Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

Automata and Formal Languages — Homework 5

Due 21.11.2017

Exercise 5.1

For every $n \in \mathbb{N}$, let $L_n \subseteq \{a, b\}^*$ be the language described by the regular expression $(a+b)^* a(a+b)^n b(a+b)^*$.

- (a) Give an NFA A_n with n + 3 states that accepts L_n .
- (b) Decide algorithmically whether $baabba \in L(A_2)$ and $baabaa \in L(A_2)$.
- (c) If you make final and non final states of A_n respectively non final and final, do you obtain an NFA that accepts $\overline{L_n}$? Justify your answer.
- (d) Show that $ww \notin L_n$ for every $w \in \{a, b\}^{n+1}$.
- (e) Show that any NFA accepting $\overline{L_n}$ has at least 2^{n+1} states. [Hint:]

Exercise 5.2

Consider the following NFAs A and B:

- (a) Use algorithm UnivNFA to determine whether $L(B) = \{a, b\}^*$.
- (b) Use algorithm *InclNFA* to determine whether $L(A) \subseteq L(B)$.

Exercise 5.3

- (a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm *InclNFA* twice. Give an alternative algorithm, based on pairings, for testing equality.
- (b) Give two NFAs A and B for which exploring only the minimal states of [NFAtoDFA(A), NFAtoDFA(B)] is not sufficient to determine whether L(A) = L(B).
- (c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACE-hard.