Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

27.10.2017

Automata and Formal Languages — Homework 2

Due 06.11.2017

Exercise 2.1

Consider the regular expression $r = (a + ab)^*$.

- (a) Convert r into an equivalent NFA- ε A.
- (b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm $NFA \varepsilon to NFA$)
- (c) Convert B into an equivalent DFA C.
- (d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
- (e) Convert D into an equivalent regular expression r'.
- (f) Prove formally that L(r) = L(r').

Exercise 2.2

Convert the following NFA- ε to an NFA using the algorithm *NFA* ε *toNFA* from the lecture notes (see Sect. 2.3, p. 33). You may verify your answer with the Python program nfa-eps2nfa.

Exercise 2.3

For every $n \in \mathbb{N}$, let $L_n = \{ w \in \{0, 1\}^* : |w| \ge n \text{ and } w_{|w|-n+1} = 1 \}.$

- (a) Exhibit an NFA with O(n) states that accepts L_n .
- (b) Exhibit a DFA with $\Omega(2^n)$ states that accepts L_n .
- (c) Show that any DFA that accepts L_n has at least 2^n states.

Solution 2.1

(a)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma) = \delta(\{q, r\}), \sigma)$ for every $\sigma \in \{a, b\}$. We obtain:

(f) Let us first show that $a(a + ba)^i = (a + ab)^i a$ for every $i \in \mathbb{N}$. We proceed by induction on i. If i = 0, then the claim trivially holds. Let i > 0. Assume the claims holds at i - 1. We have

$$a(a + ba)^{i} = a(a + ba)^{i-1}(a + ba)$$

$$= (a + ab)^{i-1}a(a + ba)$$
 (by induction hypothesis)

$$= (a + ab)^{i-1}(aa + aba)$$
 (by distributivity)

$$= (a + ab)^{i-1}(a + ab)a$$
 (by distributivity)

$$= (a + ab)^{i}a.$$

This implies that

$$a(a+ba)^* = (a+ab)^*a.$$
 (1)

We may now prove the equivalence of the two regular expressions:

$$\varepsilon + a(a + ba)^*(\varepsilon + b) = \varepsilon + (a + ab)^*a(\varepsilon + b)$$
 (by (1))
$$= \varepsilon + (a + ab)^*(a + ab)$$
 (by distributivity)
$$= \varepsilon + (a + ab)^+$$

$$= (a + ab)^*.$$

Sol	ution 2	.2		
	Iter.	$B=(Q',\Sigma,\delta',Q_0',F')$	$\delta^{\prime\prime}~(arepsilon ext{-transitions})$	Workset W and next (q_1, α, q_2)
		$\rightarrow p$		
	0			$\{(p,\varepsilon,q),(p,\varepsilon,s),(p,a,s)\}$

1	→p	→ p)£ > q)	$\{(p,\varepsilon,s),(p,a,s),(p,\varepsilon,r)\}$
2	→ (<i>p</i>)	→(p)ε»(q) ε š	$\{(p, a, s), (p, \varepsilon, r), (p, b, s), (p, b, r)\}$
3	$\rightarrow p$ a s	$\begin{array}{c} \bullet \\ \bullet $	$\{(p,\varepsilon,r),(p,b,s),(p,b,r),(s,b,s),(s,b,r)\}$
4		$\begin{array}{c} \bullet \\ \bullet \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\{(p, b, s), (p, b, r), (s, b, s), (s, b, r)\}$
5	$\rightarrow p$ a, b s	$\begin{array}{c} \bullet \\ \bullet $	$\{(p,b,r),(s,b,s),(s,b,r)\}$
6		$\begin{array}{c} \bullet \\ \bullet $	$\{(s,b,s),(s,b,r)\}$
7	a, b b b	$\begin{array}{c} \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & & \bullet \\ & & \bullet \\ & & \bullet \\ & & & \bullet \\ & & & \bullet \\ & & & &$	$\{(s,b,r)\}$

The resulting NFA is:

which corresponds to the output of nfa-eps2nfa:

```
Q' = {'p', 'r', 's'}

S = {'a', 'b'}

d' = {('p', 'a', 's'), ('s', 'b', 's'), ('p', 'b', 's'), ('s', 'b', 'r'), ('p', 'b', 'r')}

Q0' = {'p'}

F' = {'p', 'r'}
```

Solution 2.3

(a)

(b) We build a DFA that remembers the last n letters and accepts if the n to last last letter is a 1. More formally, let $A_n = (Q, \Sigma, \delta, q_0, F)$ be such that

$$\begin{split} &Q = \{q_u : u \in \{0,1\}^*, |u| \le n\}, \\ &\Sigma = \{0,1\}, \\ &q_0 = q_{\varepsilon}, \\ &F = \{q_{1u} : u \in \{0,1\}^*, |u| = n-1\} \end{split}$$

,

and such that

$$\delta(q_u, a) = \begin{cases} q_{ua} & \text{if } |u| < n, \\ q_{va} & \text{if } u = bv \text{ for some } b \in \{0, 1\} \text{ and } v \in \{0, 1\}^{n-1}. \end{cases}$$

Note that A_n has $\sum_{i=0}^n 2^i = 2^{n+1} - 1$ states.

(c) Let $n \in \mathbb{N}$. For the sake of contradiction, assume there exists a DFA $B = (Q, \{0, 1\}, \delta, q_0, F)$ such that $L(B) = L_n$ and $|Q| < 2^n$. By the pigeonhole principle, there exist $u, v \in \{0, 1\}^n$ and $q \in Q$ such that $u \neq v$ and

$$q_0 \xrightarrow{u} q \text{ and } q_0 \xrightarrow{v} q.$$
 (2)

Since $u \neq v$, there exists $1 \leq i \leq n$ such that $u_i \neq v_i$. Without loss of generality, we may assume that $u_i = 1$ and $v_i = 0$. We have $u \cdot 0^{i-1} \in L_n$ and $v \cdot 0^{i-1} \notin L$. This is a contradiction since, by (2), $u \cdot 0^{i-1}$ and $v \cdot 0^{i-1}$ lead to the same state from q_0 .