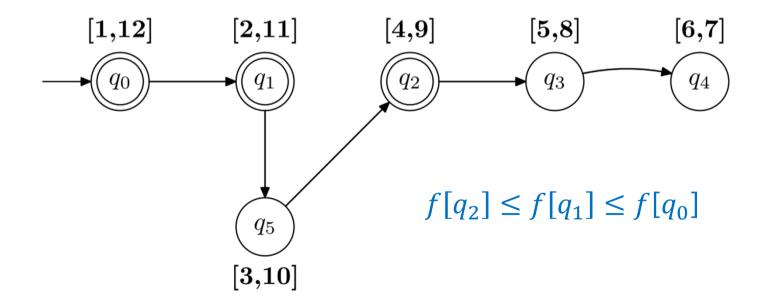
- White-path theorem. $q \Rightarrow r$ (and so $I(r) \subseteq I(q)$) iff at time d[q] state r can be reached from q along a path of white states.
- Grey-path theorem. At every moment in time, all grey nodes form a simple path of the DFS tree (the grey path).

Nested-DFS algorithm

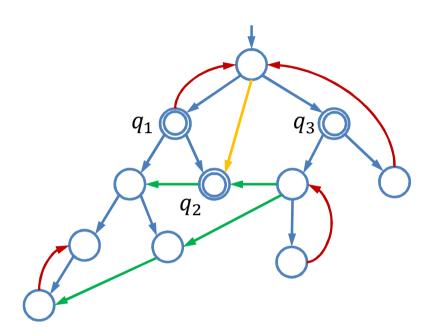
- Modification of the naïve algorithm:
 - Use a DFS to discover the accepting states and sort them in a certain order $q_1, q_2, ..., q_k$;
 - conduct a DFS from each accepting state in the order q_1, q_2, \dots, q_k .
- The order will guarantee that if the search from q_j hits a state already discovered during the search from q_i , for some i < j, then the search can backtrack.
- Runtime: O(m), because every transition is explored at most twice, once in each phase.

Nested-DFS algorithm

- Suitable order: postorder
- The postorder sorts the states according to increasing finishing time.

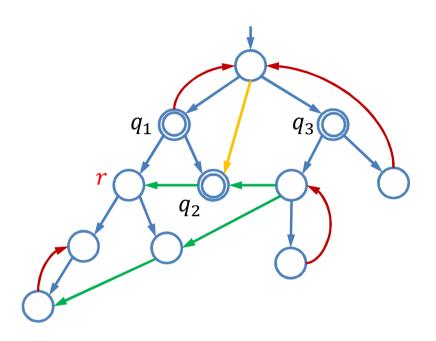


Why does it work?



- Edges processed counterclockwise
 - DFS-tree
 - backedges
 - forward edges
- **crossedges**
- $f[q_2] \le f[q_1] \le f[q_3]$

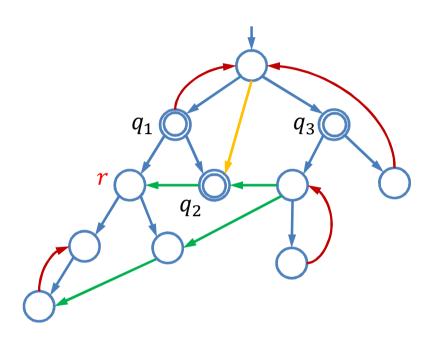
Why does it work?



- Edges processed counterclockwise
- DFS-treebackedgesforward edgescrossedges
- $f[q_2] \le f[q_1] \le f[q_3]$

• State r discovered during the search from q_2

Why does it work?



- Edges processed counterclockwise
- DFS-treebackedgesforward edgescrossedges
- $f[q_2] \le f[q_1] \le f[q_3]$

- State r discovered during the search from q₂
- To prove: during the search from q_1 , it is safe to backtrack from r, because we do not "miss any accepting lassos"
- Amounts to: proving that q_1 is not reachable from r.

Notation. $q \sim r$ denotes "q is reachable from r"

Notation. $q \sim r$ denotes "q is reachable from r" Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q.

```
Notation. q \sim r denotes "q is reachable from r"

Lemma. If q \sim r and f[q] < f[r], then some cycle contains q.

Proof: Let \pi = q \rightarrow \cdots \rightarrow r. Let s be the first node of \pi that is discovered (so d[s] \leq d[q]). We show s \neq q, q \sim s, and s \sim q.
```

```
Notation. q \sim r denotes "q is reachable from r"

Lemma. If q \sim r and f[q] < f[r], then some cycle contains q.

Proof: Let \pi = q \rightarrow \cdots \rightarrow r. Let s be the first node of \pi that is discovered (so d[s] \leq d[q]). We show s \neq q, q \sim s, and s \sim q.
```

• $s \neq q$. Otherwise at time d[q] the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].

```
Notation. q \sim r denotes "q is reachable from r"
Lemma. If q \sim r and f[q] < f[r], then some cycle contains q.
Proof: Let \pi = q \rightarrow \cdots \rightarrow r. Let s be the first node of \pi that is discovered (so d[s] \leq d[q]). We show s \neq q, q \sim s, and s \sim q.
```

- $s \neq q$. Otherwise at time d[q] the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].
- $q \sim s$. Obvious, because s in π .

Notation. $q \sim r$ denotes "q is reachable from r" Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q. Proof: Let $\pi = q \rightarrow \cdots \rightarrow r$. Let s be the first node of π that is discovered (so $d[s] \leq d[q]$). We show $s \neq q$, $q \sim s$, and $s \sim q$.

- $s \neq q$. Otherwise at time d[q] the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].
- $q \sim s$. Obvious, because s in π .
- $s \rightsquigarrow q$. Since d[s] < d[q] either $I(q) \subset I(s)$ or $I(s) \prec I(q)$. Since at time d[s] the subpath of π from s to r is white, we have $I(r) \subseteq I(s)$. If $I(s) \prec I(q)$ then f[q] > f[r]. So $I(q) \subset I(s)$, and so $s \Rightarrow q$, which implies $s \rightsquigarrow q$.

Theorem. Assume:

- q and r are accepting states such that f[q] < f[r];
- the search from q has finished without an accepting lasso;
 and
- the search from r has just discovered a state s that was also discovered in the search from q.

Then r is not reachable from s (and so it is safe to backtrack from s).

Theorem. Assume:

- q and r are accepting states such that f[q] < f[r];
- the search from q has finished without an accepting lasso;
 and
- the search from r has just discovered a state s that was also discovered in the search from q.

Then r is not reachable from s (and so it is safe to backtrack from s).

Proof: Assume $s \sim r$. Since $q \sim s$ we have $q \sim r$. By the lemma some cycle contains q, contradicting that the search from q was unsuccessful.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .
 - Whenever the search blackens an accepting state q, launch a new (modified) DFS from q. If this DFS visits q again, report NONEMPTY. Otherwise, after termination continue with the first DFS.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .
 - Whenever the search blackens an accepting state q, launch a new (modified) DFS from q. If this DFS visits q again, report NONEMPTY. Otherwise, after termination continue with the first DFS.
 - If the first DFS terminates, report EMPTY.

```
NestedDFS(A)
                                                              NestedDFSwithWitness(A)
Input: NBA A = (O, \Sigma, \delta, O_0, F)
                                                              Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset
                                                              Output: EMP if L_{\omega}(A) = \emptyset
            NEMP otherwise
                                                                           NEMP otherwise
     S \leftarrow \emptyset
                                                                    S \leftarrow \emptyset: succ \leftarrow false
     dfs1(q_0)
                                                                   dfsI(q_0)
     report EMP
                                                                    report EMP
     proc dfs1(q)
                                                                   \operatorname{proc} dfs I(q)
        add [q, 1] to S
 5
                                                                       add [q, 1] to S
                                                                5
        for all r \in \delta(q) do
 6
                                                                      for all r \in \delta(q) do
                                                                6
           if [r, 1] \notin S then dfsI(r)
 7
                                                                         if [r, 1] \notin S then dfsI(r)
        if q \in F then { seed \leftarrow q; dfs2(q) }
 8
                                                                8
                                                                          if succ = true then return [q, 1]
 9
        return
                                                               9
                                                                      if q \in F then
                                                                          seed \leftarrow q; dfs2(q)
                                                              10
10
     proc dfs2(q)
                                                                          if succ = true then return [q, 1]
                                                              11
11
        add [q, 2] to S
                                                              12
                                                                       return
        for all r \in \delta(q) do
12
           if r = seed then report NEMP
13
                                                              13
                                                                   proc dfs2(q)
                                                                      add [q, 2] to S
14
           if [r, 2] \notin S then dfs2(r)
                                                              14
                                                              15
                                                                      for all r \in \delta(q) do
15
        return
                                                                          if [r, 2] \notin S then dfs2(r)
                                                              16
                                                                          if r = seed then
                                                              17
                                                              18
                                                                             report NEMP; succ \leftarrow true
                                                              19
                                                                          if succ = true then return [q, 2]
                                                              20
                                                                       return
```

Evaluation

- Plus points:
 - Very low memory consumption: two extra bits per state.
 - Easy to understand and prove correct.

Evaluation

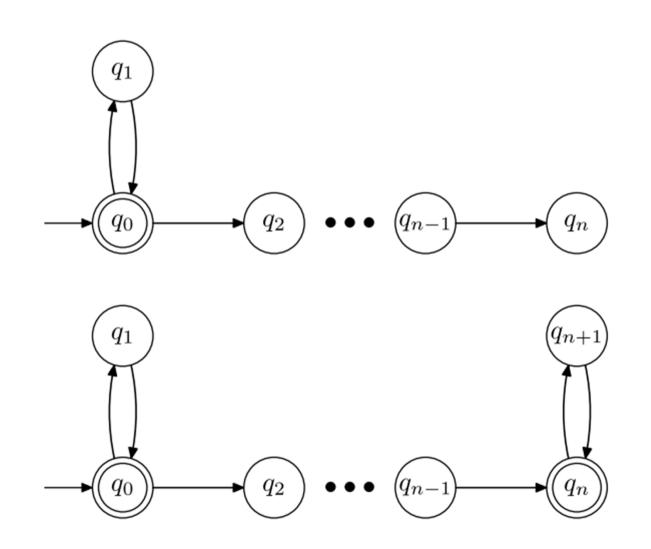
Plus points:

- Very low memory consumption: two extra bits per state.
- Easy to understand and prove correct.

Minus points:

- Cannot be generalized to NGAs.
- It may return unnecessarily long witnesses.
- It is not optimal. An emptiness algorithm is optimal if it answers NONEMPTY immediately after the explored part of the NBA contains an accepting lasso.

Nested DFS is not optimal



Recall: Two approaches

- 1. Compute the set of accepting states, and for each accepting state, check if it belongs to a cycle.
 - Nested depth first search algorithm
- 2. Compute the set of states that belong to some cycle, and for each of them, check if it is accepting.

Two-stack algorithm

Second approach: a naïve algorithm

 Conduct a DFS, and for each discovered accepting state q start a new DFS from q to check if it belongs to a cycle.

Second approach: a naïve algorithm

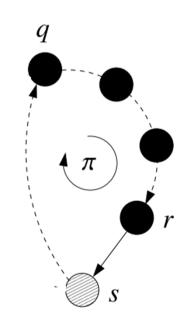
- Conduct a DFS, and for each discovered accepting state q start a new DFS from q to check if it belongs to a cycle.
- Problem: too expensive.

Second approach: a naïve algorithm

- Conduct a DFS, and for each discovered accepting state q start a new DFS from q to check if it belongs to a cycle.
- Problem: too expensive.
- Goal: conduct one single DFS which marks states in such a way that
 - every marked state belongs to a cycle, and
 - every state that belongs to a cycle is eventually marked.

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.

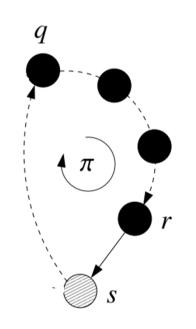


Proof.

 π : cycle containing q.

r: last black state after q at f[q].

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.



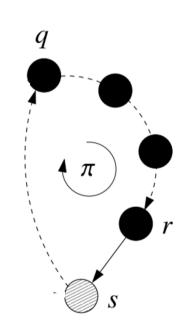
Proof.

 π : cycle containing q.

r: last black state after q at f[q].

Case r = q. Then π has been discovered.

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.



Proof.

 π : cycle containing q.

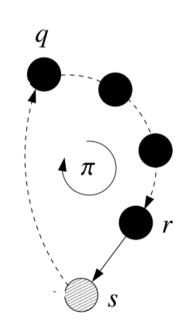
r: last black state after q at f[q].

Case r = q. Then π has been discovered.

Case $r \neq q$.

s: successor of r in π .

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.



Proof.

 π : cycle containing q.

r: last black state after q at f[q].

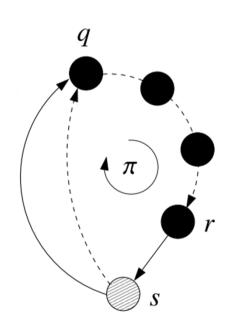
Case r = q. Then π has been discovered.

Case $r \neq q$.

s: successor of r in π .

We have d[s] < f[r] < f[q] < f[s].

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.



Proof.

 π : cycle containing q.

r: last black state after q at f[q].

Case r = q. Then π has been discovered.

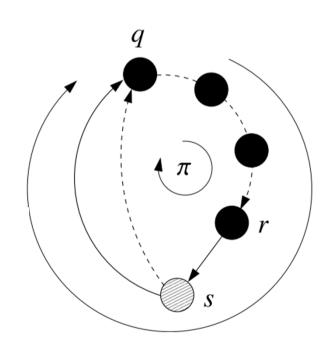
Case $r \neq q$.

s: successor of r in π .

We have d[s] < f[r] < f[q] < f[s].

So $s \Rightarrow q$, and every transition of $s \Rightarrow q$ has been discovered at time f[q].

Lemma. At time f[q], state q belongs to a cycle of the NBA iff it belongs to a cycle of the discovered part of the NBA.



Proof.

 π : cycle containing q.

r: last black state after q at f[q].

Case r = q. Then π has been discovered.

Case $r \neq q$.

s: successor of r in π .

We have d[s] < f[r] < f[q] < f[s].

So $s \Rightarrow q$, and every transition of $s \Rightarrow q$ has been discovered at time f[q].

So cycle $q \xrightarrow{\pi} r \rightarrow s \Rightarrow q$ has been discovered at time f[q].

First ideas

- Maintain a set *C* of candidates: states for which the search cannot yet decide if they belong to a cycle or not.
 - States are added to the set when they are greyed.
 - States are removed from the set when blackened, or before.
 - States are removed before they are blackened iff they belong to a cycle.

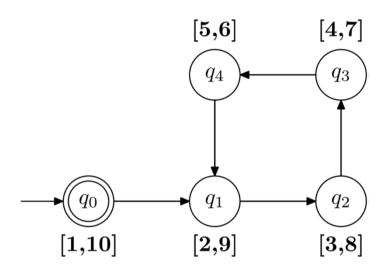
First ideas

- Maintain a set *C* of candidates: states for which the search cannot yet decide if they belong to a cycle or not.
 - States are added to the set when they are greyed.
 - States are removed from the set when blackened, or before.
 - States are removed before they are blackened iff they belong to a cycle.
- Updating C when the DFS explores a transition (q, r).
 - If r is a new state, add r to C.
 - If r has already been discovered, but q is not reachable from r, do nothing.
 - If r has already been discovered and $r \sim q$ then new cycles are created. Which states must be removed from C?

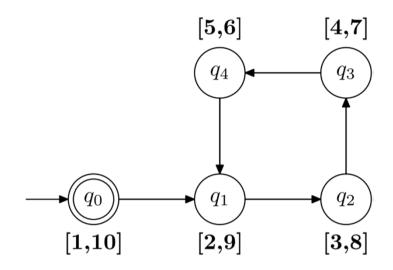
First ideas

- Maintain a set *C* of candidates: states for which the search cannot yet decide if they belong to a cycle or not.
 - States are added to the set when they are greyed.
 - States are removed from the set when blackened, or before.
 - States are removed before they are blackened iff they belong to a cycle.
- Updating C when the DFS explores a transition (q, r).
 - If r is a new state, add r to C.
 - If r has already been discovered, but q is not reachable from r, do nothing.
 - If r has already been discovered and $r \sim q$ then new cycles are created. Which states must be removed from C?
- For the moment we assume that an oracle determines if $r \sim q$ holds.

Updating C: first attempt

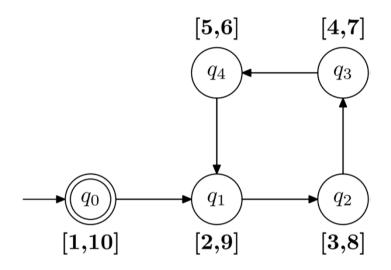


Updating C: first attempt



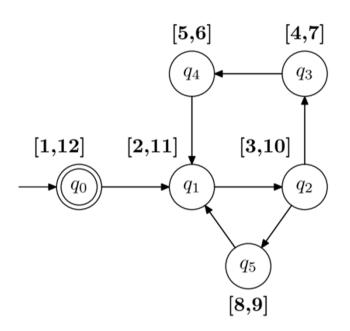
- After exploring (q_4, q_1) we have to remove q_1, \dots, q_4 from C.
- Suggests implementing *C* as stack.

Updating C: first attempt



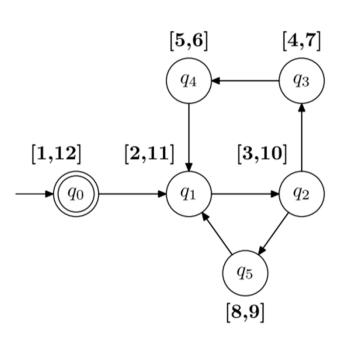
- After exploring (q_4, q_1) we have to remove q_1, \dots, q_4 from C.
- Suggests implementing *C* as stack.
- First attempt:
 - push a state when it is discovered.
 - when exploring (q, r), if r has already been discovered and $r \sim q$, then pop until r is popped.

Problem and second attempt



After exploring (q_4, q_1) states q_4, \dots, q_1 are popped. After exploring (q_5, q_1) , since q_1 is not in the stack, q_0 is wrongly popped.

Problem and second attempt



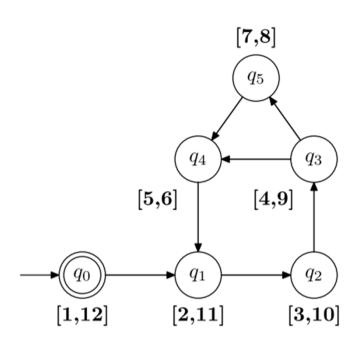
Second attempt:

- push a state when it is discovered.
- when exploring (q,r), if r has already been discovered and r ~ q, then pop until r is popped and then push r back.

After exploring (q_4, q_1) states q_4, \dots, q_1 are popped.

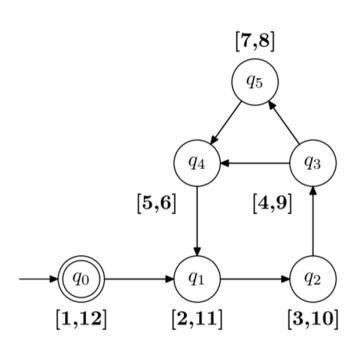
After exploring (q_5, q_1) , since q_1 is not in the stack, q_0 is wrongly popped.

Problem and final attempt



After exploring (q_4, q_1) states q_4, \ldots, q_1 are popped and q_1 is pushed back again. After exploring (q_5, q_4) , since q_4 is not in the stack, q_0 is wrongly popped.

Problem and final attempt

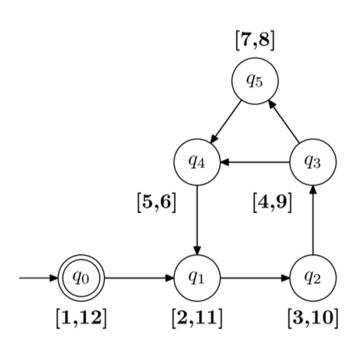


Final attempt:

- push a state when it is discovered.
- when exploring (q,r), if r has already been discovered and r ~ q, then pop until r or some state discovered before r is popped, and then push this state back.

After exploring (q_4, q_1) states q_4, \dots, q_1 are popped and q_1 is pushed back again. After exploring (q_5, q_4) , since q_4 is not in the stack, q_0 is wrongly popped.

Problem and final attempt



After exploring (q_4, q_1) states q_4, \ldots, q_1 are popped and q_1 is pushed back again. After exploring (q_5, q_4) , since q_4 is not in the stack, q_0 is wrongly popped.

Final attempt:

- push a state when it is discovered.
- when exploring (q,r), if r has already been discovered and r ~ q, then pop until r or some state discovered before r is popped, and then push this state back.

We will show: a state belongs to a cycle iff it is popped at least once before it is blackened.

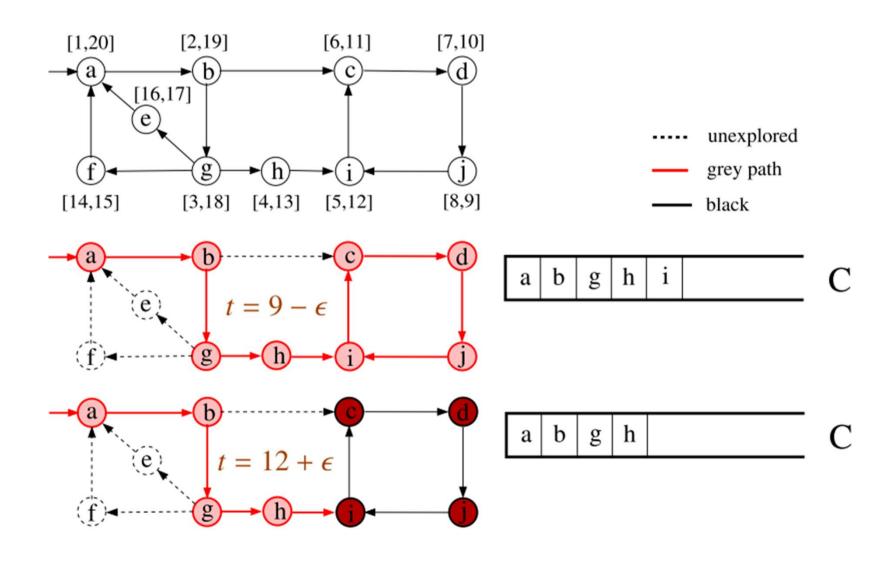
The OneStack algorithm

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
     dfs(q)
 5
         add q to S; push(q, C)
        for all r \in \delta(q) do
 6
           if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
 8
 9
               repeat
10
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
               until d[s] \le d[r]
11
               \mathbf{push}(s, C)
12
         if top(C) = q then pop(C)
13
```

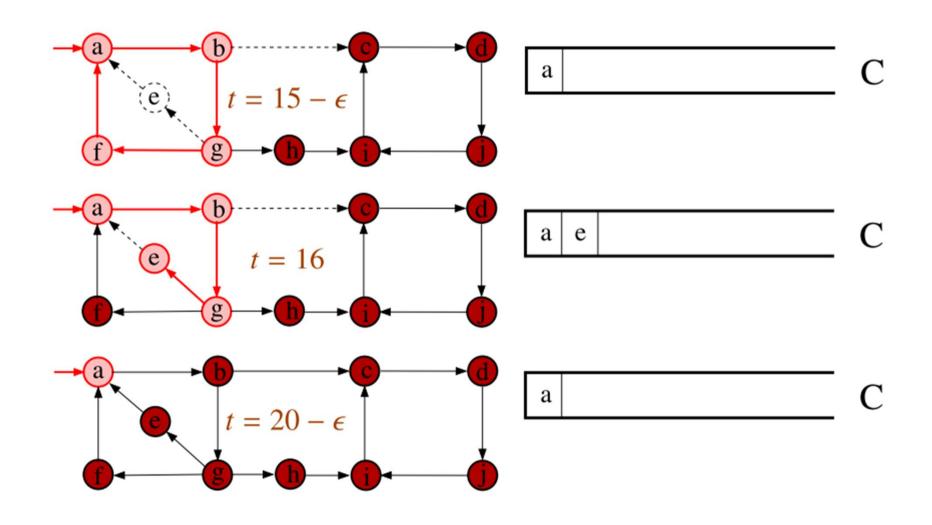
The OneStack algorithm

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C \leftarrow \emptyset;
 2 dfs(q_0)
     report EMP
                                 Oracle
     dfs(q)
         add q to S; \mathbf{p}
 5
        for all r \in \delta(q) w
            if r \notin S ther
            else if r \rightsquigarrow q then
 8
 9
               repeat
10
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
               until d[s] \le d[r]
11
               push(s, C)
12
         if top(C) = q then pop(C)
13
```

An example



An example



Questions

- Is *OneStack* correct?
 - Proof obligations:
 - 1) Every node that belongs to some cycle is eventually popped by the repeat loop.
 - 2) Every node that is popped by the repeat loop belongs to a cycle.
- Is *OneStack* optimal?

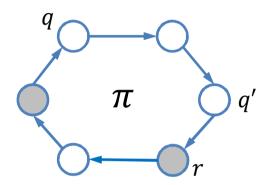
Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
     report EMP
     dfs(q)
         add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \leq d[r]
11
12
               push(s, C)
        if top(C) = q then pop(C)
13
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof

```
\pi: cycle containing q
q': last successor of q in \pi such that at time d[q] there is white path from q to q'
r: successor of q' in \pi
```

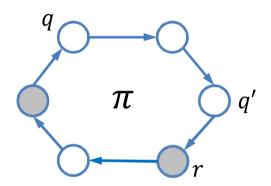


```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
  1 S, C \leftarrow \emptyset;
     dfs(q_0)
     report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \sim q then
              repeat
                 s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof

```
\pi: cycle containing q
q': last successor of q in \pi such that at time d[q] there is white path from q to q'
r: successor of q' in \pi
At time d[q] we have d[r] \leq d[q] \leq d[q'].
```



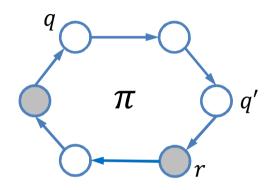
```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
    S, C \leftarrow \emptyset;
     dfs(q_0)
     report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \sim q then
               repeat
                 s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \le d[r]
11
12
               push(s, C)
13
        if top(C) = q then pop(C)
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof

```
\pi: cycle containing q
q': last successor of q in \pi such that at time d[q] there is white path from q to q'
r: successor of q' in \pi
```

At time d[q] we have $d[r] \le d[q] \le d[q']$. By the White-Path Theorem q' is a descendant of q, and so (q', r) is explored before q is blackened.



```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C \leftarrow \emptyset;
      dfs(q_0)
      report EMP
     dfs(q)
         add q to S; push(q, C)
         for all r \in \delta(q) do
            if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \leq d[r]
11
12
               push(s, C)
13
         if top(C) = q then pop(C)
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

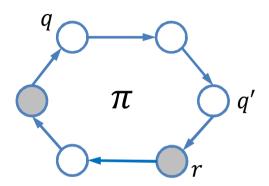
Proof

```
\pi: cycle containing q
q': last successor of q in \pi such that at time d[q] there is white path from q to q'
```

r: successor of q' in π At time d[q] we have $d[r] \le d[q] \le d[q']$.

By the White-Path Theorem q' is a descendant of q, and so (q', r) is explored before q is blackened.

So when (q', r) is explored, q has not been popped at line 13.



```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C \leftarrow \emptyset;
      dfs(q_0)
      report EMP
     dfs(q)
         add q to S; push(q, C)
         for all r \in \delta(q) do
            if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \leq d[r]
11
12
               push(s, C)
13
         if top(C) = q then pop(C)
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof

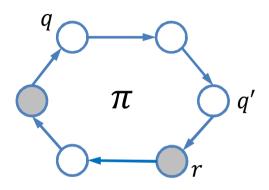
```
\pi: cycle containing q
q': last successor of q in \pi such that at time d[q] there is white path form q to q'
```

r: successor of q' in π

At time d[q] we have $d[r] \le d[q] \le d[q']$. By the White-Path Theorem q' is a descendant of q, and so (q', r) is explored before q is blackened.

So when (q', r) is explored, q has not been popped at line 13.

Since $r \sim q'$, either q has already been popped before or it is popped now because $d[r] \leq d[q']$.



```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C \leftarrow \emptyset;
      dfs(q_0)
      report EMP
     dfs(q)
         add q to S; push(q, C)
         for all r \in \delta(q) do
            if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \leq d[r]
11
12
               push(s, C)
13
         if top(C) = q then pop(C)
```

Proposition. If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof

```
\pi: cycle containing q
```

q': last successor of q in π such that at time d[q] there is white path form q to q'

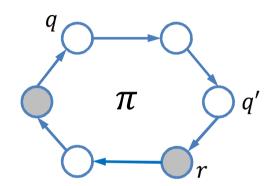
r: successor of q' in π

At time d[q] we have $d[r] \le d[q] \le d[q']$.

By the White-Path Theorem q' is a descendant of q, and so (q', r) is explored before q is blackened.

So when (q', r) is explored, q has not been popped at line 13.

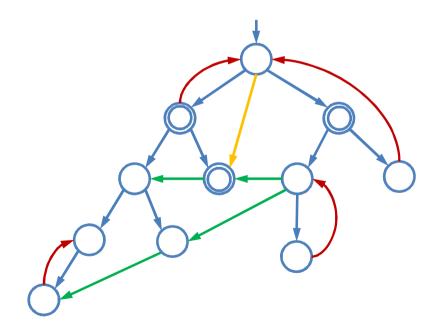
Since $r \sim q'$, either q has already been popped before or it is popped now because $d[r] \leq d[q']$.



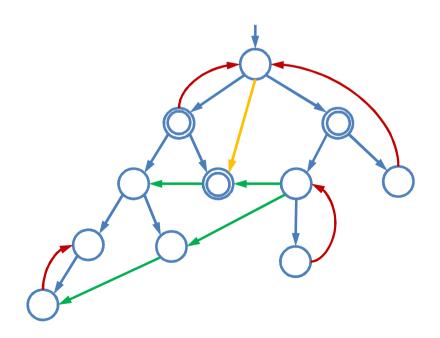
This proof also shows optimality: q is popped immediately after the DFS explores all transitions of π , or earlier.

Since π is an arbitrary cycle, OneStack is optimal.

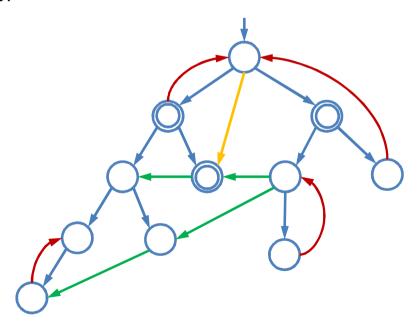
- To show that every node popped by the repeat loop belongs to a cycle we need some concepts:
 - strongly connected component (scc) of a graph



- To show that every node popped by the repeat loop belongs to a cycle we need some concepts:
 - strongly connected component (scc) of a graph
 - dag of sccs of a graph



- To show that every node popped by the repeat loop belongs to a cycle we need some concepts:
 - strongly connected component (scc) of a graph
 - dag of sccs of a graph
 - root of an scc in a DFS.



Invariant of *OneStack*: The repeat loop cannot remove a grey root ρ from the stack (remove = pop and don't push back), and can only pop states s such that $d[s] \ge d[\rho]$.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
    dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
              until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

```
Invariant of OneStack: The repeat loop cannot remove a grey root \rho from the stack (remove = pop and don't push back), and can only pop states s such that d[s] \geq d[\rho]. Proof (sketch):

t: time at which repeat loop starts because r \rightsquigarrow q for some (q, r).

\rho: grey root at time t.
```

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
              until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

```
Invariant of OneStack: The repeat loop cannot remove a
grey root \rho from the stack (remove = pop and don't push
back), and can only pop states s such that d[s] \ge d[\rho].
Proof (sketch):
     t: time at which repeat loop starts because r \sim q
         for some (q, r).
     \rho: grey root at time t.
                                                                              OneStack(A)
r and q belong to the same scc.
                                                                              Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                             Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     \rho': root of this scc.
                                                                               1 S, C \leftarrow \emptyset;
                                                                               2 dfs(q_0)
                                                                               3 report EMP
                                                                                 dfs(q)
                                                                                    add q to S; push(q, C)
                                                                                    for all r \in \delta(q) do
                                                                                      if r \notin S then dfs(r)
                                                                                      else if r \rightsquigarrow q then
                                                                                         repeat
                                                                                           s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                              10
                                                                                         until d[s] \le d[r]
                                                                              11
                                                                              12
                                                                                         push(s, C)
```

if top(C) = q then pop(C)

13

```
Invariant of OneStack: The repeat loop cannot remove a
grey root \rho from the stack (remove = pop and don't push
back), and can only pop states s such that d[s] \ge d[\rho].
Proof (sketch):
     t: time at which repeat loop starts because r \sim q
         for some (q, r).
     \rho: grey root at time t.
                                                                              OneStack(A)
r and q belong to the same scc.
                                                                              Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                              Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     \rho': root of this scc.
                                                                               1 S, C \leftarrow \emptyset;
q, \rho, and \rho' are grey at time t, and q \sim \rho' \sim q.
                                                                                  dfs(q_0)
                                                                                  report EMP
                                                                                  dfs(q)
                                                                                     add q to S; push(q, C)
                                                                                    for all r \in \delta(q) do
                                                                                       if r \notin S then dfs(r)
                                                                                       else if r \rightsquigarrow q then
                                                                                         repeat
                                                                                            s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                              10
                                                                              11
                                                                                         until d[s] \leq d[r]
                                                                              12
                                                                                         push(s, C)
                                                                                     if top(C) = q then pop(C)
                                                                              13
```

```
Invariant of OneStack: The repeat loop cannot remove a
grey root \rho from the stack (remove = pop and don't push
back), and can only pop states s such that d[s] \ge d[\rho].
Proof (sketch):
     t: time at which repeat loop starts because r \sim q
         for some (q, r).
     \rho: grey root at time t.
                                                                              OneStack(A)
r and q belong to the same scc.
                                                                              Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                              Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     \rho': root of this scc.
                                                                               1 S, C \leftarrow \emptyset;
q, \rho, and \rho' are grey at time t, and q \sim \rho' \sim q.
                                                                                  dfs(q_0)
                                                                                  report EMP
By the grey-path theorem and since \rho is root, we have
                                                                               4 dfs(q)
\rho \Rightarrow q \Rightarrow \rho' and so d[\rho] \leq d[\rho'] \leq d[r].
                                                                                     add q to S; push(q, C)
                                                                                    for all r \in \delta(q) do
                                                                                       if r \notin S then dfs(r)
                                                                                       else if r \rightsquigarrow q then
                                                                                         repeat
                                                                                            s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                              10
                                                                              11
                                                                                         until d[s] \leq d[r]
                                                                                         push(s, C)
                                                                              12
```

if top(C) = q then pop(C)

13

```
Invariant of OneStack: The repeat loop cannot remove a
grey root \rho from the stack (remove = pop and don't push
back), and can only pop states s such that d[s] \ge d[\rho].
Proof (sketch):
     t: time at which repeat loop starts because r \sim q
         for some (q, r).
     \rho: grey root at time t.
                                                                           OneStack(A)
r and q belong to the same scc.
                                                                           Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                           Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     \rho': root of this scc.
                                                                            1 S, C \leftarrow \emptyset;
q, \rho, and \rho' are grey at time t, and q \sim \rho' \sim q.
                                                                               dfs(q_0)
                                                                               report EMP
By the grey-path theorem and since \rho is root, we have
                                                                            4 dfs(q)
\rho \Rightarrow q \Rightarrow \rho' and so d[\rho] \leq d[\rho'] \leq d[r].
                                                                                 add q to S; push(q, C)
                                                                                 for all r \in \delta(q) do
So every state s popped by the repeat loop satisfies
                                                                                   if r \notin S then dfs(r)
d[s] \ge d[q].
                                                                                   else if r \rightsquigarrow q then
                                                                                      repeat
Further, if \rho is popped, then it is pushed immediately
                                                                                        s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                           10
after at line 12.
                                                                           11
                                                                                      until d[s] \leq d[r]
```

12

13

push(s, C)

if top(C) = q then pop(C)

Proposition: Any state popped by the repeat loop belongs to a cycle.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
              repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
              until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

```
Proposition: Any state popped by the repeat loop belongs to a cycle.

Proof (sketch):

s: state popped by the repeat loop

t: time at which the repeat loop starts popping

(q,r): transition being currently explored (r \sim q).

\rho: root of the scc of r and q
```

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
              until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

```
Proposition: Any state popped by the repeat loop belongs to a cycle.

Proof (sketch):

s: state popped by the repeat loop

t: time at which the repeat loop starts popping

(q,r): transition being currently explored (r \sim q).

\rho: root of the scc of r and q

Observe: q, s, \rho are grey at time t

1. s \Rightarrow q. Because s, q grey at time t and dfs(q) is being currently executed.
```

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
     dfs(q_0)
     report EMP
     dfs(q)
         add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
11
               until d[s] \leq d[r]
               push(s, C)
12
         if top(C) = q then pop(C)
13
```

Proposition: Any state popped by the repeat loop belongs to a cycle.

Proof (sketch):

```
s: state popped by the repeat loop
```

t: time at which the repeat loop starts popping

(q,r): transition being currently explored $(r \sim q)$.

 ρ : root of the scc of r and q

Observe: q, s, ρ are grey at time t

- 1. $s \Rightarrow q$. Because s, q grey at time t and dfs(q) is being currently executed.
- 2. $\rho \Rightarrow s$. Since ρ , q grey at time t and ρ is root we have $\rho \Rightarrow q$, By 1) either $\rho \Rightarrow s$ or $s \Rightarrow \rho$. By the invariant $d[\rho] \leq d[s]$ and so $\rho \Rightarrow s$.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
     dfs(q_0)
     report EMP
 4 dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
11
              until d[s] \leq d[r]
              push(s, C)
12
        if top(C) = q then pop(C)
13
```

Proposition: Any state popped by the repeat loop belongs to a cycle.

```
Proof (sketch):
```

```
s: state popped by the repeat loop
```

t: time at which the repeat loop starts popping

(q,r): transition being currently explored $(r \sim q)$.

 ρ : root of the scc of r and q

Observe: q, s, ρ are grey at time t

- 1. $s \Rightarrow q$. Because s, q grey at time t and dfs(q) is being currently executed.
- 2. $\rho \Rightarrow s$. Since ρ , q grey at time t and ρ is root we have $\rho \Rightarrow q$, By 1) either $\rho \Rightarrow s$ or $s \Rightarrow \rho$. By the invariant $d[\rho] \leq d[s]$ and so $\rho \Rightarrow s$.

By 1) and 2) we have $\rho \sim s \sim q \sim r \sim \rho$, and so s belongs to a cycle.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
     dfs(q_0)
     report EMP
 4 dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
11
              until d[s] \leq d[r]
              push(s, C)
12
13
        if top(C) = q then pop(C)
```

Assume *OneStack* calls the oracle for $r \sim q$. We look for a condition that holds at that moment iff $r \sim q$ holds, and is easy to check.

Assume *OneStack* calls the oracle for $r \sim q$. We look for a condition that holds at that moment iff $r \sim q$ holds, and is easy to check.

Lemma. Assume *OneStack* is exploring (q, r) and r is already discovered. Let R be the scc of r. Then $r \sim q$ iff some state of R is not black.

Assume *OneStack* calls the oracle for $r \sim q$. We look for a condition that holds at that moment iff $r \sim q$ holds, and is easy to check.

Lemma. Assume *OneStack* is exploring (q, r) and r is already discovered. Let R be the scc of r. Then $r \sim q$ iff some state of R is not black.

Proof. (\Rightarrow) Then $r, q \in R$ and q is not black.

(\Leftarrow) At least one $s \in R$ is grey. By the grey-path theorem there is a grey path $s \Rightarrow q$. So $r \rightsquigarrow s \Rightarrow q$.

 Idea: maintain a set V of active states whose sccs have not yet been completely explored (not yet black)

- Idea: maintain a set V of active states whose sccs have not yet been completely explored (not yet black)
- Since the root is the first state of an scc to be greyed and the last to be blackened, we can proceed as follows:
 - Add states to V when they are discovered.
 - Remove states from V when the root of their sccs is blackened.

- Idea: maintain a set V of active states whose sccs have not yet been completely explored (not yet black)
- Since the root is the first state of an scc to be greyed and the last to be blackened, we can proceed as follows:
 - Add states to V when they are discovered.
 - Remove states from V when the root of their sccs is blackened.
- So V can be implemented as a stack: when a root ρ is blackened, pop from V until ρ is popped.

- Idea: maintain a set V of active states whose sccs have not yet been completely explored (not yet black)
- Since the root is the first state of an scc to be greyed and the last to be blackened, we can proceed as follows:
 - Add states to V when they are discovered.
 - Remove states from V when the root of their sccs is blackened.
- So V can be implemented as a stack: when a root ρ is blackened, pop from V until ρ is popped.
- Problem to solve: when blackening a node, decide if it is a root.

Lemma. At line 13, q is a root iff top(C) = q.

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
 4 dfs(q)
         add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
            else if r \rightsquigarrow q then
               repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
               until d[s] \le d[r]
11
12
               \mathbf{push}(s, C)
         if top(C) = q then pop(C)
13
```

```
Lemma. At line 13, q is a root iff top(C) = q.

Proof. (\Rightarrow) If q is root, by the invariant it still belongs to C after the for-loop, and so top(C) = q.
```

```
OneStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
 2 dfs(q_0)
 3 report EMP
     dfs(q)
        add q to S; push(q, C)
        for all r \in \delta(q) do
           if r \notin S then dfs(r)
           else if r \rightsquigarrow q then
              repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
              until d[s] \le d[r]
11
12
              push(s, C)
        if top(C) = q then pop(C)
13
```

```
Lemma. At line 13, q is a root iff top(C) = q.
Proof. (\Rightarrow) If q is root, by the invariant it still
belongs to C after the for-loop, and so top(C) = q.
             \rho: root of scc of q, different from q
(⇐)
              \pi: path from \rho to q
              r: first state of \pi s.t. d[r] < d[q]
              q': successor of r in \pi
                                                                                 OneStack(A)
                                                                                 Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                                Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
                                                                                  1 S, C \leftarrow \emptyset;
                                                                                  2 dfs(q_0)
                                                                                  3 report EMP
                                                                                    dfs(q)
                                                                                       add q to S; push(q, C)
                                                                                       for all r \in \delta(q) do
                                                                                          if r \notin S then dfs(r)
                                                                                          else if r \rightsquigarrow q then
                                                                                            repeat
                                                                                               s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                                 10
                                                                                 11
                                                                                            until d[s] \le d[r]
                                                                                            push(s, C)
                                                                                 12
                                                                                       if top(C) = q then pop(C)
                                                                                 13
```

```
Lemma. At line 13, q is a root iff top(C) = q.
Proof. (\Rightarrow) If q is root, by the invariant it still
belongs to C after the for-loop, and so top(C) = q.
           \rho: root of scc of q, different from q
(⇔)
             \pi: path from \rho to q
             r: first state of \pi s.t. d[r] < d[q]
             q': successor of r in \pi
                                                                               OneStack(A)
                                                                               Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
The white-path theorem gives q \Rightarrow q'.
                                                                               Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
                                                                                 1 S, C \leftarrow \emptyset;
                                                                                   dfs(q_0)
                                                                                3 report EMP
                                                                                   dfs(q)
                                                                                      add q to S; push(q, C)
                                                                                      for all r \in \delta(q) do
                                                                                        if r \notin S then dfs(r)
                                                                                        else if r \rightsquigarrow q then
                                                                                           repeat
                                                                                             s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                               10
                                                                               11
                                                                                           until d[s] \le d[r]
                                                                                           push(s, C)
                                                                               12
                                                                                      if top(C) = q then pop(C)
                                                                               13
```

```
Lemma. At line 13, q is a root iff top(C) = q.
Proof. (\Rightarrow) If q is root, by the invariant it still
belongs to C after the for-loop, and so top(C) = q.
          \rho: root of scc of q, different from q
(⇔)
            \pi: path from \rho to q
            r: first state of \pi s.t. d[r] < d[q]
             q': successor of r in \pi
                                                                         OneStack(A)
                                                                         Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
The white-path theorem gives q \Rightarrow q'.
                                                                         Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
                                                                          1 S, C \leftarrow \emptyset;
So when (q', r) is explored q is not yet black, and
                                                                          2 dfs(q_0)
all s s.t. d[s] > d[r] are popped from C and not
                                                                             report EMP
pushed back.
                                                                             dfs(q)
                                                                               add q to S; push(q, C)
So either q has already been popped, or it is
                                                                               for all r \in \delta(q) do
popped now.
                                                                                  if r \notin S then dfs(r)
                                                                                  else if r \rightsquigarrow q then
                                                                                    repeat
                                                                                      s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                         10
                                                                         11
                                                                                    until d[s] \leq d[r]
                                                                                    push(s, C)
                                                                         12
                                                                         13
                                                                               if top(C) = q then pop(C)
```

```
Lemma. At line 13, q is a root iff top(C) = q.
Proof. (\Rightarrow) If q is root, by the invariant it still
belongs to C after the for-loop, and so top(C) = q.
        \rho: root of scc of q, different from q
(⇔)
          \pi: path from \rho to q
          r: first state of \pi s.t. d[r] < d[q]
          q': successor of r in \pi
                                                              OneStack(A)
The white-path theorem gives q \Rightarrow q'.
                                                               1 S, C \leftarrow \emptyset;
So when (q', r) is explored q is not yet black, and
                                                              2 dfs(q_0)
all s s.t. d[s] > d[r] are popped from C and not
pushed back.
                                                                 dfs(q)
So either q has already been popped, or it is
popped now.
Since q not yet black, at line 13 q is not in C, and so
top(C) \neq q.
                                                              10
                                                              11
```

```
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)

Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise

1 S, C \leftarrow \emptyset;

2 dfs(q_0)

3 report EMP

4 dfs(q)

5 add\ q to S; push(q, C)

6 for all r \in \delta(q) do

7 if r \notin S then dfs(r)

8 else if r \rightsquigarrow q then

9 repeat

10 s \leftarrow pop(C); if s \in F then report NEMP

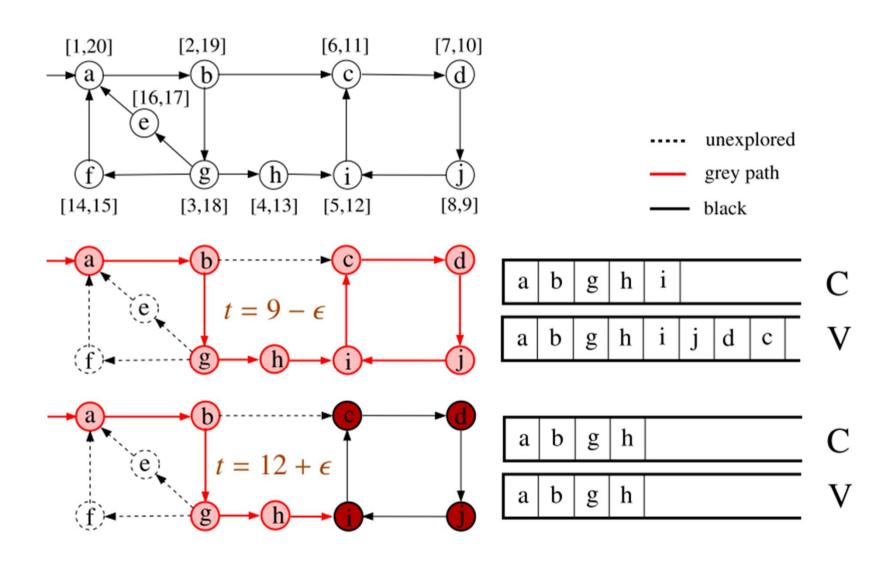
11 until\ d[s] \le d[r]

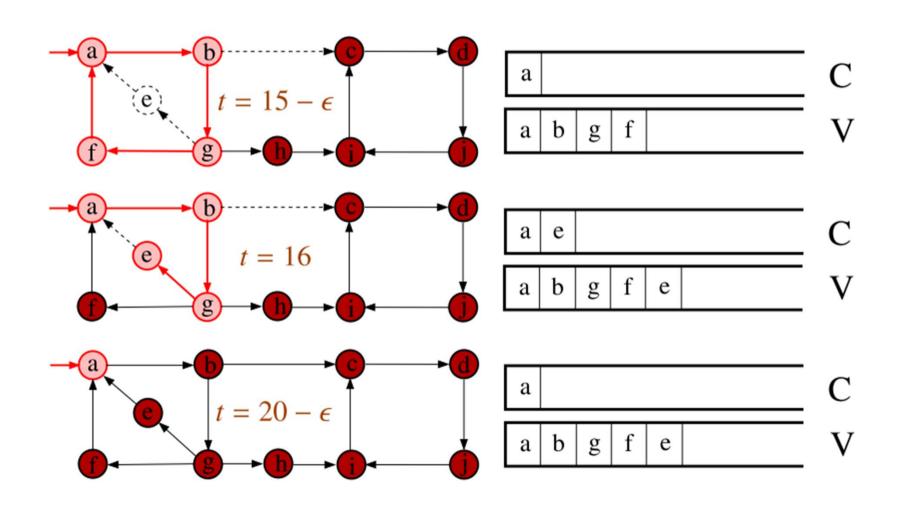
12 push(s, C)

13 if top(C) = q then pop(C)
```

So *V* can be implemented as a second stack maintained as follows:

- when a state is greyed, it is pushed into V;
- when a root is blackened, all states of V above it (including the root) are popped.





```
OneStack(A)
                                                                       TwoStack(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                       Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
                                                                       Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
 1 S, C \leftarrow \emptyset;
                                                                             S, C, V \leftarrow \emptyset;
 2 dfs(q_0)
                                                                         2 dfs(q_0)
     report EMP
                                                                         3 report EMP
     dfs(q)
                                                                             proc dfs(q)
 5
        add q to S; push(q, C)
                                                                                add q to S; push(q, C); push(q, V)
        for all r \in \delta(q) do
                                                                                for all r \in \delta(q) do
 6
            if r \notin S then dfs(r)
                                                                                   if r \notin S then dfs(r)
 7
            else if r \rightsquigarrow q then
                                                                                   else if r \in V then
 8
                                                                         9
 9
               repeat
                                                                                      repeat
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                                         s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
10
                                                                        10
               until d[s] \leq d[r]
                                                                                      until d[s] \leq d[r]
11
                                                                        11
12
               push(s, C)
                                                                        12
                                                                                      push(s, C)
13
         if top(C) = q then pop(C)
                                                                                if top(C) = q then
                                                                        13
                                                                        14
                                                                                   pop(C)
                                                                        15
                                                                                   repeat s \leftarrow \mathbf{pop}(V) until s = q
```

Extension to NGAs

```
TwoStack(A)
                                                                              TwoStackNGA(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
                                                                              Input: NGA A = (Q, \Sigma, \delta, q_0, \{F_0, \dots, F_{k-1}\})
Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
                                                                              Output: EMP if L_{\omega}(A) = \emptyset, NEMP otherwise
     S, C, V \leftarrow \emptyset;
                                                                                   S, C, V \leftarrow \emptyset:
 2 dfs(q_0)
                                                                               2 dfs(q_0)
     report EMP
                                                                                   report EMP
 4 proc dfs(q)
                                                                                    \operatorname{proc} dfs(q)
         add q to S; push(q, C); push(q, V)
                                                                                       add [q, F(q)] to S; \operatorname{push}([q, F(q)], C); \operatorname{push}(q, V)
 5
         for all r \in \delta(q) do
                                                                                       for all r \in \delta(q) do
 6
                                                                                6
            if r \notin S then dfs(r)
                                                                                          if r \notin S then dfs(r)
                                                                                7
            else if r \in V then
                                                                                          else if r \in V then
                                                                               8
 9
               repeat
                                                                               9
                                                                                             I \leftarrow \emptyset
10
                  s \leftarrow \mathbf{pop}(C); if s \in F then report NEMP
                                                                              10
                                                                                             repeat
               until d[s] \leq d[r]
11
                                                                                                [s, J] \leftarrow \mathbf{pop}(C);
                                                                              11
12
               push(s, C)
                                                                                                 I \leftarrow I \cup J; if I = K then report NEMP
                                                                              12
         if top(C) = q then
13
                                                                                             until d[s] \leq d[r]
                                                                              13
14
            pop(C)
                                                                                             push([s, I], C)
                                                                              14
            repeat s \leftarrow \mathbf{pop}(V) until s = q
15
                                                                                       if top(C) = (q, I) for some I then
                                                                              15
                                                                                          pop(C)
                                                                              16
                                                                              17
                                                                                          repeat s \leftarrow \mathbf{pop}(V) until s = q
```