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Automata and Formal Languages — Homework 1

Due 24.10.2017

Download JFLAP from www.jflap.org. We will use the finite automata and regular expression modes.

Exercise 1.1

Let L = {w ∈ {a, b, c}∗ : w starts with ac and ends with ab}.

(a) Give an NFA that accepts L.

(b) Give a DFA that accepts L.

(c) Give a regular expression for L.

(d) Use JFLAP to convert your NFA of (a) and your regular expression of (c) to DFAs.

Exercise 1.2

Let msbf : {0, 1}∗ → N and lsbf : {0, 1}∗ → N be such that msbf(w) and lsbf(w) are respectively the number
represented by w in the “most significant bit first” and “least significant bit first” encoding. For example,

msbf(1010) = 10, msbf(100) = 4, msbf(0011) = 3,

lsbf(1010) = 5, lsbf(100) = 1, lsbf(0011) = 12.

For every n ≥ 2, let us define the following languages:

Mn = {w ∈ {0, 1}∗ : msbf(w) is a multiple of n},
Ln = {w ∈ {0, 1}∗ : lsbf(w) is a multiple of n}.

(a) Give DFAs and regular expressions for M2, L2 and M2 ∩ L2.

(b) Give DFAs and regular expressions for M4, L4 and M4 ∩ L4.

(c) Give a DFA that accepts M3. [Hint: each state should represent a congruence class modulo 3.]

(d) Give a DFA that accepts L3. [Hint: how are Ln and Mn related?]

(e) What can you say about M3 ∩ L3?

(f) Use JFLAP to obtain a regular expression for M3.

(g) Give a general DFA construction for Mn where n ≥ 2.

Exercise 1.3

The reverse of a word w ∈ Σ∗ is defined as

wR =

{
ε if w = ε,

anan−1 · · · a1 if w = a1a2 · · · an where each ai ∈ Σ.

The reverse of a language L ⊆ Σ∗ is defined as LR = {wR : w ∈ L}.

http://www.jflap.org


(a) Let A be an NFA. Describe an NFA B such that L(B) = L(A)R.

(b) Does your construction in (a) works for DFAs as well? More precisely, does it preserve determinism?

(c) Show that Mn = (Ln)R for every n ≥ 2.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ.

(a) Describe DFAs C and D such that L(C) = L(A) ∪ L(B) and L(D) = L(A) ∩ L(B).

(b) Prove that D is correct, i.e. that indeed L(D) = L(A) ∩ L(B).

(c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain
your answer.



Solution 1.1

(a)

a c

a, b, c

a b

(b)

a c

b, c

a b

ac

a

b, c

(c) ac(a+ b+ c)∗ab

Solution 1.2

(a)

DFA Regular expression

M2:

0

1

0

1

ε+ (0 + 1)∗0

L2: 0

0, 1

ε+ 0(0 + 1)∗

M2 ∩ L2:
0

0

1

0

1

ε+ 0 + 0(0 + 1)∗0



(b)

DFA Regular expression

M4:

0

1

0

0

1

1

ε+ 0 + (0 + 1)∗00

L4: 0 0

0, 1

ε+ 0 + 00(0 + 1)∗

M4 ∩ L4:

0 0

0

1

1

0

1

0

ε+ 0 + 0(0 + 1)∗0

(c)

0 1

1

1

0

0

(d) The automaton for L3 is the same as the one given in (c).

(e) M3 ∩ L3 = M3 = L3.

(f) JFLAP yields (0 + 11 + 10(1 + 00)∗01)∗.

(g) The automaton for Mn is defined as An = (Qn, {0, 1}, δn, 0, {0}) where

Qn = {0, 1, . . . , n− 1},
δn(q, b) = (2q + b) mod n for every q ∈ Qn and b ∈ {0, 1}.

Solution 1.3

(a) We reverse the transitions of A and swap its initial and final states. More formally, let A = (Q,Σ, δ, Q0, F ).
We define B as B = (Q,Σ, δ′, F,Q0) where δ′(p, a) = {q ∈ Q : p ∈ δ(q, a)}.

(b) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied
to the DFA of #1.2(a) for M2 does not yield a DFA.



(c) We have

w ∈Mn ⇐⇒ msbf(w) ≡ 0 (mod n) (by def. of Mn)

⇐⇒ lsbf(wR) ≡ 0 (mod n) (by msbf(w) = lsbf(wR))

⇐⇒ wR ∈ Ln (by def. of Ln)

⇐⇒ w ∈ LR
n (by u ∈ Ln ⇐⇒ uR ∈ (Ln)R and (uR)R = u).

Solution 1.4

(a) Let A = (QA,Σ, δA, q0, FA) and B = (QB ,Σ, δB , q
′
0, FB). We define C and D as follows:

C = (QA ×QB ,Σ, δ
′, (q0, q

′
0), FC),

D = (QA ×QB ,Σ, δ
′, (q0, q

′
0), FD),

where δ′((p, q), a) = (δA(p, a), δB(q, a)) and

FC = {(p, q) ∈ QA ×QB : p ∈ FA ∨ q ∈ FB},
FD = {(p, q) ∈ QA ×QB : p ∈ FA ∧ q ∈ FB}.

(b) It suffices to prove that

(p, q)
w−→D (p′, q′) ⇐⇒ p

w−→A p′ and q
w−→B q′.

We proceed by induction on |w|. If |w| = 0, then w = ε and the claim trivially holds. Assume that |w| > 0
and suppose that the claim holds for every word of length |w| − 1. There exist a ∈ Σ and u ∈ Σ∗ such
that w = au. We have,

(p, q)
w−→D (p′, q′) ⇐⇒ δ′((p, q), a) = (p′′, q′′) and (p′′, q′′)

u−→D (p′, q′)

⇐⇒ δ′((p, q), a) = (p′′, q′′) and p′′
u−→A p′ and q′′

u−→B q′ (by ind. hyp.)

⇐⇒ δA(p, a) = p′′ and δB(q, a) = q′′ and p′′
u−→A p′ and q′′

u−→B q′ (by def. of C)

⇐⇒ p
au−→A p′ and q

au−→B q′

⇐⇒ p
w−→A p′ and q

w−→B q′.

(c) Intersection sometimes require the |QA| · |QB | states from the product construction (e.g. see [1, Thm. 11]),
however it is possible to do better with union. Since multiple initial states are allowed in this course, we
can build the following NFA:

C = (QA ∪QB ,Σ, δA ∪ δB , Q0 ∪Q′0, FA ∪ FB).

If we were restricted to a single initial state, we could build the following NFA:

C = (qinit ∪QA ∪QB ,Σ, δ
′, qinit, FA ∪ FB)

where

δ′(q, a) =


δA(q0, a) ∪ δB(q′0, a) if q = qinit,

δA(q, a) if q ∈ QA,

δB(q, a) if q ∈ QB .

The last construction would even be simpler if ε-transitions were allowed:

qinit

A

B

q0

q′0

ε

ε
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