Automata and Formal Languages — Homework 14

Due 06.02.2018

Exercise 14.1

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas for the following ω -languages:

- (a) $\{p,q\} \emptyset \Sigma^{\omega}$
- (b) $\Sigma^* \{q\}^{\omega}$
- (c) $\Sigma^* (\{p\} + \{p,q\}) \Sigma^* \{q\} \Sigma^{\omega}$
- (d) $\{p\}^* \{q\}^* \emptyset^{\omega}$

Exercise 14.2

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata for the ω -languages over Σ defined by the following LTL formulas:

- (a) $\mathbf{XG} \neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \wedge \neg (\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \wedge p))$

Exercise 14.3

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an automaton such that $Q = P \times [n]$ for some finite set P and $n \ge 1$. Automaton A models a system made of n processes. A state $(p, i) \in Q$ represents the current global state p of the system, and the last process i that was executed.

We define two predicates exe_j and enab_j over Q indicating whether process j is respectively executed and enabled. More formally, for every $q=(p,i)\in Q$ and $j\in [n]$, let

$$\operatorname{exec}_{j}(q) \iff i = j,$$

 $\operatorname{enab}_{j}(q) \iff (p, i) \to (p', j) \text{ for some } p' \in P.$

- (a) Give LTL formulas over Q^{ω} for the following statements:
 - (i) All processes are executed infinitely often.
 - (ii) If a process is enabled infinitely often, then it is executed infinitely often.
 - (iii) If a process is eventually permanently enabled, then it is executed infinitely often.
- (b) The three above properties are known respectively as *unconditional*, *strong* and *weak* fairness. Show the following implications, and show that the reverse implications do not hold:

unconditional fairness \implies strong fairness \implies weak fairness.

Exercise 14.4

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. An LTL formula is a tautology if it is satisfied by all computations. Which of the following LTL formulas are tautologies?

(a)
$$\mathbf{G}p \to \mathbf{F}p$$

(b)
$$\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$$

(c)
$$\mathbf{FG}p \vee \mathbf{FG} \neg p$$

(d)
$$\neg \mathbf{F}p \to \mathbf{F} \neg \mathbf{F}p$$

(e)
$$(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \ \mathbf{U} \ (\neg p \lor q))$$

(f)
$$\neg (p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$$

(g)
$$\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p)$$