Automata and Formal Languages - Homework 5

Due 21.11.2017

Exercise 5.1

For every $n \in \mathbb{N}$, let $L_{n} \subseteq\{a, b\}^{*}$ be the language described by the regular expression $(a+b)^{*} a(a+b)^{n} b(a+b)^{*}$.
(a) Give an NFA A_{n} with $n+3$ states that accepts L_{n}.
(b) Decide algorithmically whether baabba $\in L\left(A_{2}\right)$ and baabaa $\in L\left(A_{2}\right)$.
(c) If you make final and non final states of A_{n} respectively non final and final, do you obtain an NFA that accepts $\overline{L_{n}}$? Justify your answer.
(d) Show that $w w \notin L_{n}$ for every $w \in\{a, b\}^{n+1}$.
(e) Show that any NFA accepting $\overline{L_{n}}$ has at least 2^{n+1} states. [Hint:

Exercise 5.2

Consider the following NFAs A and B :

(a) Use algorithm UnivNFA to determine whether $L(B)=\{a, b\}^{*}$.
(b) Use algorithm InclNFA to determine whether $L(A) \subseteq L(B)$.

Exercise 5.3

(a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm InclNFA twice. Give an alternative algorithm, based on pairings, for testing equality.
(b) Give two NFAs A and B for which exploring only the minimal states of $[N F A t o D F A(A), N F A t o D F A(B)]$ is not sufficient to determine whether $L(A)=L(B)$.
(c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACEhard.

