Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

12.01.2018

Automata and Formal Languages — Homework 12

Due 23.01.2018

Exercise 12.1 Consider the following automaton *A*:

- (a) Interpret A as a Muller automaton with acceptance condition $\{\{q_1\}, \{q_0, q_2\}\}$. Use algorithms NMAtoNGA and NGAtoNBA from the lecture notes to construct a Büchi automaton that recognizes the same language as A.
- (b) Interpret A as a Rabin automaton with acceptance condition $\{\langle \{q_0, q_2\}, \{q_1\}\rangle\}$. Follow the approach presented in class to construct a Büchi automaton that recognizes the same language as A.

Exercise 12.2

- (a) Give deterministic Büchi automata for L_a, L_b, L_c where $L_{\sigma} = \{w \in \{a, b, c\}^{\omega} : w \text{ contains infinitely many } \sigma$'s $\}$, and intersect these automata.
- (b) Give Büchi automata for the following ω -languages:
 - $L_1 = \{ w \in \{a, b\}^{\omega} : w \text{ contains infinitely many } a's \},$
 - $L_2 = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } b$'s $\},$
 - $L_3 = \{ w \in \{a, b\}^{\omega} : \text{each occurrence of } a \text{ in } w \text{ is followed by a } b \},\$

and intersect these automata.

Exercise 12.3 Consider the following Büchi automaton over $\Sigma = \{a, b\}$:

- (a) Sketch dag $(abab^{\omega})$ and dag $((ab)^{\omega})$.
- (b) Let r_w be the ranking of dag(w) defined by

$$r_w(q,i) = \begin{cases} 1 & \text{if } q = q_0 \text{ and } \langle q_0,i \rangle \text{ appears in } \operatorname{dag}(w), \\ 0 & \text{if } q = q_1 \text{ and } \langle q_1,i \rangle \text{ appears in } \operatorname{dag}(w), \\ \bot & \text{otherwise.} \end{cases}$$

Are $r_{abab^{\omega}}$ and $r_{(ab)^{\omega}}$ odd rankings?

- (c) Show that r_w is an odd ranking if and only if $w \notin L_{\omega}(B)$.
- (d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. [Hint: