Automata and Formal Languages - Homework 3

Due 07.11.2017

Exercise 3.1

Let $M_{n}=\left\{w \in\{0,1\}^{*}: \operatorname{msbf}(w)\right.$ is a multiple of $\left.n\right\}$ (see Exercise \#1.2) and let $L_{\mathrm{pal}}=\left\{w \in \Sigma^{*}: w=w^{R}\right\}$ where Σ is some finite alphabet.
(a) Show that M_{3} has (exactly) three residuals, i.e. show that $\left|\left\{\left(M_{3}\right)^{w}: w \in\{0,1\}^{*}\right\}\right|=3$.
(b) Show that M_{4} has less than four residuals.
(c) \star Show that M_{p} has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$. [Hint:
(d) Show that $L_{\text {pal }}$ has infinitely many residuals whenever $|\Sigma| \geq 2$.
(e) Show that L_{pal} is regular for $\Sigma=\{a\}$. Is L_{pal} also regular for larger alphabets?

Exercise 3.2

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Exercise 3.3

Let A and B be respectively the following NFAs:

(a) Compute the coarsest stable refinements (CSR) of A and B.
(b) Construct the quotients of A and B with respect to their CSRs.
(c) Show that

$$
\begin{aligned}
& L(A)=\left\{w \in\{a, b\}^{*}: w \text { starts and ends with } a\right\} \\
& L(B)=\left\{w \in\{a, b\}^{*}: w \text { starts with } a c \text { and ends with } a b\right\}
\end{aligned}
$$

(d) Are the automata obtained in (b) minimal?

Solution 3.1

(a) In exercise \#1.2(c), we have seen a DFA with three states that accepts M_{3}. Therefore, M_{3} has at most three residuals. We claim that M_{3} has at least three residuals. To prove this claim, it suffices to show that the ε-residual, 1-residual and 10 -residual of M_{3} are distinct. This holds since:

$$
\begin{array}{lrr}
\varepsilon \cdot \varepsilon \in M_{3}, & \varepsilon \cdot \varepsilon \in M_{3}, & 1 \cdot 1 \in M_{3}, \\
1 \cdot \varepsilon \notin M_{3}, & 10 \cdot \varepsilon \notin M_{3}, & 10 \cdot 1 \notin M_{3} .
\end{array}
$$

(b) In exercise \#1.2(b), we have seen a DFA with three states that accepts M_{4}. Therefore, M_{4} has at most three residuals.
(c) In exercise $\# 1.2(\mathrm{~g})$, we have seen a DFA with p states that accepts M_{p}. Therefore, M_{p} has at most p residuals. It remains to show that M_{p} has at least p residuals. For every $0 \leq i<p$, let u_{i} be the word such that $\left|u_{i}\right|=p-1$ and $\operatorname{msbf}\left(u_{i}\right)=i$. Note that u_{i} exists since the smallest encoding of i has at most $p-1$ bits, and it can be extended to length $p-1$ by padding with zeros on the left. Let us show that the u_{i}-residual and u_{j}-residual of M_{p} are distinct for every $0 \leq i, j<p$ such that $i \neq j$. Let $0 \leq k<p$, and let $\ell=(p-i) \bmod p$. We have:

$$
\begin{aligned}
\operatorname{msbf}\left(u_{k} u_{\ell}\right) & =2^{\left|u_{\ell}\right|} \cdot \operatorname{msbf}\left(u_{k}\right)+\operatorname{msbf}\left(u_{\ell}\right) \\
& =2^{p-1} \cdot k+((p-i) \bmod p) \\
& \equiv k+((p-i) \bmod p) \\
& \equiv k+p-i \\
& \equiv k-i .
\end{aligned}
$$

$$
\equiv k+((p-i) \bmod p) \quad \text { (by Fermat's little theorem) }
$$

Let $0 \leq i, j<p$ be such that $i \neq j$. We have $u_{i} u_{\ell} \in M_{p}$ since $\operatorname{msbf}\left(u_{i} u_{\ell}\right) \equiv i-i \equiv 0$, but we have $u_{j} u_{\ell} \notin M_{p}$ since $\operatorname{msbf}\left(u_{j} u_{\ell}\right) \equiv j-i \not \equiv 0$. Therefore, the u_{i}-residual and u_{j}-residual of M_{p} are distinct.
(d) Without loss of generality, we may assume that $a, b \in \Sigma$. For every $i \in \mathbb{N}$, let $u_{i}=a^{i} b$. Let $i, j \in \mathbb{N}$ be such that $i \neq j$. We claim that the u_{i}-residual and the u_{j}-residual of L_{pal} differ. This shows that L_{pal} has infinitely many residuals. To prove the claim, observe that $u_{i} a^{i} \in L_{\mathrm{pal}}$ and that $u_{j} a^{i} \notin L_{\mathrm{pal}}$.
\star To see why $u_{j} a^{i} \notin L_{\text {pal }}$, assume for the sake of contradiction that $u_{j} a^{i} \in L_{\text {pal }}$. Let $w=u_{j} a^{i}$. Since w is a palindrome, it must be the case that $w_{j+1}=b=w_{|w|-(j+1)+1}$. In particular, since w contains only a single b, we must have $|w|-(j+1)+1=j+1$. This yields a contradiction since

$$
\begin{aligned}
|w|-(j+1)+1 & =(i+j+1)-(j+1)+1 \\
& =i+1
\end{aligned}
$$

$$
\neq j+1 \quad(\text { by } i \neq j)
$$

(e) If $\Sigma=\{a\}$, then $L_{\mathrm{pal}}=\Sigma^{*}$ since every word is trivially a palindrome. Thus, L_{pal} is accepted by a DFA with a single state. If $|\Sigma|>1$, then by (d) we know that $L_{\text {pal }}$ has infinitely many residuals. A language is regular if and only if it has finitely many residuals, and hence L_{pal} is not regular.

Solution 3.2

A) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}\right\},\left\{q_{4}\right\}$
1	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}\right\}$	$\left(b,\left\{q_{4}\right\}\right)$	$\left\{q_{0}, q_{2}, q_{6}\right\},\left\{q_{1}, q_{3}, q_{5}\right\},\left\{q_{4}\right\}$
2	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{2}, q_{6}\right\},\left\{q_{1}, q_{3}, q_{5}\right\},\left\{q_{4}\right\}\right\}$.
(b)

(c) $(a+b)^{*} a b$.
B) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}, q_{2}, q_{4}\right\}$
1	$\left\{q_{1}, q_{2}, q_{4}\right\}$	$\left(b,\left\{q_{1}, q_{2}, q_{4}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{4}\right\}$
2	$\left\{q_{2}, q_{4}\right\}$	$\left(a,\left\{q_{0}, q_{3}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}$
3	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}\right\}$.
(b)

(c) $(a a+b b)^{*}$ or $\left((a a)^{*}(b b)^{*}\right)^{*}$.

Solution 3.3

A) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$
1	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$	$\left(a,\left\{q_{5}\right\}\right)$	$\left\{q_{0}\right\},\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$
2	none, partition is stable	-	-

The CSR is $P=\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}\right\}$.
(b)

(c) It follows immediately from the fact that A accepts the same language as the automaton obtained in (b).
(d) Yes. By (c), the language accepted by A is $a(a+b)^{*} a$. An NFA with one state can only accept $\emptyset,\{\varepsilon\}, a^{*}, b^{*}$ and $\{a, b\}^{*}$. Suppose there exists an NFA $A^{\prime}=\left(\left\{q_{0}, q_{1}\right\},\{a, b\}, \delta, Q_{0}, F\right)$ accepting $L(A)$. Without loss of generality, we may assume that q_{0} is initial. A^{\prime} must respect the following properties:

- $q_{0} \notin F$, since $\varepsilon \notin L(A)$,
- $q_{1} \in F$, since $L(A) \neq \emptyset$,
- $q_{1} \notin Q_{0}$, since $\varepsilon \notin L(A)$,
- $q_{1} \in \delta\left(q_{0}, a\right)$, otherwise it is impossible to accept $a a$ which is in $L(A)$.

This implies that A^{\prime} accepts a, yet $a \notin L(A)$. Therefore, no two states NFA accepts $L(A)$.
B) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{5}\right\}$
1	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$	$\left(a,\left\{q_{5}\right\}\right)$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$
2	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left(a,\left\{q_{4}\right\}\right)$	$\left\{q_{0}, q_{1}\right\},\left\{q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$
3	$\left\{q_{0}, q_{1}\right\}$	$\left(c,\left\{q_{2}, q_{3}\right\}\right)$	$\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$
4	$\left\{q_{2}, q_{3}\right\}$	$\left(a,\left\{q_{0}\right\}\right)$	$\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}$

The CSR is $P=\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}\right\}\right\}$.
(b) The automaton remains unchanged.
(c) \subseteq) Let $w \in L(B)$. Every path from q_{0} to q_{5} first goes through q_{1} and q_{2} and ends up going through q_{4} and q_{5}. This implies that $w \in L\left(a c(a+b+c)^{*} a b\right)$.
$\supseteq)$ First note that for every $u \in\{a, b, c\}^{*}$, there exists $q \in\left\{q_{2}, q_{3}\right\}$ such that $q_{2} \xrightarrow{u} q$. This can be shown by induction on $|u|$. Let $w \in L\left(a c(a+b+c)^{*} a b\right)$. There exists $u \in\{a, b, c\}^{*}$ such that $w=a c u a b$. Let $q \in\left\{q_{2}, q_{3}\right\}$ be such that $q_{2} \xrightarrow{u} q$. We have $q_{0} \xrightarrow{a} q_{1} \xrightarrow{c} q_{2} \xrightarrow{u} q \xrightarrow{a} q_{4} \xrightarrow{b} q_{5}$. Therefore, $w \in L(B)$.
(d) No. We have seen a DFA with five states accepting the same language in Exercise \#1.1.

