
Technische Universität München Winter term 2017/18
I7
Prof. J. Esparza / Dr. M. Blondin 16.12.2017

Automata and Formal Languages — Homework 9

Due 19.12.2017

Exercise 9.1

Suppose there are n processes being executed concurrently. Each process has a critical section and a non
critical section. At any time, at most one process should be in its critical section. In order to respect this
mutual exclusion property, the processes communicate through a channel c. Channel c is a queue that can store
up to m messages. A process can send a message x to the channel with the instruction c ! x. A process can
also consume the first message of the channel with the instruction c ? x. If the channel is full when executing
c ! x, then the process blocks and waits until it can send x. When a process executes c ? x, it blocks and waits
until the first message of the channel becomes x.

Consider the following algorithm. Process i declares its intention of entering its critical section by sending i to
the channel, and then enters it when the first message of the channel becomes i:

1 process(i):
2 while true do
3 c ! i
4 c ? i
5 /* critical section */

6 /* non critical section */

(a) Sketch an automaton that models a channel of size m > 0 where messages are drawn from some finite
alphabet Σ.

(b) Model the above algorithm, with n = 2 and m = 1, as a network of automata. There should be three
automata: one for the channel, one for process(0) and one for process(1).

(c) F Use Spin to simulate and verify naive mutex.pml.

(d) Construct the asynchronous product of the network obtained in (b).

(e) Use the automaton obtained in (d) to show that the above algorithm violates mutual exclusion, i.e. the
two processes can be in their critical sections at the same time.

(f) Design an algorithm that makes use of a channel to achieve mutual exclusion for two processes (n = 2).
You may choose m as you wish.

(g) Model your algorithm from (f) as a network of automata.

(h) F Model your algorithm from (f) in Promela. Use Spin to simulate and verify the algorithm.

(i) Construct the asynchronous product of the network obtained in (g).

(j) Use the automaton obtained in (i) to show that your algorithm achieves mutual exclusion.



Exercise 9.2

In the previous question, we have seen that mutual exclusion can be achieved by communicating through
channels. Let us now consider processes communicating through shared variables. Suppose there are two
processes sharing a variable x initialized to 0. Mutual exclusion can be achieved using the following algorithm:

1 process(i):
2 while true do
3 while x = 1− i do
4 skip
5 /* critical section */

6 x← 1− i
7 /* non critical section */

(a) Model the above algorithm as a network of automata. There should be three automata: one for the
channel, one for process(0) and one for process(1).

(b) Construct the asynchronous product of the network obtained in (a).

(c) F Use Spin to simulate and verify mutex.pml.

(d) Use the automaton obtained in (b) to show that the algorithm achieves mutual exclusion.

(e) If a process wants to enter its critical section, is it always the case that it will eventually enter it? You
should reason in terms of infinite executions.

Exercise 9.3

The following algorithm attempts to achieve mutual exclusion for two processes. The processes share variables
b0, b1 and k initialized respectively to false, false and 0.

1 process(i):
2 while true do
3 bi ← true
4 while k 6= i do
5 while b1−i do
6 skip
7 k ← i

8 /* critical section */

9 bi ← false
10 /* non critical section */

(a) Model the above algorithm as a network of automata.

(b) Find an execution where both processes end up in their critical sections at the same time.

(c) F Model the algorithm in Promela.

(d) F Can you find an execution violating mutual exclusion by simulating the algorithm with Spin?

(e) F Verify the algorithm with Spin.



Exercise 9.4

The following algorithm attempts to achieve mutual exclusion for two processes. These processes share variables
x, y and z which are initialized to 0.

1 process(i):
2 while true do
3 /* non critical section */

4 x← i + 1
5 if y 6= 0 and y 6= i + 1 then
6 goto 4
7 z ← i + 1
8 if x 6= i + 1 then
9 goto 4

10 y ← i + 1
11 if z 6= i + 1 then
12 goto 4
13 /* critical section */

(a) Model the above algorithm as a network of automata.

(b) F Find an execution where both processes end up in their critical sections at the same time.

(c) F Model the algorithm in Promela.

(d) F Can you find an execution violating mutual exclusion by simulating the algorithm with Spin?

(e) F Verify the algorithm with Spin.


