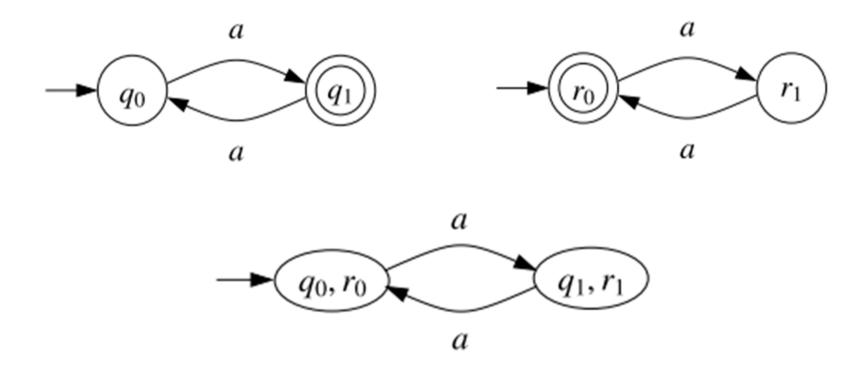
Implementing boolean operations for Büchi automata

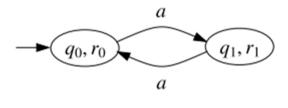
Intersection of NBAs

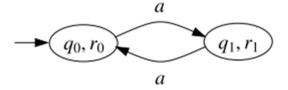
The algorithm for NFAs does not work ...



Apply the same idea as in the conversion $NGA \Rightarrow NBA$

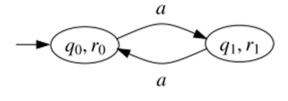
1. Take two copies of the pairing $[A_1, A_2]$.

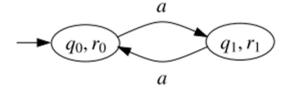




Apply the same idea as in the conversion $NGA \Rightarrow NBA$

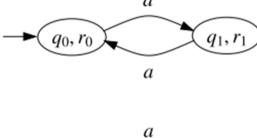
- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.

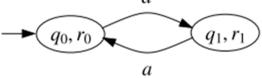




Apply the same idea as in the conversion $NGA \Rightarrow NBA$

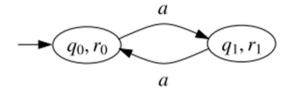
- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.

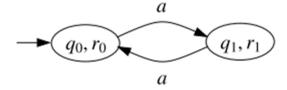




Apply the same idea as in the conversion $NGA \Rightarrow NBA$

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.
- 4. Set F to the set F_1 in the first copy.





$IntersNBA(A_1, A_2)$

Input: NBAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** NBA $A_1 \cap_{\omega} A_2 = (Q, \Sigma, \delta, q_0, F)$ with $L_{\omega}(A_1 \cap_{\omega} A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)$

```
for all a \in \Sigma do
                                                          8
1 O, \delta, F \leftarrow \emptyset
2 q_0 \leftarrow [q_{01}, q_{02}, 1]
                                                          9
                                                                       for all q'_1 \in \delta_1(q_1, a), q'_2 \in \delta(q_2, a) do
3 W \leftarrow \{ [q_{01}, q_{02}, 1] \}
                                                                           if i = 1 and q_1 \notin F_1 then
                                                         10
   while W \neq \emptyset do
      pick [q_1, q_2, i] from W
                                                         11
                                                                               add ([q_1, q_2, 1], a, [q'_1, q'_2, 1]) to \delta
      add [q_1, q_2, i] to Q'
                                                                               if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
      if q_1 \in F_1 and i = 1 then add [q_1, q_2, 1] to F'
                                                                           if i = 1 and a_1 \in F_1 then
                                                         13
                                                         14
                                                                               add ([q_1, q_2, 1], a, [q'_1, q'_2, 2]) to \delta
                                                                               if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
                                                         15
                                                                           if i = 2 and q_2 \notin F_2 then
                                                         16
                                                                               add ([q_1, q_2, 2], a, [q'_1, q'_2, 2]) to \delta
                                                         17
                                                                               if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
                                                         18
                                                                           if i = 2 and q_2 \in F_2 then
                                                         19
                                                                               add ([q_1, q_2, 2], a, [q'_1, q'_2, 1]) to \delta
                                                         20
                                                                               if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
                                                         21
                                                                return (Q, \Sigma, \delta, q_0, F)
                                                         22
```

Special cases/improvements

- If all states of at least one of A_1 and A_2 are accepting, the algorithm for NFAs works.
- Intersection of NBAs A₁, A₂, ..., A_k
 - Do NOT apply the algorithm for two NBAs (k-1) times.
 - Proceed instead as in the translation NGA \Rightarrow NBA: take k copies of $[A_1, A_2, ..., A_k]$ $(kn_1 ... n_k$ states instead of $2^k n_1 ... n_k$)

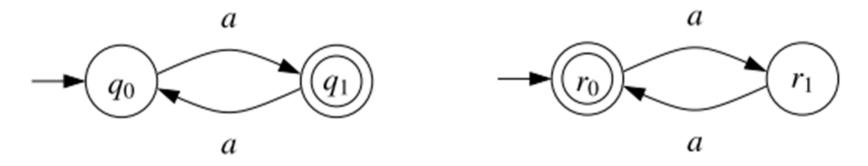
Complement

- Main result proved by Büchi: NBAs are closed under complement.
- Many later improvements in recent years.
- Construction radically different from the one for NFAs.

Problems

The powerset construction does not work.

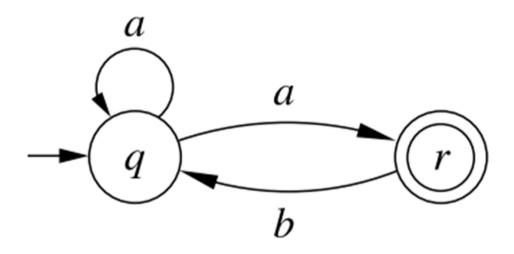
Exchanging final and non-final states in DBAs also fails.



- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of dag(w) visits final states infinitely often.
- Goal: given NBA A, construct NBA \overline{A} such that:

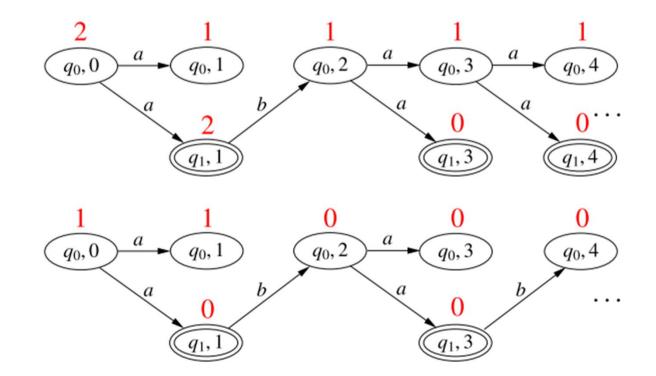
```
A rejects w iff no path of dag(w) visits accepting states of A i.o. iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff \bar{A} accepts w
```

Running example



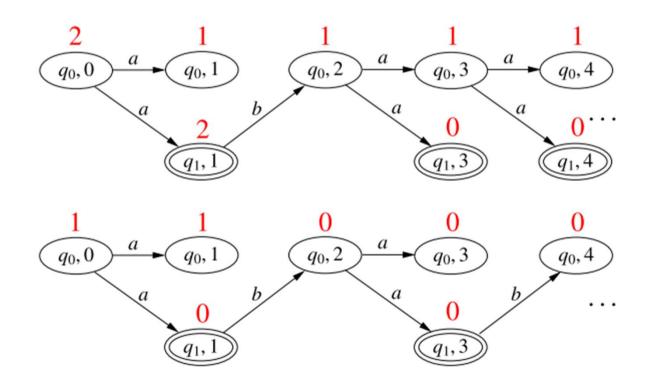
Rankings

- Mappings that associate to every node of dag(w) a rank (a natural number) such that
 - ranks never increase along a path, and
 - ranks of accepting nodes are even.



Odd rankings

 A ranking is odd if every infinite path of dag(w) visits nodes of odd rank i.o.



Prop.: no path of dag(w) visits accepting states of A i.o. iff dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable rank.

(←): The stable rank of every path is odd. Since accepting nodes have even rank, no path visits accepting nodes i.o. (→): We construct a ranking satisfying the conditions. Give each accepting node $\langle q, l \rangle$ rank 2k, where k is the maximal number of accepting nodes in a path starting at $\langle q, l \rangle$.

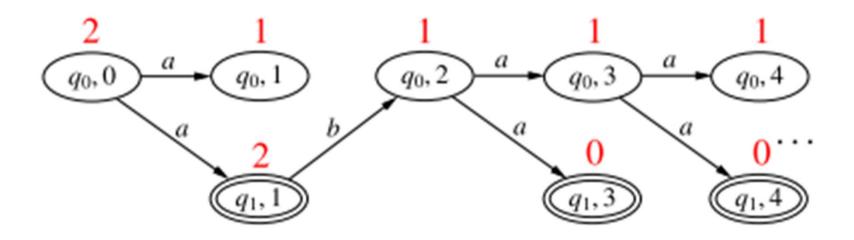
Give a non-accepting node $\langle q, l \rangle$ rank 2k + 1, where 2k is the maximal even rank among its descendants.

Goal:

```
A rejects w iff dag(w) \text{ has an odd ranking} iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff \bar{A} accepts w
```

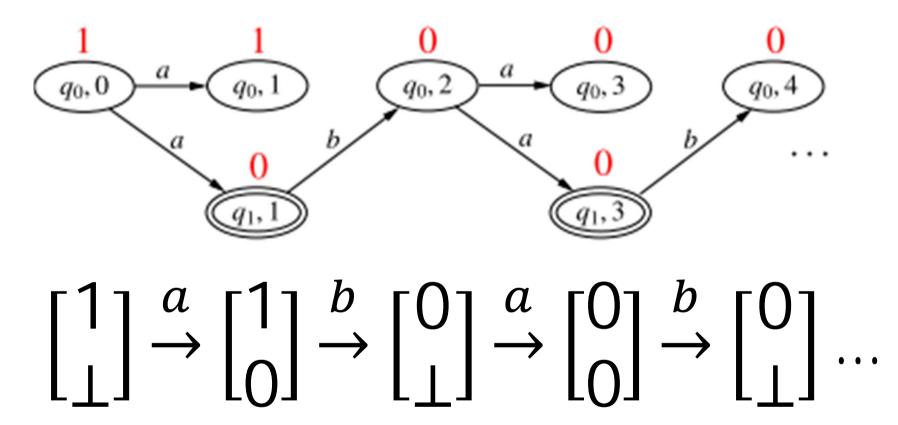
- Idea: design \overline{A} so that
 - its runs on w are the rankings of dag(w), and
 - its acceptings runs on w are the odd rankings of dag(w).

Representing rankings

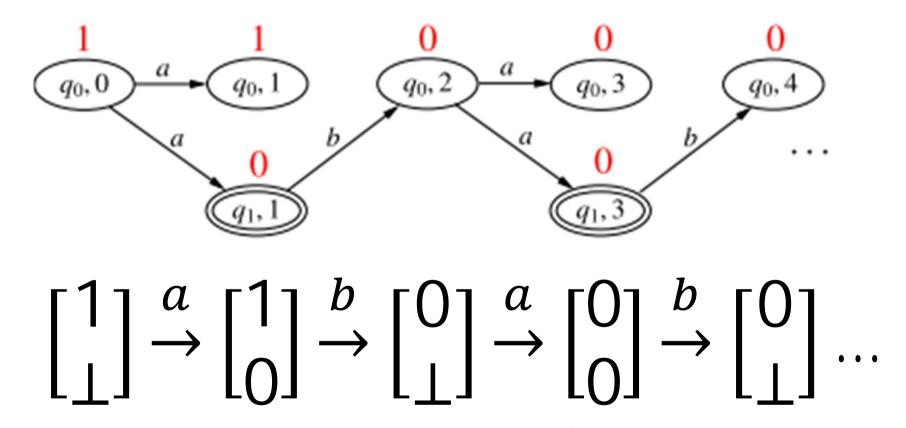


$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \dots$$

Representing rankings



Representing rankings



• We can determine if $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{l} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ may appear in a ranking by just looking at n_1 , n_2 , n'_1 , n'_2 and l: ranks should not increase.

First draft for \overline{A}

- For a two-state A (more states analogous):
 - States: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ where accepting states get even rank
 - Initial states: all states of the form $\begin{bmatrix} n_1 \\ \bot \end{bmatrix}$
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$ s.t. ranks don't increase
- The runs of the automaton on a word w correspond to all the rankings of dag(w).
- Observe: \overline{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

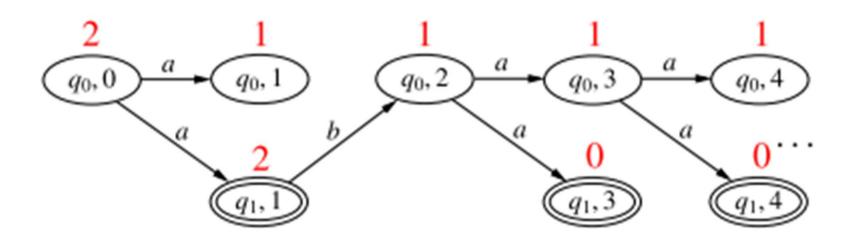
Problems to solve

- How to choose the accepting states?
 - They should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Potentially infinitely many states (because rankings can contain arbitrarily large numbers)

Solving the first problem

- We use owing states and breakpoints again:
 - A breakpoint of a ranking is now a level of the ranking such that no state of the level owes a visit to a node of odd rank.
 - We have again: a ranking is odd iff it has infinitely many breakpoints.
 - We enrich the state with a set of owing states, and choose the accepting states as those in which the set is empty.

Owing states



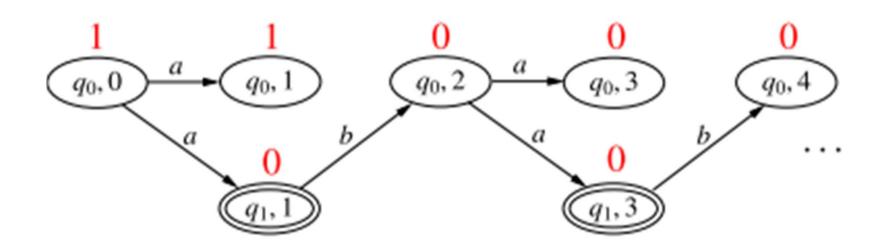
$$\begin{bmatrix} 2 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \end{bmatrix} \dots$$

$$\{q_0\}$$

$$\{q_1\}$$

$$\{q_1\}$$

Owing rankings



$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dots$$

Ø

 $\{q_1\}$

 $\{q_0\}$

 $\{q_0,q_1\}$

 $\{q_0\}$

Second draft for A

- For a two-state A (the case of more states is analogous):
 - States: all pairs $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, 0 wher accepting states get even rank, and 0 is set of owing states (of even rank)
 - Initial states: all $\begin{bmatrix} n_1 \\ \bot \end{bmatrix}$, $\{q_0\}$ where n_1 even if q_0 accepting.
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, $O \stackrel{a}{\rightarrow} \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$, O' s.t. ranks don't increase and owing states are correctly updated
 - Final states: all states $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, \emptyset

- The runs of \overline{A} on a word w correspond to all the rankings of dag(w).
- The accepting runs of \overline{A} on a word w correspond to all the odd rankings of dag(w).
- Therefore: $L(\bar{A}) = \overline{L(A)}$

Solving the second problem

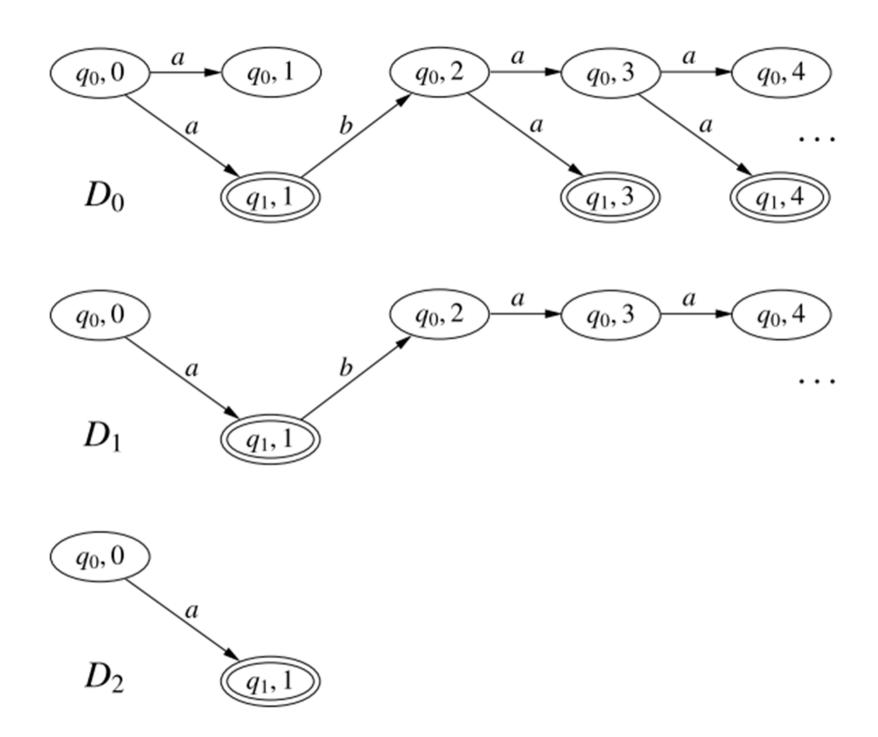
Proposition: If w is rejected by A, then dag(w) has an odd ranking in which ranks are taken from the range [0,2n], where n is the number of states of A. Further, the initial node gets rank 2n.

Proof: We construct such a ranking as follows:

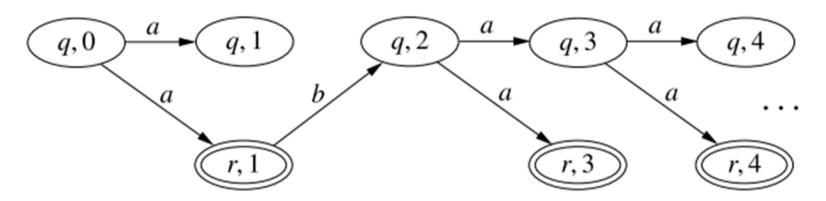
- we proceed in n + 1 rounds (from round 0 to round n), each round with two steps k. 0 and k. 1 with the exception of round n which only has n. 0
- each step removes a set of nodes together with all its descendants.
- the nodes removed at step i.j get rank 2i + j
- the rank of the initial node is increased to 2n if necessary (preserves the properties of rankings).

The steps

- Step i. 0: remove all nodes having only finitely many successors.
- Step i. 1: remove nodes that are non-accepting and have no accepting descendants
- This immediately guarantees :
 - 1. Ranks along a path cannot increase.
 - Accepting states get even ranks, because they can only be removed at step i. 0
- It remains to prove: no nodes left after n+1 rounds .



- To prove: no nodes left after n rounds .
- Each level of a dag has a width



- We define the width of a dag as the largest level width that appears infinitely often.
- Each round decreases the width of the dag by at least 1.
- Since the intial width is at most n after at most n rounds the width is 0, and then step n. 0 removes all nodes.

Final \bar{A}

- For a two-state A (the case of more states is analogous):
 - States: all pairs $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, 0 where 0 set of owing states and accepting states get even rank
 - Initial state: all $\begin{bmatrix} 2n \\ \bot \end{bmatrix}$, $\{q_0\}$
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, $O \stackrel{a}{\to} \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$, O' s.t. ranks don't increase and owing states are correctly updated
 - Final states: all states $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, \emptyset

An example

We construct the complements of

$$A_1 = (\{q\}, \{a\}, \delta, \{q\}, \{q\}) \text{ with } \delta(q, a) = \{q\}$$

 $A_2 = (\{q\}, \{a\}, \delta, \{q\}, \emptyset) \text{ with } \delta(q, a) = \{q\}$

• States of A_1 :

$$\langle 0, \emptyset \rangle, \langle 2, \emptyset \rangle, \langle 0, \{q\} \rangle, \langle 2, \{q\} \rangle$$

• States of A_2 :

$$\langle 0, \emptyset \rangle, \langle 1, \emptyset \rangle, \langle 2, \emptyset \rangle, \langle 0, \{q\} \rangle, \langle 2, \{q\} \rangle$$

• Initial state of A_1 and A_2 : $\langle 2, \{q\} \rangle$

An example

• Transitions of A_1 :

$$\langle 2, \{q\} \rangle \xrightarrow{a} \langle 2, \{q\} \rangle$$
, $\langle 2, \{q\} \rangle \xrightarrow{a} \langle 0, \emptyset \rangle$, $\langle 0, \{q\} \rangle \xrightarrow{a} \langle 0, \{q\} \rangle$

• Transitions of A_2 :

$$\langle 2, \{q\} \rangle \xrightarrow{a} \langle 2, \{q\} \rangle, \langle 2, \{q\} \rangle \xrightarrow{a} \langle 1, \emptyset \rangle, \langle 2, \{q\} \rangle \xrightarrow{a} \langle 0, \emptyset \rangle,$$

$$\langle 1, \emptyset \rangle \xrightarrow{a} \langle 1, \emptyset \rangle, \langle 1, \emptyset \rangle \xrightarrow{a} \langle 0, \{q\} \rangle,$$

$$\langle 0, \{q\} \rangle \xrightarrow{a} \langle 0, \{q\} \rangle$$

- Final states of A_1 : $(0, \emptyset)$, $(2, \emptyset)$ (unreachable)
- Final states of A₂: (0, Ø), (1, Ø), (2, Ø) (only (1, Ø) is reachable)

```
CompNBA(A)
Input: NBA A = (Q, \Sigma, \delta, q_0, F)
Output: NBA \overline{A} = (\overline{Q}, \Sigma, \overline{\delta}, \overline{q}_0, \overline{F}) with L_{\omega}(\overline{A}) = \overline{L_{\omega}(A)}
  1 \overline{O}, \overline{\delta}, \overline{F} \leftarrow \emptyset
  2 \quad \overline{q}_0 \leftarrow [lr_0, \{q_0\}]
  3 W \leftarrow \{ [lr_0, \{q_0\}] \}
       while W \neq \emptyset do
              pick [lr, P] from W; add [lr, P] to \overline{Q}
              if P = \emptyset then add [lr, P] to \overline{F}
  6
              for all a \in \Sigma, lr' \in \mathcal{R} such that lr \stackrel{a}{\mapsto} lr' do
                    if P \neq \emptyset then P' \leftarrow \{q \in \delta(P, a) \mid lr'(q) \text{ is even } \}
                    else P' \leftarrow \{q \in Q \mid lr'(q) \text{ is even } \}
  9
                    add ([lr, P], a, [lr', P']) to \delta
10
                   if [lr', P'] \notin \overline{Q} then add [lr', P'] to W
11
         return (\overline{Q}, \Sigma, \overline{\delta}, \overline{q}_0, \overline{F})
12
```

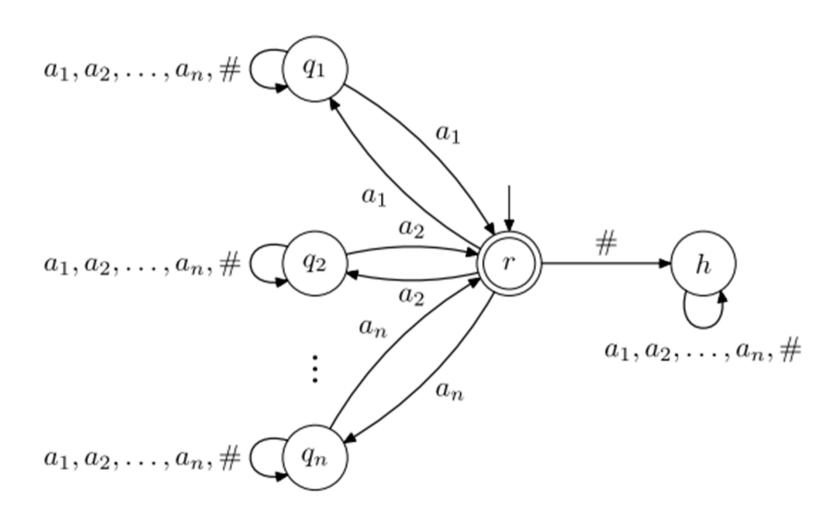
Complexity

- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number f [0,2n] or the symbol ⊥.
- So the complement NBA has at most $(2n + 2)^n \cdot 2^n \in n^{O(n)} = 2^{O(n \log n)}$ states.
- Compare with 2^n for the NFA case.
- We show that the $\log n$ factor is unavoidable.

We define a family $\{L_n\}_{n\geq 1}$ of ω -languages s.t.

- $-L_n$ is accepted by a NBA with n + 2 states.
- Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.
- The alphabet of L_n is $\Sigma_n = \{1, 2, ..., n, \#\}$.
- Assign to a word $w \in \Sigma_n$ a graph G(w) as follows:
 - Vertices: the numbers $1,2,\ldots,n$.
 - Edges: there is an edge $i \rightarrow j$ iff w contains infinitely many occurrences of ij.
- Define: $w \in L_n$ iff G(w) has a cycle.

• L_n is accepted by a NBA with n + 2 states.



Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Let τ denote a permutation of $1,2,\ldots,n$.
- We have:
 - a) For every τ , the word $(\tau \#)^{\omega}$ belongs to $\overline{L_n}$ (i.e., its graph contains no cycle).
 - b) For every two distinct τ_1 , τ_2 , every word containing inf. many occurrences of τ_1 and inf. many occurrences of τ_2 belongs to L_n .

Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Assume A recognizes $\overline{L_n}$ and let τ_1, τ_2 distinct. By (a), A has runs ρ_1, ρ_2 accepting $(\tau_1 \#)^{\omega}$, $(\tau_2 \#)^{\omega}$. The sets of accepting states visited i.o. by ρ_1, ρ_2 are disjoint.
 - Otherwise we can ``interleave'' ρ_1 , ρ_2 to yield an acepting run for a word with inf. Many occurrences of τ_1 , τ_2 , contradicting (b).
- So A has at least one accepting state for each permutation, and so at least n! States.