Automata and Formal Languages — Homework 3

Due 07.11.2017

Exercise 3.1

Let $M_n = \{w \in \{0,1\}^* : \text{msbf}(w) \text{ is a multiple of } n\}$ (see Exercise #1.2) and let $L_{\text{pal}} = \{w \in \Sigma^* : w = w^R\}$ where Σ is some finite alphabet.

- (a) Show that M_3 has (exactly) three residuals, i.e. show that $|\{(M_3)^w : w \in \{0,1\}^*\}| = 3$.
- (b) Show that M_4 has less than four residuals.
- (c) \bigstar Show that M_p has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$. [Hint:
- (d) Show that L_{pal} has infinitely many residuals whenever $|\Sigma| \geq 2$.
- (e) Show that L_{pal} is regular for $\Sigma = \{a\}$. Is L_{pal} also regular for larger alphabets?

Exercise 3.2

Let A and B be respectively the following DFAs:

- (a) Compute the language partitions of A and B.
- (b) Construct the quotients of A and B with respect to their language partitions.
- (c) Give regular expressions for L(A) and L(B).

- (a) Compute the coarsest stable refinements (CSR) of A and B.
- (b) Construct the quotients of A and B with respect to their CSRs.
- (c) Show that

$$L(A) = \{w \in \{a, b\}^* : w \text{ starts and ends with } a\}$$
$$L(B) = \{w \in \{a, b\}^* : w \text{ starts with } ac \text{ and ends with } ab\}$$

(d) Are the automata obtained in (b) minimal?