Technische Universitat Miinchen Winter term 2017/18
I7
Prof. J. Esparza / Dr. M. Blondin 07.12.2017

Automata and Formal Languages — Homework 8

Due 12.12.2017

Exercise 8.1
Let Ly = {abb, bba, bbb} and Ly = {aba, bbb}.

(a) Give an algorithm for the following operation:

INPUT: A fixed-length language L C ¥* described explicitely by a set of words.
OuTPUT: State ¢ of the master automaton over ¥ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L; and Lo.

(¢) Compute the state of the master automaton representing L; U Lo.

(d) Identify the kernels (L), (L2), and (L1 U Ls).

Exercise 8.2

(a) Give an algorithm for the following operation:

INPUT: States p and ¢ of the master automaton.
OuTPUT: State r of the master automaton such that L(r) = L(p) - L(q).

(b) A coding over an alphabet X is a function h: ¥ +— X. A coding h can naturally be extended to a morphism
over words, i.e. h(e) = € and h(w) = h(wy)h(ws) - - - h(wy) for every w € ¥™. Give an algorithm for the
following operation:

INPUT: A state ¢ of the master automaton and a coding h.
OuTtpuT: State r of the master automaton such that L(r) = {h(w) : w € L(q)}.

Can you make your algorithm more efficient when h is a permutation?
(c) Give an algorithm for the following operation:

INPUT: A state ¢ of the master automaton.
OUTPUT: State r of the master automaton such that L(r) = L(q)®.

(d) Give an algorithm for the following operation:

INPUT: A DFA A over alphabet 3, and k € N.
OUTPUT: State g of the master automaton over ¥ such that L(q) = L(A) N F.

Apply your algorithm on the following DFA with k = 3:

Exercise 8.3

Let k € Nyg. Let flip : {0,1}* — {0,1}* be the function that inverts the bits of its input, e.g. flip(010) = 101.
Let val : {0,1}* — N be such that val(w) is the number represented by w in the least significant bit first
encoding.

(a) Describe the minimal transducer that accepts
Ly, = {[z,y] € ({0,1} x {0,1})F : val(y) = val(flip(z)) + 1 mod 2¥} .

(b) Build the state r of the master transducer for Lz, and the state ¢ of the master automaton for {010, 110}.

(c) Adapt the algorithm pre seen in class to compute post(r, q).

Solution 8.1
(a)

Input: A fixed-length language L C X* described explicitely by a set of words.
Output: State g of the master automaton over ¥ such that L(g) = L.
add-lang(L) :
if L =0 then
return gy
else if L = {¢} then
return q.
else
for a € ¥ do
L* «+{u:aue L}
Sq < add-lang(L?)
return make(s)

© 0 N O A W N

i
o

(b) Executing add-lang(L;) yields the following computation tree:

add-lang({abb, bba, bbb})

®

make(add-lang({bb}), add-lang({ba,bb}))

/\

make(add-lang(()), add-lang({b})) make(add-lang()), add-lang({a,b}))
e ® | / o/
. make(add-lang()), add-lang({c})) . make(add-lang({c}), add-lang({c}))

/\ /o

The table obtained after the execution is as follows:

Ident. | a-succ b-succ
2 90 e
3 qp 2
4 4e 4e
5 qp 4
6 3 5

Calling add-lang(L2) adds the following rows to the table and returns 9:

Ident. | a-succ b-succ
7 qe dp
8 qp 7
9 8 3

The resulting master automaton fragment is:

Ly

(c¢) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) U L(q).
1 union(p,q) :

2 if G(p,q) is not empty then

3 return G(p, q)

4 else if p = gy and ¢ = gy then
5 return g

6 else if p = ¢. or ¢ = ¢. then
7 return q.

8 else

9 for a € ¥ do

10 Sa < union(p?, ¢%)

11 G(p,q) < make(s)

12 return G(p, q)

Executing union(6,9) yields the following computation tree:

union(6,9)

make(union(3,8), wunion(5,3))

./ \.

make(union(qp,qg), union(2,7)) make(union(gg,qg), union(4,2))

/o e\ e

. make(union(gg,q:), union(ge,qp)) . make(union(qe,qg), union(qe,q:))

/N /\

Calling union(6,9) adds the following row to the table and returns 10:

Ident. | a-succ b-succ
10 | 5 5

The new fragment of the master automaton is:

Lo

% Note that union could be slightly improved by returning ¢ whenever p = ¢, and by updating G(q, p)
at the same time as G(p, q).

(d) The kernels are:

(L1) = Lu,
(L2) = Lo,
<L1 U L2> = {ba, bb}

Solution 8.2
(a) Let L and L' be fixed-length languages. The following holds:

0 if L =0,

L.o={r if L = {e},
U a-L%- L' otherwise.
aceX

These identities give rise to the following algorithm:

Input: States p and ¢ of the master automaton.

Output: State r of the master automaton such that L(r) = L(p) - L(q).
1 concat(p,q) :

2 if G(p,q) is not empty then
3 return G(p, q)

4 else if p = gy then

5 return gy

6 else if p = ¢. then

7 return q

8 else

9 for a € ¥ do

10 Sq concat(p?,q)

11 G(p,q) < make(s)

12 return G(p, q)

(b) Let L be a fixed-length language and let h be a coding. The following holds:

0 if L=10,

) =4 1 if L = {e},
U h(a) - L* otherwise.
a€y

These identities give rise to the following algorithm:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Input: A state ¢ of the master automaton and a coding h.
Output: State r of the master automaton such that L(r) = {h(w) : w € L(q)}.
coding(q, h) :
if G(q) is not empty then
return G(q)
else if ¢ = gy then
return gy
else if ¢ = g. then
return q.
else
D qp
for a € ¥ do
r < coding(q®, h)
Shia) < T
sp < qg for every b # h(a)
p < union(p,make(s))
G(g) < p
return G(q)

The above algorithm makes use of union because the coding may be the same for distinct letters, i.e.
h(a) = h(b) for a # b is possible. However, if the coding is a permutation, then this is not possible, and
thus each letter maps to a unique residual. Therefore, the algorithm can be adapted as follows:

Input: A state ¢ of the master automaton and a coding h which is a permutation.
Output: State r of the master automaton such that L(r) = {h(w) : w € L(q)}.
coding-permutation(g, h) :
if G(q) is not empty then
return G(q)
else if ¢ = gy then
return gy
else if ¢ = g. then
return q.
else
for a € ¥ do
Sph(a) < coding-permutation(q®,h)
G(q) « make(s)
return G(q)

(c) Let L be a fixed-length language. The following holds:

0 if L =0,

LR = {5} if L= {5}7
U (L)% .a otherwise.
a€y

These identities give rise to the following algorithm:

Input: A state ¢ of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)¥.

1 reverse(q) :

2 if G(q) is not empty then

3 return G(q)

4 else if ¢ = gy then

5 return gy

6 else if ¢ = ¢. then

7 return q.

8 else

9 P q
10 for a € ¥ do
11 Sa < Qe
12 sp < qg for every b # a
13 r < concat(reverse(q®),make(s))
14 p < union(p,)
15 G(q) «p
16 return G(q)

(d) Let A be a DFA and let k& € N. The following holds:

0 if k=0and e ¢ L(A),
LA Nk = {e} if k=0 and ¢ € L(A),

U a-(L(A)* NP1 otherwise.

a€X

These identities give rise to the following algorithm:

Input: A DFA A over alphabet X, and k£ € N.
Output: State ¢ of the master automaton over ¥ such that L(q) = L(A) N X*.
1 finitize(A, k) :

2 (Q,QO,Z,(S,F)%A
3 return finitize’ (g, k)
4
5 finitize’ (q, k) :
6 if G(q, k) is not empty then
7 return G(q, k)
8 else if £k =0 and g ¢ F then
9 return gy
10 else if £k =0 and g € F then
11 return q.
12 else
13 for a € ¥ do
14 Sq < finitize’(d(q,a),k — 1)
15 G(q, k) < make(s)
16 return G(q, k)

Executing finitize(A,3) calls finitize’(qo,3) which yields the following computation tree:

finitize’(qo,3)

make(finitize’(qg,2), finitize’(q1,2

/ \

make(finitize’(qop,1), finitize’(q,1 make(finitize’(gs,1), finitize’(qo,1))
make(finitize’(qp,0), finitize’(q;,0)) make(finitize’(¢2,0), finitize’(qo,0)) make(finitize’(g2,0), finitize’(q1,0)) G(qo,1)

/o /o /o

State 5 of the following master automaton fragment accepts L(A) N {a,b}> = {aab, bab, bbb}:

Solution 8.3

(a) Let [z,y] € L. We may flip the bits of at the same time as adding 1. If 3 = 1, then —x; = 0, and
hence adding 1 to val(flip(x)) results in y; = 1. Thus, for every 1 < ¢ < k, we have y; = —z;. If 1 =0,
then —x; = 1. Adding 1 yields y; = 0 with a carry. This carry is propagated as long as —x; = 1, and thus
as long as x; = 0. If some position j with x; = 1 is encountered, the carry is “consumed”, and we flip the
remaining bits of . These observations give rise to the following minimal transducer for Ly:

(c) We can establish the following identities similar to those obtained for pre:

0 if R=0or L=0,
post (L) = {e} if R={[e,e]} and L = {e},
U b post a1 (L*) otherwise.
a,bex

To see that these identities hold, let b € ¥ and v € X* for some k € N. We have,

bv € postr(L) <= Ja € X,uc X¥ st. au € L and [au,bv] € R
Ja € ¥, u € L* s.t. [au,bv] € R
Ja € X,u € L% s.t. [u,v] € RV

Jda € ¥ s.t. v € Postlas (L)

RS U Post pa,n (L*)
a€Xx

[N I

bve | b- Postrin (L?).
acd

We obtain the following algorithm:

Input: A state r of the master transducer and a state g of the master automaton.
Output: State p of the master automaton such that L(p) = Postr(L) where R = L(r) and L = L(q).
1 post(r,q) :
if G(r,q) is not empty then
return G(r,q)
else if r =ry or ¢ = gy then
return g
else if r = r. and ¢ = ¢. then
return q.
else
for b€ ¥ do
P qp
for a € ¥ do
p < union(p, post (@t ¢2))
Sp <P
G(q,r) + make(s)
return G(q,r)

© 00 N O kA~ W N

I S O =
QU W N = O

Note that the transducer for L3 has some “strong” deterministic property. Indeed, for every state r and
b € {0,1}, if rl®¥ =£ 7y then r[7%] = ry. Hence, for a fixed b € {0,1}, at most one term of the form
post (7l ¢%)” can differ from gy at line 12 of the algorithm. Thus, unions made by the algorithm on

this transducer are trivial, and executing post(6,4) yields the following computation tree:
post(rg,4)

make(post(r4, 3), post(rs, 3)

0/ \

make(post(ra, qp), post(rs, 2 make(post(rs,2), post(rs,qp))

/ @\ @3,/ \.

. make(post(re,qp), post(re, qc))

[

Calling post(6,4) adds the following rows to the master automaton table and returns 8:

Ident. ‘ 0-succ 1-succ

5 q0 qe
6 qp 5
7 5 qp
8 6 7

The resulting master automaton fragment:

Post(Ls,{010,110})

0,1

