Automata and Formal Languages - Homework 2

Due 06.11.2017

Exercise 2.1

Consider the regular expression $r=(a+a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAعtoNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2

Convert the following NFA- ε to an NFA using the algorithm NFA NoNFA from the lecture notes (see Sect. 2.3, p. 33). You may verify your answer with the Python program nfa-eps2nfa.

Exercise 2.3

For every $n \in \mathbb{N}$, let $L_{n}=\left\{w \in\{0,1\}^{*}:|w| \geq n\right.$ and $\left.w_{|w|-n+1}=1\right\}$.
(a) Exhibit an NFA with $O(n)$ states that accepts L_{n}.
(b) Exhibit a DFA with $\Omega\left(2^{n}\right)$ states that accepts L_{n}.
(c) Show that any DFA that accepts L_{n} has at least 2^{n} states.

Solution 2.1

(a)
Iter. Automaton obtained
(b)
Iter. Automaton obtained
(c)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma)=\delta(\{q, r\}), \sigma)$ for every $\sigma \in\{a, b\}$. We obtain:

(e)

(f) Let us first show that $a(a+b a)^{i}=(a+a b)^{i} a$ for every $i \in \mathbb{N}$. We proceed by induction on i. If $i=0$, then the claim trivially holds. Let $i>0$. Assume the claims holds at $i-1$. We have

$$
\begin{aligned}
a(a+b a)^{i} & =a(a+b a)^{i-1}(a+b a) & & \\
& =(a+a b)^{i-1} a(a+b a) & & \text { (by induction hypothesis) } \\
& =(a+a b)^{i-1}(a a+a b a) & & \text { (by distributivity) } \\
& =(a+a b)^{i-1}(a+a b) a & & \text { (by distributivity) } \\
& =(a+a b)^{i} a . & &
\end{aligned}
$$

$$
\begin{equation*}
a(a+b a)^{*}=(a+a b)^{*} a . \tag{1}
\end{equation*}
$$

We may now prove the equivalence of the two regular expressions:

$$
\begin{array}{rlrl}
\varepsilon+a(a+b a)^{*}(\varepsilon+b) & =\varepsilon+(a+a b)^{*} a(\varepsilon+b) & & \tag{1}\\
& =\varepsilon+(a+a b)^{*}(a+a b) \\
& =\varepsilon+(a+a b)^{+} \\
& =(a+a b)^{*}
\end{array}
$$

Solution 2.2

Iter.	$B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$	$\delta^{\prime \prime}(\varepsilon$-transitions $)$	Workset W and next $\left(q_{1}, \alpha, q_{2}\right)$
	$\rightarrow P$		
0			$\{(p, \varepsilon, q),(p, \varepsilon, s),(p, a, s)\}$

1	$\rightarrow P$		$\{(p, \varepsilon, s),(p, a, s),(p, \varepsilon, r)\}$
2	$\rightarrow P$		$\{(p, a, s),(p, \varepsilon, r),(p, b, s),(p, b, r)\}$
3			$\{(p, \varepsilon, r),(p, b, s),(p, b, r),(s, b, s),(s, b, r)\}$
4			$\{(p, b, s),(p, b, r),(s, b, s),(s, b, r)\}$
5			$\{(p, b, r),(s, b, s),(s, b, r)\}$
6			$\{(s, b, s),(s, b, r)\}$
7			$\{(s, b, r)\}$

The resulting NFA is:

which corresponds to the output of nfa-eps 2 nf a:

$$
\begin{aligned}
& \text { Q' }=\left\{\prime p^{\prime},{ }^{\prime} r^{\prime},{ }^{\prime} \mathbf{s}^{\prime}\right\} \\
& S=\left\{\prime a \prime, b^{\prime}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& Q 0^{\prime}=\left\{{ }^{\prime} p^{\prime}\right\} \\
& F^{\prime}=\left\{\prime p^{\prime}, r^{\prime}\right\}
\end{aligned}
$$

Solution 2.3

(a)

(b) We build a DFA that remembers the last n letters and accepts if the n to last last letter is a 1. More formally, let $A_{n}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be such that

$$
\begin{aligned}
Q & =\left\{q_{u}: u \in\{0,1\}^{*},|u| \leq n\right\} \\
\Sigma & =\{0,1\} \\
q_{0} & =q_{\varepsilon} \\
F & =\left\{q_{1 u}: u \in\{0,1\}^{*},|u|=n-1\right\},
\end{aligned}
$$

and such that

$$
\delta\left(q_{u}, a\right)= \begin{cases}q_{u a} & \text { if }|u|<n \\ q_{v a} & \text { if } u=b v \text { for some } b \in\{0,1\} \text { and } v \in\{0,1\}^{n-1}\end{cases}
$$

Note that A_{n} has $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ states.
(c) Let $n \in \mathbb{N}$. For the sake of contradiction, assume there exists a DFA $B=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ such that $L(B)=L_{n}$ and $|Q|<2^{n}$. By the pigeonhole principle, there exist $u, v \in\{0,1\}^{n}$ and $q \in Q$ such that $u \neq v$ and

$$
\begin{equation*}
q_{0} \xrightarrow{u} q \text { and } q_{0} \xrightarrow{v} q . \tag{2}
\end{equation*}
$$

Since $u \neq v$, there exists $1 \leq i \leq n$ such that $u_{i} \neq v_{i}$. Without loss of generality, we may assume that $u_{i}=1$ and $v_{i}=0$. We have $u \cdot 0^{i-1} \in L_{n}$ and $v \cdot 0^{i-1} \notin L$. This is a contradiction since, by (2), $u \cdot 0^{i-1}$ and $v \cdot 0^{i-1}$ lead to the same state from q_{0}.

