Automata and Formal Languages - Homework 2

Due 06.11.2017

Exercise 2.1

Consider the regular expression $r=(a+a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAعtoNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2

Convert the following NFA- ε to an NFA using the algorithm NFA NoNFA from the lecture notes (see Sect. 2.3, p. 33). You may verify your answer with the Python program nfa-eps2nfa.

Exercise 2.3

For every $n \in \mathbb{N}$, let $L_{n}=\left\{w \in\{0,1\}^{*}:|w| \geq n\right.$ and $\left.w_{|w|-n+1}=1\right\}$.
(a) Exhibit an NFA with $O(n)$ states that accepts L_{n}.
(b) Exhibit a DFA with $\Omega\left(2^{n}\right)$ states that accepts L_{n}.
(c) Show that any DFA that accepts L_{n} has at least 2^{n} states.

