
Technische Universität München Winter term 2017/18
I7
Prof. J. Esparza / Dr. M. Blondin 27.12.2017

Automata and Formal Languages — Homework 10

Due 09.01.2018

Exercise 10.1

It is late in Munich and you are craving for nuggets. Since the U-bahn is stuck at Sendliger Tor, you have no
idea how hungry you will be when reaching the restaurant. Since nuggets are only sold in boxes of 6, 9 and 20,
you wonder if it will be possible to buy exactly the amount of nuggets you will be craving for when arriving
at the restaurant. You also wonder whether it is always possible to buy the exact amount of nuggets if one is
hungry enough. Luckily, you can answer these questions since you are quite knowledgeable about Presburger
arithmetic and automata theory.

For every finite set S ⊆ N, let us say that n ∈ N is an S-number if n can be obtained as a linear combination
of elements of S. For example, if S = {6, 9, 20}, then 67 is an S-number since 67 = 3 · 6 + 1 · 9 + 2 · 20, but 25
is not. For some sets S, there are only finitely many numbers which are not S-numbers. When this is the case,
we say that the largest number which is not an S-number is the Frobenius number of S. For example, 7 is the
Frobenius number of {3, 5}, and S = {2, 4} has no Frobenius number.

To answer your questions, it suffices to come up with algorithms for Frobenius numbers and to instantiate them
with S = {6, 9, 20}.

(a) Give an algorithm that decides, on input n ∈ N and a finite subset S ⊆ N, whether n is an S-number.

(b) Give an algorithm that decides, on input S ⊆ N (finite), whether S has a Frobenius number. [Hint: keep
in mind that a number has infinitely many lsbf encodings.]

(c) Give an algorithm that computes, on input S ⊆ N (finite), the Frobenius number of S (assuming it exists).

(d) F Show that S = {6, 9, 20} has a Frobenius number, and identify this number.

Exercise 10.2

Let Σ = {a, b}. Give an MSO(Σ) sentence for the following languages:

(a) The set of words with an a at every odd position.

(b) The set of words with an even number of occurences of a’s.

(c) The set of words of odd length with an even number of occurences of a’s.



Exercise 10.3

Let n ∈ N>0. Consider the following circuit Cn:

x0

x1

x2

x3

x4

x5

...

x2n−4

x2n−3

x2n−2

x2n−1

y

In case you are not familiar with the above symbols, the first, second, third and fourth layers of gates are
respectively NOT, AND, OR and XOR gates. Note that XOR(z1, z2, . . . , zn) = z1 ⊕ z2 ⊕ · · · ⊕ zn. For every
n ∈ N>0, let Xn = {x ∈ {0, 1}n : Cn outputs 1 on input x}. Let X =

⋃
n∈N>0

Xn. In other words, X is the set

of assignments that satisfy some circuit of the infinite family of circuits {Cn : n ∈ N>0}.

(a) Give an MSO sentence φ such that L(φ) = X.

(b) F Use MONA to obtain an automaton accepting X.

To solve (a), you should consider constructing a formula for each layer of gates. For example, the following
predicate asserts that Out contains precisely the indices of wires set to 1 past the first layer of NOT gates:

layer1(Out) = ∀p (even(p) → ((p ∈ Out)↔ Q0(p))) ∧
(odd(p) → ((p ∈ Out)↔ Q1(p)))

For this question, you may assume that positions begin at 0 instead of 1 in MSO. This is the case in MONA.

† Question 10.3 is adapted from an example of Henriksen et al. Mona: Monadic second-order logic in practice. Proc. International

Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 1995.



Solution 10.1

(a) Let S = {a1, a2, . . . , ak}. A number n ∈ N is an S-number if and only if there exist x1, x2, . . . , xk ∈ N
such that n = a1x1 +a2x2 + . . .+akxk which is equivalent to n−a1x1−a2x2− . . .−akxk = 0. Therefore,
given S, we do the following:

1. Construct a transducer A accepting the solutions of y−a1x1−a2x2−. . .−akxk = 0 (using EqtoDFA),

2. Construct an automaton B obtained by projecting A onto y,

3. Test whether lsbf(n) is accepted by B,

4. Return true if and only if lsbf(n) is accepted.

F Note that A is a DFA, but B might be an NFA due to the projection.

(b) Let B the automaton constructed in (a). Note that S has a Frobenius number if and only if {n ∈ N :
lsbf(n) 6∈ L(B)} is finite. This suggests to complement B. Since B is an NFA, we must first convert it to
a DFA B′ and then complement B′. Let C be the resulting DFA.

To test whether S has a Frobenius number, it is now tempting to test whether L(C) is finite. This is
however incorrect. Indeed, every natural number has infinitely many lsbf encodings, e.g. 2 is encoded by
010∗. Therefore, even if C accepts finitely many numbers, L(C) will be infinite.

To address this issue, we prune L(C) by keeping only the minimal encoding of each number accepted by
C. Note that an lsbf encoding is minimal if and only if it does not contain any trailing 0. Thus, we can
construct a DFA M accepting the set of minimal lsbf encodings:

0

1 2

0 1

0

1

0

1

To prune L(C) of the redundant lsbf encodings, we construct a new DFA D obtained by intersecting C
with M .

It remains to test whether L(D) is finite. By construction, every state of D is reachable from the initial
state. However, due to our transformations, it may be the case that some states of D cannot reach a final
state. We may remove these states in linear time. This can be done by (implicitly) reversing the arcs of
D and then performing a depth-first search from the final states. The states which are not explored by
the search are removed from D.

Let D′ be the resulting DFA. Testing whether L(D′) is finite amounts to testing whether D′ contains no
cycle. This can be done in linear time using a depth-first search.

The overall algorithm is as follows:

1. Convert B to a DFA B′,

2. Obtain a new DFA C by complementing B′,

3. Obtain a new DFA D by intersecting C with M ,

4. Obtain a new DFA D′ by removing every state of D that cannot reach some final state,

5. Test whether D′ contains a cycle.

6. Return true if and only if D′ contains no cycle.

F Let us show that it is indeed the case that L(D′) is finite if and only ifD′ contains no cycle. Equivalently,
we may show that L(D′) is infinite if and only if D′ contains a cycle. Let D′ = (Q, {0, 1}, δ, q0, F ).

⇒) Assume L(D′) is infinite. By assumption, D′ accepts a word w such that |w| = m for some m > |Q|.
Let q0, q1, . . . , qm ∈ Q be such that q0

w1−−→ q1
w2−−→ q2 · · ·

wm−−→ qm. By the pigeonhole principle, there exist

0 ≤ i < j ≤ m such that qi = qj . Therefore, D′ contains the cycle qi
wi+1−−−→ qi+1

wi+2−−−→ · · · wj−−→ qi.



⇐) Assume D′ contains a cycle q
v−→ q for some q ∈ Q and v ∈ {0, 1}+. By construction of D′, state q is

reachable from q0, and q can reach some final state qf ∈ F . Therefore, there exist u,w ∈ {0, 1}∗ such that

q0
u−→ q

v−→ q
w−→ qf . Since q

v−→ q can be iterated arbitrarily many times, every word of uv∗w is accepted
by D′, which implies that L(D′) is infinite.

(c) Assume S has a Frobenius number. Let D′ be the DFA obtained in (b). The Frobenius number of S is
the largest natural number n accepted by D′. By assumption, L(D′) is finite. Thus, we could find n by
using a brute force approach where we go through all words accepted by D′. It is however possible to find
n much more efficiently.

Observe that D′ is acyclic. Therefore, we may compute a topological ordering q0, q1, . . . , qm of Q. For
every 0 ≤ i ≤ m, let `i = argmaxw∈Li

value(w) where Li = {w ∈ {0, 1}∗ : q0
w−→ qi}. Due to the topological

ordering, each `i can be computed as follows:

`i =

{
ε if i = 0,

argmaxw∈W value(w) where W = {`j · a : 0 ≤ j < i, a ∈ {0, 1}, δ(qj , a) = qi} if i > 0.

Once each `i is computed, we can easily derive n since n = max{value(`i) : qi ∈ F}.

F To test whether value(u) ≥ value(v), it is not necessary to convert u and v to their numerical values.
Instead, the test can be carried by testing whether u is greater or equal to v under the colexicographic
ordering, i.e. uR �lex v

R.

(d) By constructing automaton D′ for S = {6, 9, 20}, we observe that D′ has no cycle. Therefore, S has a
Frobenius number. By executing the procedure described in (c), we obtain 43 as the Frobenius number
of S. See frobenius.py for a Python implementation.

Solution 10.2

(a) We first define a formula that asserts that a set contains the odd positions:

odd(P ) = ∀p : (p ∈ P ↔ (first(p) ∨ ∃q : (p = q + 2 ∧ q ∈ P ))).

The sentence for the given language is:

∃O : (odd(O) ∧ (∀p : p ∈ O → Qa(p)).

(b)

∃E ∀p, q : (last(p) → p ∈ E) ∧
(first(p) → (p ∈ E ↔ ¬Qa(p))) ∧
(p = q + 1→ (p ∈ E ↔ ((q ∈ E)⊕Qa(p))))

(c) Let ϕ be the formula of (b) and let ψ = ∃P, p : odd(P ) ∧ last(p) ∧ p ∈ P . The sentence for the given
language is ψ ∧ ϕ.

Solution 10.3

(a) As suggested, we construct a formula for each layer of gates. Before doing so, we construct formulas to
test whether a position is even or odd:

even(p) = ∃E : [p ∈ E ∧ ∀q (q ∈ E ↔ (first(q) ∨ (∃r : r ∈ E ∧ q = r + 2))],

odd(p) = ¬even(p).

We will also need the two following abbreviations:

(p = 1) = ∃q : first(q) ∧ p = q + 1,

(p > 1) = ∃q, r : first(q) ∧ r = q + 1 ∧ p > r.



The formula for the first layer was already given:

layer1(Out) = ∀p : (even(p) → (p ∈ Out↔ Q0(p))) ∧
(odd(p) → (p ∈ Out↔ Q1(p))).

Starting from the second layer, there are only n wires instead of 2n. We make the choice of using the odd
positions to represent these wires, i.e. we consider the wires to be labeled by 1, 3, . . . , 2n − 1. Thus, for
every odd number p, the value of wire p after the AND gate is the conjunction of wires p− 1 and p prior
to the AND gate:

layer2(In,Out) = ∀p, q : (odd(p) ∧ p = q + 1)→ (p ∈ Out↔ (q ∈ In ∧ p ∈ In)).

On the third layer, there are two cases to consider. For wire 1, the output value is simply the input value.
For wire p > 1, the output value is the disjunction of wires p− 2 and p prior to the OR gate:

layer3(In,Out) = ∀p, q : odd(p)→ [(p = 1 → (p ∈ Out↔ p ∈ In) ∧
((p > 1 ∧ p = q + 2)→ (p ∈ Out↔ (q ∈ In ∨ p ∈ In)))].

The fourth layer is the trickiest layer. Observe that the XOR gate outputs 1 if and only if it takes an odd
number of 1’s as input. Therefore, we define the set

O = {p : p is a wire and there is an odd number of wires set to 1 among wires {1, 3, . . . , p}}

and we enforce the last wire to belong to O:

layer4(In) = ∃O, r : (last(r) ∧ r ∈ O) ∧
∀p, q : (odd(p)→ (p = 1→ (p ∈ O ↔ p ∈ In)) ∧

((p > 1 ∧ p = q + 2)→ (p ∈ O ↔ ((q ∈ O)⊕ (p ∈ In))))).

Finally, we ensure that the number of input gates is even, and that the circuit outputs 1:

∃p,O1, O2, O3 : last(p) ∧ odd(p) ∧ layer1(O1) ∧ layer2(O1, O2) ∧ layer3(O2, O3) ∧ layer4(O3).

(b) The formulas obtained in (a) can be expressed as follows in MONA:

var1 last_var;

var2 Bits;

defaultwhere1(p) = p <= last_var;

defaultwhere2(P) = P sub {0,...,last_var};

# Utility predicates

pred Q0(var1 p) = (p notin Bits);

pred Q1(var1 p) = (p in Bits);

pred even(var1 p) =

ex2 E: (p in E) &

(all1 q: (q in E) <=> ((q = 0) | (ex1 r: (r in E) & (q = r + 2))));

pred odd(var1 p) = ~even(p);

pred xor(var0 p, var0 q) = ((~p) <=> q);

# Circuit layers

pred layer1(var2 Out) =

all1 p:

((even(p) => ((p in Out) <=> Q0(p))) &

(odd(p) => ((p in Out) <=> Q1(p))));

pred layer2(var2 In, var2 Out) =

all1 p:

odd(p) => ((p in Out) <=> ((p-1 in In) & (p in In)));



pred layer3(var2 In, var2 Out) =

all1 p:

odd(p) =>

(((p = 1) => ((p in Out) <=> (p in In))) &

((p > 1) => ((p in Out) <=> (p-2 in In | p in In))));

pred layer4(var2 In) =

ex2 O: (last_var in O) &

(all1 p: odd(p) =>

(((p = 1) => ((p in O) <=> (p in In))) &

((p > 1) => ((p in O) <=> xor(p-2 in O, p in In)))));

# Assertions

assert(odd(last_var));

assert(ex2 O1, O2, O3:

layer1(O1) & layer2(O1, O2) & layer3(O2, O3) & layer4(O3));

By executing: mona -gw solution.mona > solution.dot && dot -Tps solution.dot -o solution.ps,
MONA yields the following automaton:

6

X
0

4

X
1

0 1
X
X

2

0
0

3

0
1

1
X

1
1

0
0

1
0

5
0
1

0
X

1
X

X
X

0
1

1
X

7

0
0

0
0

1
X

8

0
1

1
X

9
0
0

10

0
1

1
X

0
1

11

0
0

1
X

0
X

1
X

0
1

12

0
0

1
0

1
1

0
1

0
0

The above automaton is not exactly the one we are looking for:

• Symbol X stands for “either 0 or 1”, so we expand each X to the explicit letters.

• We discard state 4 which is a trap state.

• The transition from state 0 to state 1 represents position −1 which is present in MONA for technical
reasons. Thus, we discard state 0 and make state 1 initial.

• The letters’ first component represents the length of the word. Thus, we should stop reading a word
upon reading the first 1 in the first component. We must then remove the self-loop on state 6.
Finally, we project the letters on their second component.



Overall, we obtain the following automaton:

6

1

2

0

3
1

1

0

51

0,1

0
1

7

0

0

8
1

9

0

10
1

0,1
1

11

0

0,1

0,1

1

12

0

0

1

0


