Automata and Formal Languages — Homework 3

Due 07.11.2017

Exercise 3.1

Let $M_n = \{w \in \{0,1\}^* : \text{msbf}(w) \text{ is a multiple of } n\}$ (see Exercise #1.2) and let $L_{\text{pal}} = \{w \in \Sigma^* : w = w^R\}$ where Σ is some finite alphabet.

- (a) Show that M_3 has (exactly) three residuals, i.e. show that $|\{(M_3)^w : w \in \{0,1\}^*\}| = 3$.
- (b) Show that M_4 has less than four residuals.
- (c) \bigstar Show that M_p has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$. [Hint:
- (d) Show that L_{pal} has infinitely many residuals whenever $|\Sigma| \geq 2$.
- (e) Show that L_{pal} is regular for $\Sigma = \{a\}$. Is L_{pal} also regular for larger alphabets?

Exercise 3.2

Let A and B be respectively the following DFAs:

- (a) Compute the language partitions of A and B.
- (b) Construct the quotients of A and B with respect to their language partitions.
- (c) Give regular expressions for L(A) and L(B).

- (a) Compute the coarsest stable refinements (CSR) of A and B.
- (b) Construct the quotients of A and B with respect to their CSRs.
- (c) Show that

$$L(A) = \{w \in \{a, b\}^* : w \text{ starts and ends with } a\}$$
$$L(B) = \{w \in \{a, b\}^* : w \text{ starts with } ac \text{ and ends with } ab\}$$

(d) Are the automata obtained in (b) minimal?

Solution 3.1

(a) In exercise #1.2(c), we have seen a DFA with three states that accepts M_3 . Therefore, M_3 has at most three residuals. We claim that M_3 has at *least* three residuals. To prove this claim, it suffices to show that the ε -residual, 1-residual and 10-residual of M_3 are distinct. This holds since:

$$\begin{array}{ll} \varepsilon \cdot \varepsilon \in M_3, & \varepsilon \cdot \varepsilon \in M_3, & 1 \cdot 1 \in M_3, \\ 1 \cdot \varepsilon \notin M_3, & 10 \cdot \varepsilon \notin M_3, & 10 \cdot 1 \notin M_3. \end{array}$$

- (b) In exercise #1.2(b), we have seen a DFA with three states that accepts M_4 . Therefore, M_4 has at most three residuals.
- (c) In exercise #1.2(g), we have seen a DFA with p states that accepts M_p . Therefore, M_p has at most p residuals. It remains to show that M_p has at least p residuals. For every $0 \le i < p$, let u_i be the word such that $|u_i| = p 1$ and msbf $(u_i) = i$. Note that u_i exists since the smallest encoding of i has at most p 1 bits, and it can be extended to length p 1 by padding with zeros on the left. Let us show that the u_i -residual and u_j -residual of M_p are distinct for every $0 \le i, j < p$ such that $i \ne j$. Let $0 \le k < p$, and let $\ell = (p i) \mod p$. We have:

$$msbf(u_k u_\ell) = 2^{|u_\ell|} \cdot msbf(u_k) + msbf(u_\ell)$$

= $2^{p-1} \cdot k + ((p-i) \mod p)$
 $\equiv k + ((p-i) \mod p)$ (by Fermat's little theorem)
 $\equiv k + p - i$
 $\equiv k - i.$

Let $0 \leq i, j < p$ be such that $i \neq j$. We have $u_i u_\ell \in M_p$ since $\operatorname{msbf}(u_i u_\ell) \equiv i - i \equiv 0$, but we have $u_j u_\ell \notin M_p$ since $\operatorname{msbf}(u_j u_\ell) \equiv j - i \not\equiv 0$. Therefore, the u_i -residual and u_j -residual of M_p are distinct. \Box

(d) Without loss of generality, we may assume that $a, b \in \Sigma$. For every $i \in \mathbb{N}$, let $u_i = a^i b$. Let $i, j \in \mathbb{N}$ be such that $i \neq j$. We claim that the u_i -residual and the u_j -residual of L_{pal} differ. This shows that L_{pal} has infinitely many residuals. To prove the claim, observe that $u_i a^i \in L_{\text{pal}}$ and that $u_j a^i \notin L_{\text{pal}}$.

★ To see why $u_j a^i \notin L_{\text{pal}}$, assume for the sake of contradiction that $u_j a^i \in L_{\text{pal}}$. Let $w = u_j a^i$. Since w is a palindrome, it must be the case that $w_{j+1} = b = w_{|w|-(j+1)+1}$. In particular, since w contains only a single b, we must have |w| - (j+1) + 1 = j + 1. This yields a contradiction since

$$|w| - (j+1) + 1 = (i+j+1) - (j+1) + 1$$

= i+1
\$\neq j+1\$ (by \$i \neq j\$).

(e) If $\Sigma = \{a\}$, then $L_{\text{pal}} = \Sigma^*$ since every word is trivially a palindrome. Thus, L_{pal} is accepted by a DFA with a single state. If $|\Sigma| > 1$, then by (d) we know that L_{pal} has infinitely many residuals. A language is regular if and only if it has finitely many residuals, and hence L_{pal} is not regular.

Solution 3.2

A) (a)

Iter.	Block to split	$\mathbf{Splitter}$	New partition
0		_	$\{q_0, q_1, q_2, q_3, q_5, q_6\}, \{q_4\}$
1	$\{q_0, q_1, q_2, q_3, q_5, q_6\}$	$(b, \{q_4\})$	$\{q_0, q_2, q_6\}, \{q_1, q_3, q_5\}, \{q_4\}$
2	none, partition is stable	_	

The language partition is $P_{\ell} = \{\{q_0, q_2, q_6\}, \{q_1, q_3, q_5\}, \{q_4\}\}.$

(b)

(c)
$$(a+b)^*ab$$
.

B) (a)

Iter.	Block to split	${f Splitter}$	New partition
0			$\{q_0, q_3\}, \{q_1, q_2, q_4\}$
1	$\{q_1, q_2, q_4\}$	$(b, \{q_1, q_2, q_4\})$	$\{q_0,q_3\},\{q_1\},\{q_2,q_4\}$
2	$\{q_2, q_4\}$	$(a, \{q_0, q_3\})$	$\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}$
3	none, partition is stable		

The language partition is $P_{\ell} = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}.$

(b)

(c) $(aa + bb)^*$ or $((aa)^*(bb)^*)^*$.

Solution 3.3

A) (a)

Iter.	Block to split	$\mathbf{Splitter}$	New partition
0			$\{q_0, q_1, q_2, q_3, q_4\}, \{q_5\}$
1	$\{q_0, q_1, q_2, q_3, q_4\}$	$(a, \{q_5\})$	$\{q_0\}, \{q_1, q_2, q_3, q_4\}, \{q_5\}$
2	none, partition is stable		

The CSR is $P = \{\{q_0\}, \{q_1, q_2, q_3, q_4\}, \{q_5\}\}.$

(b)

(c) It follows immediately from the fact that A accepts the same language as the automaton obtained in (b).

- (d) Yes. By (c), the language accepted by A is $a(a + b)^*a$. An NFA with one state can only accept $\emptyset, \{\varepsilon\}, a^*, b^*$ and $\{a, b\}^*$. Suppose there exists an NFA $A' = (\{q_0, q_1\}, \{a, b\}, \delta, Q_0, F)$ accepting L(A). Without loss of generality, we may assume that q_0 is initial. A' must respect the following properties:
 - $q_0 \notin F$, since $\varepsilon \notin L(A)$,
 - $q_1 \in F$, since $L(A) \neq \emptyset$,
 - $q_1 \notin Q_0$, since $\varepsilon \notin L(A)$,
 - $q_1 \in \delta(q_0, a)$, otherwise it is impossible to accept aa which is in L(A).

This implies that A' accepts a, yet $a \notin L(A)$. Therefore, no two states NFA accepts L(A).

	Iter.	Block to split	$\mathbf{Splitter}$	New partition
	0	—		$\{q_0, q_1, q_2, q_3, q_4\}, \{q_5\}$
-	1	$\{q_0, q_1, q_2, q_3, q_4\}$	$(a, \{q_5\})$	$\{q_0, q_1, q_2, q_3\}, \{q_4\}, \{q_5\}$
	2	$\{q_0, q_1, q_2, q_3\}$	$(a, \{q_4\})$	$\{q_0, q_1\}, \{q_2, q_3\}, \{q_4\}, \{q_5\}$
	3	$\{q_0,q_1\}$	$(c, \{q_2, q_3\})$	$\{q_0\}, \{q_1\}, \{q_2, q_3\}, \{q_4\}, \{q_5\}$
-	4	$\{q_2,q_3\}$	$(a, \{q_0\})$	$\{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_5\}$

B) (a)

The CSR is $P = \{\{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_5\}\}.$

- (b) The automaton remains unchanged.
- (c) \subseteq) Let $w \in L(B)$. Every path from q_0 to q_5 first goes through q_1 and q_2 and ends up going through q_4 and q_5 . This implies that $w \in L(ac(a+b+c)^*ab)$.

 $\supseteq) \text{ First note that for every } u \in \{a, b, c\}^*, \text{ there exists } q \in \{q_2, q_3\} \text{ such that } q_2 \xrightarrow{u} q. \text{ This can be shown by induction on } |u|. \text{ Let } w \in L(ac(a + b + c)^*ab). \text{ There exists } u \in \{a, b, c\}^* \text{ such that } w = acuab. \text{ Let } q \in \{q_2, q_3\} \text{ be such that } q_2 \xrightarrow{u} q. \text{ We have } q_0 \xrightarrow{a} q_1 \xrightarrow{c} q_2 \xrightarrow{u} q \xrightarrow{a} q_4 \xrightarrow{b} q_5. \text{ Therefore, } w \in L(B).$

(d) No. We have seen a DFA with five states accepting the same language in Exercise #1.1.