
Pattern Matching



Pattern Matching

• Given
 a word 푤 (the text) of length 푛, and
 a regular expression p (the pattern) of length 푚

determine
 the smallest number 푘′ such that some 

푘,푘 -factor of 푤 belongs to 퐿(푝).



• Line 1 takes  푂(푚 ) time (푂 푚 for fixed alphabet) , output has 푂(푚)
states 

• Loop is executed  at most  푛 times
• One iteration takes  푂(푠 ) time , where 푠 is the number of states of 퐴
• Since 푠 = 푂(푚), the total runtime is 푂 푚 + 푛푚 , and 푂(푛푚 ) for
푚	 ≤ 푛 .

NFA-based solution



• Line 1 takes  2 ( ) time
• Loop is executed  at most  푛 times
• One iteration takes constant time
• Total runtime is  푂 푛 + 2 ( )

DFA-based solution



The word case

• The pattern 푝 = 푏 푏 … 푏 is a word of length 푚
• Naive algorithm: move a window of size m along 

the word one letter at a time, and compare with 
p after each step. Runtime: 푂(푛푚)	

• We give an algorithm with 푂(푛 + 푚) runtime for 
any alphabet of size 0 ≤ Σ ≤ 푛 .

• First we explore in detail the shape of the DFA for 
Σ∗푝 .



Obvious NFA for Σ∗푝 and 푝 = 푛푎푛표

Result of applying NFAtoDFA:





• Transitions of the „spine“ correspond to hits: the next letter 
is the one  that „makes progress“ towards nano

• Other transitions correspond to misses, i.e., „wrong letters“ 
and „throw the automaton back“

Intuition



• For every state  푖 = 	0,1, … , 4	of the NFA  there is exactly one 
state 푆 of the DFA such that 푖 is the largest state of 푆.

• For every state 푆 of the DFA, with the exception of 푆 = {0}, the 
result of removing the largest state is again a state of the DFA.

Observations



• For every state  푖 = 	0,1, … , 4	of the NFA  there is exactly one 
state 푆 of the DFA such that 푖 is the largest state of 푆.

• For every state 푆 of the DFA, with the exception of 푆 = {0}, the 
result of removing the largest state is again a state of the DFA.

• Do these properties hold for every pattern  푝?

Observations



• Head of 푆, denoted ℎ(푆) : largest state of 푆
• Tail of 푆, denoted  푡 푆 : rest of the state
• Example: ℎ({3,1,0}) = 	3, 푡({3,1,0}) = 	 {1,0}

• Given a state 푆, the letter leading to the next state in 
the „spine“  is the (unique) hit letter for 푆

• All other letters are miss letters for 푆
• Example: hit for {3,1,0} is 표, whereas 푛 or 푎 are 

misses

Heads and tails, hits and misses



• Proposition: Let 푆 be the 푘-th state picked from the workset
during the execution of NFAtoDFA(퐴 ).

(1) ℎ 푆 = 푘,
(2) If 푘 > 0, then 푡 푆 = 푆 for some 푙 < 푘

Proof Idea: 

• (1) and (2) hold for 푆 = {0}.
• For the step 푘 → 푘 + 1 we look at 훿 푆 ,푎 for each 푎, where 

훿 transition relation of 퐴 .

• By i.h. we have  푆 = 푘 ∪	푆 for some  푙 < 푘
• We distinguish two cases: 푎 is a hit for 푆 (that is, 푎 = 푏 ), 

and 푎 is a miss for 푆 .

Fundamental property of the DFA



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

Hit:
푘 	 ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Hit:
푘 	 ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

Added earlier to the
workset , and so some 푆

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Hit:
푘 	 ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

푘 + 1 ∪ 푆
= =

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Hit:
푘 	 ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

푘 + 1 ∪ 푆
= =

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

New state, gets
added to the
workset



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Miss:
푘 	 ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Miss:
푘 	 ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

푆
=

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎 	∪ 	훿(푆 , 푎)

Miss:
푘 	 ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

푆
=

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

Already seen, is
not added to
the workset



Prop: The result of applying NFAtoDFA(퐴 ), where 퐴
is the obvious NFA for Σ∗푝 , yields a minimal DFA with 
푚 + 1 states and Σ (푚 + 1) transitions.
Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA
yields a 푂(푛 + Σ 푚) algorithm. 

 Good enough for constant alphabet 
 Not good enough for Σ = 푂(푛)

Consequences



Lazy DFAs

• We introduce a new data structure: lazy DFAs. 
We construct a lazy DFA for Σ∗푝	with 푚 + 1
states and 2푚 + 2 transitions. 

• Lazy DFAs: automata that read the input from 
a tape by means of a reading head that can 
move one cell to the right or stay put 

• DFA=Lazy DFA whose head never stays put



Lazy DFA for Σ∗푝

• By the fundamental property, the DFA 퐵 for 훴∗푝
behaves from state 푆 as follows:
– If 푎 is a hit, then 훿 푆 , 푎 = 푆 , i.e., the DFA 

moves to the next state in the spine.
– If 푎 is a miss, then 훿 푆 , 푎 = 훿 푡(푆 ),푎 , i.e., the 

DFA moves to the same state it would move to if it 
were in state 푡(푆 ).

• When 푎 is a miss for 푆 , the lazy automaton moves to 
state 푡 푆 without advancing the head. In other words, 
it „delegates“ doing the move to 푡 푆

• So the lazyDFA behaves the same for all misses.





• Formally, for the lazy DFA 퐶:
– 훿 푆 , 푎 = (푆 ,푅) if 푎 is a hit
– 훿 푆 , 푎 = 푡(푆 ),푁 if 푎 is a miss

• So the lazy DFA has 푚 + 1 states and 2푚
transitions, and can be constructed in 푂(푚)
space: for each 푆 , compute and store 
푆 : = 훿 푆 , 푏 , output 푆 and 푡 푆 , 
and throw 푆 away.



• Running the lazy DFA on the text takes 푂 푛
time:
– For every text letter the lazy DFA performs a 

sequence of „stay put“ steps followed by a „right“ 
step. Call this sequence a macrostep.

– Let  푆 be the state after the 푖-th macrostep. The 
number of steps of the 푖-th macrostep is at most 
푗 − 푗 + 2 . 

So the total number of steps is at most 

푗 − 푗 + 2 = 푗 − 푗 + 2푛	 ≤ 2푛		



Computing 푀푖푠푠

• For the 푂(푚 + 푛) bound it remains to show that the lazy DFA 
can be constructed in 푂(푚) time.

• Let M푖푠푠(푘) be the head of the state reached from 푆 by a 
miss.

• It is easy to compute each of 	푀푖푠푠 0 , … ,푀푖푠푠 푚 in 푂(푚)
time, leading to a 푂(푛 + 푚 ) time algorithm.
(Use 푀푖푠푠 푘 = ℎ(푡 푆 ).)

• Already good enough for almost all purposes. But, can we 
compute all of 푀푖푠푠 0 , … ,푀푖푠푠 푚 together in time 
푂 푚 ?	 Looks impossible!

• It isn‘t  though ...



For 푖 > 1 we have: 

푡(푆 ) = 푡 	훿 푆 , 푏 	
= 푡 훿 푖 − 1 , 푏 ∪ 훿 (푡 푆 ,푏 )
= 푡 	 푖 ∪ 훿 푡 푆 , 푏
= 훿 푡 푆 , 푏

With 푚푖푠푠 푆 : = 푡(푆 ) we get:



With 푀푖푠푠 푖 ≔ ℎ(푚푖푠푠 푆 ) we get the following algorithm: 



All calls to DeltaB lead  together
to	푂(푚) iterations of the while loop.
The call  퐷푒푙푡푎퐵(푀푖푠푠(푖 − 1), 푏 )
executes at most 

푀푖푠푠(푖 − 1) − (푀푖푠푠(푖) − 1)	
iterations, because:
• initially 푗 is assigned 푀푖푠푠(푖 − 1)
• each iteration decreases 푗 by at 

least 1 (푀푖푠푠 푗 > 푗), and
• the return value assigned to

푀푖푠푠 푖 is at most the final value
of 푗 plus 1.



• Total number of iterations:

푀푖푠푠 푖 − 1 −푀푖푠푠 푖 + 1 	

≤ 	푀푖푠푠 1 −푀푖푠푠 푚 + 푚 − 1
≤ 푚


