Automata and Formal Languages - Homework 4

Due 14.11.2017

Exercise 4.1

Consider the following DFAs A, B and C :

Use pairings to decide algorithmically whether $L(A) \cap L(B) \subseteq L(C)$.

Exercise 4.2

Let $L \subseteq \Sigma^{*}$ be a language accepted by an NFA A. For every $u, v \in \Sigma^{*}$, we say that $u \preceq v$ if and only if u can be obtained by deleting zero, one or multiple letters of v. For example, $a b c \preceq a b c a, a b c \preceq a c b a c, a b c \preceq a b c$, $\varepsilon \preceq a b c$ and $a a b \npreceq a c b a c$. Give an NFA- ε for each of the following languages:
(a) $\downarrow L=\left\{w \in \Sigma^{*}: w \preceq w^{\prime}\right.$ for some $\left.w^{\prime} \in L\right\}$,
(b) $\uparrow L=\left\{w \in \Sigma^{*}: w^{\prime} \preceq w\right.$ for some $\left.w^{\prime} \in L\right\}$,
(c) $\sqrt{L}=\left\{w \in \Sigma^{*}: w w \in L\right\}$,
(d) $\operatorname{Cyc}(L)=\left\{v u \in \Sigma^{*}: u v \in L\right\}$.

Exercise 4.3

Let Σ_{1} and Σ_{2} be alphabets. A morphism is a function $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that $h(\varepsilon)=\varepsilon$ and $h(u v)=h(u) \cdot h(v)$ for every $u, v \in \Sigma_{1}^{*}$. In particular, $h\left(a_{1} a_{2} \cdots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \cdots h\left(a_{n}\right)$ for every $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$. Hence, a morphism h is entirely determined by its image over letters.
(a) Let $L \subseteq \Sigma_{1}^{*}$ be accepted by some NFA A_{1}. Give an NFA- εB_{2} that accepts $h(L)=\{h(w): w \in L\}$.
(b) Let $L \subseteq \Sigma_{2}^{*}$ be accepted by some NFA A_{2}. Give an NFA B_{1} that accepts $h^{-1}(L)=\left\{w \in \Sigma_{1}^{*}: h(w) \in L\right\}$.
(c) Show that $L=\left\{(a a b)^{n} e^{m}(c a d)^{n} e f(f e)^{n}: m, n \in \mathbb{N}\right\}$ is not regular by using the fact that $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is not regular.

Exercise 4.4

For every $n \in \mathbb{N}$, let $L_{n} \subseteq\{a, b\}^{*}$ be the language described by the regular expression $(a+b)^{*} a(a+b)^{n} b(a+b)^{*}$.
(a) Give an NFA A_{n} with $n+3$ states that accepts L_{n}.
(b) Decide algorithmically whether baabba $\in L\left(A_{2}\right)$ and baabaa $\in L\left(A_{2}\right)$.
(c) If you make final and non final states of A_{n} respectively non final and final, do you obtain an NFA that accepts $\overline{L_{n}}$? Justify your answer.
(d) Show that $w w \notin L_{n}$ for every $w \in\{a, b\}^{n+1}$.
(e) Show that any NFA accepting $\overline{L_{n}}$ has at least 2^{n+1} states. [Hint:

