Automata and Formal Languages - Homework 3

Due 07.11.2017

Exercise 3.1

Let $M_{n}=\left\{w \in\{0,1\}^{*}: \operatorname{msbf}(w)\right.$ is a multiple of $\left.n\right\}$ (see Exercise \#1.2) and let $L_{\mathrm{pal}}=\left\{w \in \Sigma^{*}: w=w^{R}\right\}$ where Σ is some finite alphabet.
(a) Show that M_{3} has (exactly) three residuals, i.e. show that $\left|\left\{\left(M_{3}\right)^{w}: w \in\{0,1\}^{*}\right\}\right|=3$.
(b) Show that M_{4} has less than four residuals.
(c) \star Show that M_{p} has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$. [Hint:
(d) Show that $L_{\text {pal }}$ has infinitely many residuals whenever $|\Sigma| \geq 2$.
(e) Show that L_{pal} is regular for $\Sigma=\{a\}$. Is L_{pal} also regular for larger alphabets?

Exercise 3.2

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Exercise 3.3

Let A and B be respectively the following NFAs:

(a) Compute the coarsest stable refinements (CSR) of A and B.
(b) Construct the quotients of A and B with respect to their CSRs.
(c) Show that

$$
\begin{aligned}
& L(A)=\left\{w \in\{a, b\}^{*}: w \text { starts and ends with } a\right\} \\
& L(B)=\left\{w \in\{a, b\}^{*}: w \text { starts with } a c \text { and ends with } a b\right\}
\end{aligned}
$$

(d) Are the automata obtained in (b) minimal?

