Automata and Formal Languages - Homework 11

Due 16.01.2018

Exercise 11.1

Let $\inf (w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω-regular expressions for the following ω-languages over $\Sigma=\{a, b, c\}$:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}: \inf (w) \subseteq\{a, b\}\right\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}: \inf (w)=\{a, b\}\right.$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$,
(d) $L_{4}=\left\{w \in \Sigma^{\omega}: \inf (w)=\{a, b, c\}\right\}$.

Exercise 11.2

Give deterministic Büchi automata recognizing the following ω-languages over $\Sigma=\{a, b, c\}$:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}: w\right.$ contains at least one $\left.c\right\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}:\right.$ in w, every a is immediately followed by a $\left.b\right\}$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}:\right.$ in w, between two successive a 's there are at least two b 's $\}$.

Exercise 11.3

Give deterministic Rabin automata, Muller automata and parity automata for the following language:

$$
L=\left\{w \in\{a, b\}^{\omega}: w \text { contains finitely many } a \text { 's }\right\} .
$$

Exercise 11.4

Prove or disprove:
(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A)=L_{\omega}(B) ;$
(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A)=L_{\omega}(B)$;
(c) There exists a Büchi automaton recognizing the finite ω-language $\{w\}$ such that $w \in\{0,1, \ldots, 9\}^{\omega}$ and w_{i} is the $i^{\text {th }}$ decimal of π.

