Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

07.12.2017

Automata and Formal Languages — Homework 8

Due 12.12.2017

Exercise 8.1

Let $L_1 = \{abb, bba, bbb\}$ and $L_2 = \{aba, bbb\}.$

(a) Give an algorithm for the following operation:

INPUT: A fixed-length language $L \subseteq \Sigma^k$ described explicitly by a set of words. OUTPUT: State q of the master automaton over Σ such that L(q) = L.

- (b) Use the previous algorithm to build the states of the master automaton for L_1 and L_2 .
- (c) Compute the state of the master automaton representing $L_1 \cup L_2$.
- (d) Identify the kernels $\langle L_1 \rangle$, $\langle L_2 \rangle$, and $\langle L_1 \cup L_2 \rangle$.

Exercise 8.2

(a) Give an algorithm for the following operation:

INPUT: States p and q of the master automaton. OUTPUT: State r of the master automaton such that $L(r) = L(p) \cdot L(q)$.

(b) A coding over an alphabet Σ is a function $h: \Sigma \mapsto \Sigma$. A coding h can naturally be extended to a morphism over words, i.e. $h(\varepsilon) = \varepsilon$ and $h(w) = h(w_1)h(w_2)\cdots h(w_n)$ for every $w \in \Sigma^n$. Give an algorithm for the following operation:

INPUT: A state q of the master automaton and a coding h. OUTPUT: State r of the master automaton such that $L(r) = \{h(w) : w \in L(q)\}$.

Can you make your algorithm more efficient when h is a permutation?

(c) Give an algorithm for the following operation:

INPUT: A state q of the master automaton. OUTPUT: State r of the master automaton such that $L(r) = L(q)^R$.

(d) Give an algorithm for the following operation:

INPUT: A DFA A over alphabet Σ , and $k \in \mathbb{N}$. OUTPUT: State q of the master automaton over Σ such that $L(q) = L(A) \cap \Sigma^k$.

Apply your algorithm on the following DFA with k = 3:

Exercise 8.3

Let $k \in \mathbb{N}_{>0}$. Let flip: $\{0,1\}^k \to \{0,1\}^k$ be the function that inverts the bits of its input, e.g. flip(010) = 101. Let val : $\{0,1\}^k \to \mathbb{N}$ be such that val(w) is the number represented by w in the *least significant bit first* encoding.

(a) Describe the minimal transducer that accepts

 $L_k = \{ [x, y] \in (\{0, 1\} \times \{0, 1\})^k : \operatorname{val}(y) = \operatorname{val}(\operatorname{flip}(x)) + 1 \mod 2^k \}.$

- (b) Build the state r of the master transducer for L_3 , and the state q of the master automaton for $\{010, 110\}$.
- (c) Adapt the algorithm *pre* seen in class to compute post(r, q).