Presburger Arithmetic

Which arithmetical problems can be solved using automata?

 Presburger arithmetic (PA): a logical language to define arithmetical properties of (tuples of) natural numbers Is there an integer solution?

$$3x - 4y = 5$$
$$-x + y = 3$$

Is there an integer solution?

$$2x + 3y \ge 5$$
$$-x + 4y \le 3$$

Are there integers x, y such that

$$3x - 4y = 5$$
$$-x + y = 3$$

but not

$$2x + 3y \ge 2$$

$$-x + 4y \le 4$$
?

For every integer solution x, y of

$$2x + 3y \ge 5$$

$$-x + 4y \leq 3$$

is there is an integer solution z, u of

$$3z - 2u \geq 3$$

$$-z + 4u \leq -2$$

such that x + z = y + u?

Syntax of PA

Symbols:

Variables $X, y, z \dots$ Constants0, 1Arithmetical symbols $+, \leq$ Logical symbols \lor, \neg, \exists $(\land, \lor, \rightarrow, \dots)$

(,)

• Terms:

Parenthesis

Variables, 0 and 1 are terms.

If t and u are terms, then t + u is a term.

Syntax of PA

Atomic formulas:

 $t \leq u$, where t and u are terms

Formulas:

Atomic formulas are formulas.

If φ_1 , φ_2 are formulas, then so are $\varphi_1 \lor \varphi_2$, $\neg \varphi_1$, $\exists x \varphi_1$

Free and bound variables:

A variable is bound if it is in the scope of an existential quatifier, otherwise it is free.

Sentences: formulas without free variables.

Abbreviations

Logical abbrevations:

$$\varphi_{1} \wedge \varphi_{2} \equiv \neg(\neg \varphi_{1} \vee \neg \varphi_{2})$$

$$\varphi_{1} \rightarrow \varphi_{2} \equiv \neg \varphi_{1} \vee \varphi_{2}$$

$$\varphi_{1} \leftrightarrow \varphi_{2} \equiv \neg(\varphi_{1} \vee \varphi_{2}) \vee \neg(\neg \varphi_{1} \vee \neg \varphi_{2})$$

$$\forall x \varphi \equiv \neg \exists x \neg \varphi$$

Arithmetic abbreviations:

$$n := \underbrace{1+1+\ldots+1}_{n \text{ times}} \qquad t \ge t' := t' \le t$$

$$t = t' := t \le t' \land t \ge t'$$

$$t < t' := t \le t' \land \neg(t = t')$$

$$t > t' := t' < t$$

Semantics (intuition)

- The semantics of a sentence is true or false.
- The semantics of a formula with free variables $(x_1, ..., x_k)$ is the set containing all tuples $(n_1, ..., n_k)$ of natural numbers that "satisfy the formula"

Semantics (more formally)

- An interpretation of a formula φ is a function \Im that assigns a natural number to every free variable appearing in φ (and perhaps also to others).
- Given an interpretation \mathcal{J} , a variable x, and a number n, we denote by $\mathcal{J}[n/x]$ the interpretation that assigns to x the number n, and to all other variables the same value as \mathcal{J} .

Semantics (more formally)

• We inductively define when an interpretation \mathcal{J} satisfies a formula φ , denoted by $\mathcal{J} \models \varphi$:

```
\begin{array}{lll} \Im \models t \leq u & \text{iff} & \Im(t) \leq \Im(u) \\ \Im \models \neg \varphi_1 & \text{iff} & \Im \not\models \varphi_1 \\ \Im \models \varphi_1 \vee \varphi_2 & \text{iff} & \Im \models \varphi_1 \text{ or } \Im \models \varphi_2 \\ \Im \models \exists x \, \varphi & \text{iff} & \text{there exists } n \geq 0 \text{ such that } \Im[n/x] \models \varphi \end{array}
```

Semantics (more formally)

- Lemma: If two interpretations of a formula φ assign the same values to all free variables of φ , then either both satisfy φ or none satisfy φ .
- Corollary: if φ is a sentence, either all interpretations satisfy φ , or none satisfy φ .
- A sentence is true if it is satisfied by all interpretations, and false if it is not satisfied by any interpretation.
- A model or solution of φ is the projection of an interpretation that satisfies φ onto the free variables of φ . The set of solutions or solution space is denoted by $Sol(\varphi)$.

Formulating questions

Are there integers x, y such that

$$2x + 3y \ge 5$$
$$-x + 4y \le 3$$
?

$$\exists x \exists y \ (2x + 3y \ge 5 \land -x + 4y \le 3)$$

Formulating questions

For every solution x, y of

$$2x + 3y \ge 5$$
$$-x + 4y \le 3$$

is there is a solution z, u of

$$3z - 2u \ge 3$$
$$-z + 4u \le -2$$

such that x + z = y + u?

$$\forall x \forall y$$

$$(2x + 3y \ge 5 \land -x + 4y \le 3)$$

$$\rightarrow$$

$$(\exists z \exists u)$$

$$(3z - 2u \ge 3 \land \land -z + 4u \le -2 \land \land x + z = y + u)$$

Language of a formula

- We encode natural numbers with the *lsbf* encoding.
- If φ has free variables x_1, \dots, x_k , we encode a solution of φ as a word over $\{0,1\}^k$ in the usual way. E.g, the encoding of $(x_1, x_2, x_3) = (5,10,0)$ is

$$\begin{array}{ccc}
x_1 & \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 $\begin{array}{ccc}
x_2 & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

• The language of φ , denoted by $L(\varphi)$, is the set of encodings of the solutions of φ .

An NFA for the solution space

- Given φ , we construct an NFA A_{φ} such that $L(A_{\varphi}) = L(\varphi)$
- We can take:

```
A_{\neg \varphi} := CompNFA(A_{\varphi})
A_{(\varphi_1 \lor \varphi_2)} := UnionNFA(A_{\varphi_1}, A_{\varphi_2})
A_{\exists x \varphi} := Projection_x(A_{\varphi})
```

where *Projection_x* projects onto all variables but x

• It remains to construct A_{φ} for an atomic formula φ .

DFA for atomic formulas

 Every atomic formula has the same solutions as a formula of the form

$$a_1x_1 + \dots + a_nx_n \le b := a \cdot x \le b$$

where the a_i and b are arbitrary integers (possibly negative).

• Given $a \cdot x \le b$ we construct a DFA with integers as states and b as initial state satisfying:

Each state $q \in \mathbb{Z}$ recognizes the tuples $c \in \mathbb{N}^n$ such that $a \cdot c \leq q$

Transitions

- Given $q \in \mathbb{Z}$ and a letter $\zeta \in \{0,1\}^n$ we compute the target state $q' \in \mathbb{Z}$ of the transition (q, ζ, q') .
- For every word $w \in (\{0,1\}^n)^*$ we have:

w is accepted from q' iff ζw is accepted from q and so for every tuple $c \in \mathbb{N}^n$:

c is accepted from q' iff $2c + \zeta$ is accepted from q

Hence we choose q' so that

$$a \cdot c \le q' \text{ iff } a \cdot (2c + \zeta) \le q$$

• Since $a \cdot (2c + \zeta) \le q$ iff $2(a \cdot c) + a \cdot \zeta \le q$ we take

$$q' = \left[\frac{1}{2} \left(q - a \cdot \zeta \right) \right]$$

Final states

- A state is final iff it accepts the empty word
- So $q \in \mathbb{Z}$ is final iff it accepts $(0, ..., 0) \in \mathbb{N}^n$
- So we take $q \in \mathbb{Z}$ final iff $a \cdot (0, ..., 0) \le q$ iff $q \ge 0$

$AFtoDFA(\varphi)$

Input: Atomic formula $\varphi = a \cdot x \le b$

Output: DFA $A_{\varphi} = (Q, \Sigma, \delta, q_0, F)$ such that $L(A_{\varphi}) = L(\varphi)$

- 1 $Q, \delta, F \leftarrow \emptyset; q_0 \leftarrow s_b$
- 2 $W \leftarrow \{s_b\}$
- 3 while $W \neq \emptyset$ do
- 4 pick s_k from W
- 5 add s_k to Q
- 6 if $k \ge 0$ then add s_k to F
- 7 **for all** $\zeta \in \{0, 1\}^n$ **do**

- 9 **if** $s_j \notin Q$ **then add** s_j **to** W
- 10 **add** (s_k, ζ, s_j) **to** δ

Example: $3x - 2y \ge 6$

Conversion:
$$-3x + 2y \le -6$$

$$a = {\binom{-3}{2}}, b = -6$$

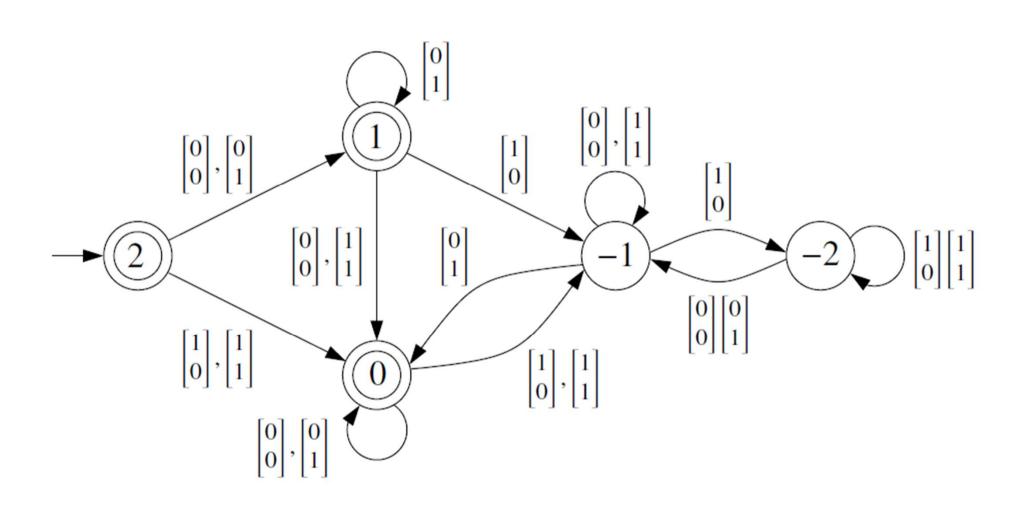
Initial state: -6

Transition from state -6 with letter $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$:

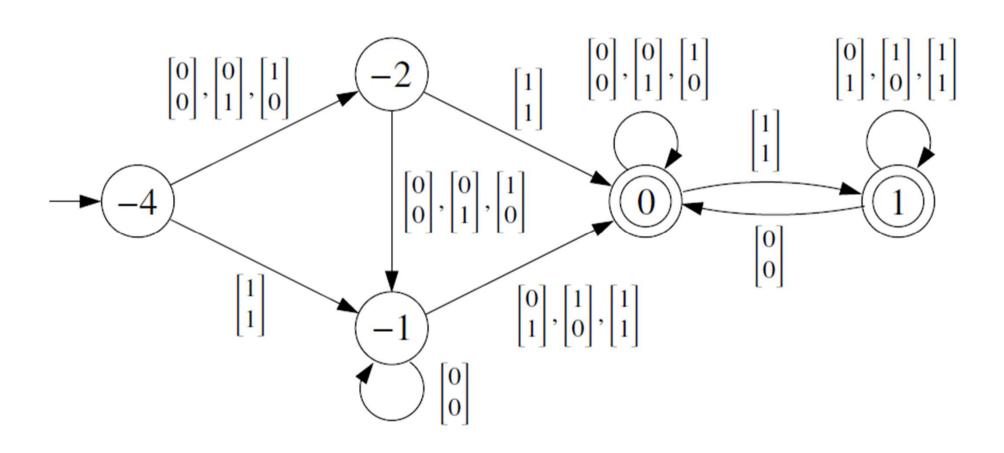
$$q' = \left[\frac{1}{2} \left(q - a \cdot \zeta\right)\right]$$

$$q' = \left[\frac{1}{2} \left(-6 - (-3.2) \cdot {1 \choose 1}\right)\right] = \left[\frac{1}{2} \left(-6 + 1\right)\right] = -3$$

Example: $2x - y \le 2$



Example: $x + y \ge 4$



Termination of AFtoDFA

• Lemma: Let $\varphi = a \cdot c \leq q$ and $s = \sum_{i=1}^{n} |a_i|$. All states s_j added by $AFtoDFA(\varphi)$ satisfy

$$-|b| - s \le j \le |b| + s$$

Proof: Holds for the first state added: s_b

Assume s_i is added to the workset when processing s_k .

By ind. hyp.: $-|b| - s \le k \le |b| + s$.

Together with $j = \left[\frac{1}{2} (k - a \cdot \zeta)\right]$ we get

$$\left| \frac{-|b| - s - a \cdot \zeta}{2} \right| \le j \le \left| \frac{|b| + s - a \cdot \zeta}{2} \right|$$

$$\left| \frac{-|b| - s - a \cdot \zeta}{2} \right| \le j \le \left| \frac{|b| + s - a \cdot \zeta}{2} \right|$$

Some arithmetic yields

$$-|b| - s \le \frac{-|b| - 2s}{2} \le \left[\frac{-|b| - s - a \cdot \zeta}{2} \right]$$

$$\left| \frac{|b| + s - a \cdot \zeta}{2} \right| \le \frac{|b| + 2s}{2} \le |b| + s$$

and together we get

$$-|b| - s \le j \le |b| + s$$

Solving a system of inequations

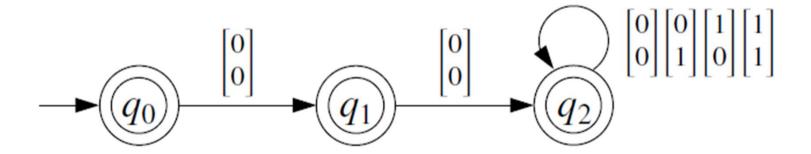
We compute all solutions of

$$2x - y \le 2$$
$$x + y \ge 2$$

s.t. x, y are multiples of 4. They are the solutions of

$$(\exists z \ x = 4z) \land (\exists w \ y = 4w) \land (2x - y \le 2) \land (x + y \ge 4)$$

• DFA for $(\exists z \ x = 4z) \ \land (\exists w \ y = 4w)$



• Final result

