Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

06.01.2018

Automata and Formal Languages — Homework 11

Due 16.01.2018

Exercise 11.1

Let $\inf(w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω -regular expressions for the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : \inf(w) \subseteq \{a, b\} \},\$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \inf(w) = \{a, b\},\$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w) \},\$
- (d) $L_4 = \{ w \in \Sigma^{\omega} : \inf(w) = \{a, b, c\} \}.$

Exercise 11.2

Give *deterministic* Büchi automata recognizing the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : w \text{ contains at least one } c \},\$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ every } a \text{ is immediately followed by a } b \},$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ between two successive } a's \text{ there are at least two } b's \}.$

Exercise 11.3

Give *deterministic* Rabin automata, Muller automata and parity automata for the following language:

 $L = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } a's \}.$

Exercise 11.4

Prove or disprove:

- (a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (c) There exists a Büchi automaton recognizing the finite ω -language $\{w\}$ such that $w \in \{0, 1, \dots, 9\}^{\omega}$ and w_i is the i^{th} decimal of π .