Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

12.01.2018

Automata and Formal Languages — Homework 12

Due 23.01.2018

Exercise 12.1 Consider the following automaton *A*:

- (a) Interpret A as a Muller automaton with acceptance condition $\{\{q_1\}, \{q_0, q_2\}\}$. Use algorithms NMAtoNGA and NGAtoNBA from the lecture notes to construct a Büchi automaton that recognizes the same language as A.
- (b) Interpret A as a Rabin automaton with acceptance condition $\{\langle \{q_0, q_2\}, \{q_1\}\rangle\}$. Follow the approach presented in class to construct a Büchi automaton that recognizes the same language as A.

Exercise 12.2

- (a) Give deterministic Büchi automata for L_a, L_b, L_c where $L_{\sigma} = \{w \in \{a, b, c\}^{\omega} : w \text{ contains infinitely many } \sigma$'s $\}$, and intersect these automata.
- (b) Give Büchi automata for the following ω -languages:
 - $L_1 = \{ w \in \{a, b\}^{\omega} : w \text{ contains infinitely many } a's \},$
 - $L_2 = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } b$'s $\},$
 - $L_3 = \{ w \in \{a, b\}^{\omega} : \text{each occurrence of } a \text{ in } w \text{ is followed by a } b \},\$

and intersect these automata.

Exercise 12.3 Consider the following Büchi automaton over $\Sigma = \{a, b\}$:

- (a) Sketch dag $(abab^{\omega})$ and dag $((ab)^{\omega})$.
- (b) Let r_w be the ranking of dag(w) defined by

$$r_w(q,i) = \begin{cases} 1 & \text{if } q = q_0 \text{ and } \langle q_0,i \rangle \text{ appears in } \operatorname{dag}(w), \\ 0 & \text{if } q = q_1 \text{ and } \langle q_1,i \rangle \text{ appears in } \operatorname{dag}(w), \\ \bot & \text{otherwise.} \end{cases}$$

Are $r_{abab^{\omega}}$ and $r_{(ab)^{\omega}}$ odd rankings?

- (c) Show that r_w is an odd ranking if and only if $w \notin L_{\omega}(B)$.
- (d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. [Hint:

Solution 12.1

(a) We must first construct two generalized Büchi automata A and B for $\{q_1\}$ and $\{q_0, q_2\}$ respectively. Automaton A is as follows with acceptance condition $\{\{q_1\}\}$:

Automaton B is as follows with acceptance condition $\{\{q_0\}, \{q_2\}\}$:

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a standard Büchi automaton, it suffices to make state $[q_1, 1]$ accepting. However, it remains to convert B into a standard Büchi automaton B':

Altogether, we obtain the following Büchi automaton:

 \bigstar Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of both automata, i.e. have them side by side instead of adding a single new initial.

Solution 12.2

(a) The following deterministic Büchi automata respectively accept L_a, L_b and L_c :

★ As seen in #11.1(d), $L_a \cap L_b \cap L_b$ is accepted by a smaller deterministic Büchi automaton:

(b) The following Büchi automata respectively accept L_1, L_2 and L_3 :

Taking the intersection of these automata leads to the following Büchi automaton:

 \bigstar Note that the language of this automaton is the empty language.

Solution 12.3

(a) $dag(abab^{\omega})$:

(b) • r is not an odd rank for dag $(abab^{\omega})$ since

 $\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_1, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots$

is an infinite path of $dag(abab^{\omega})$ not visiting odd nodes infinitely often.

• r is an odd rank for $dag((ab)^{\omega})$ since it has a single infinite path:

$$\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_0, 4 \rangle \xrightarrow{a} \langle q_0, 5 \rangle \xrightarrow{b} \cdots$$

which only visits odd nodes.

(c) \Rightarrow) Let $w \in L_{\omega}(B)$. We have $w = ub^{\omega}$ for some $u \in \{a, b\}^*$. This implies that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_0, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is not odd for dag(w).

 \Leftarrow) Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\langle q_1, i \rangle$. Therefore, there exists $u \in \{a, b\}^*$ such that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_1, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

This implies that $w = ub^{\omega} \in L_{\omega}(B)$ which is contradiction.

(d) By (c), for every $w \in \{a, b\}^{\omega}$, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to execute *CompNBA* with rankings ranging over 0 and 1. We obtain the following Büchi automaton:

★ By (c), it would have even been sufficient to only explore the blue states as they correspond to the family of rankings $\{r_w : w \in \Sigma^{\omega}\}$.