Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

19.10.2017

Automata and Formal Languages — Homework 1

Due 24.10.2017

Download JFLAP from www.jflap.org. We will use the *finite automata* and *regular expression* modes.

Exercise 1.1

Let $L = \{w \in \{a, b, c\}^* : w \text{ starts with } ac \text{ and ends with } ab\}.$

- (a) Give an NFA that accepts L.
- (b) Give a DFA that accepts L.
- (c) Give a regular expression for L.
- (d) Use JFLAP to convert your NFA of (a) and your regular expression of (c) to DFAs.

Exercise 1.2

Let msbf: $\{0,1\}^* \to \mathbb{N}$ and lsbf: $\{0,1\}^* \to \mathbb{N}$ be such that msbf(w) and lsbf(w) are respectively the number represented by w in the "most significant bit first" and "least significant bit first" encoding. For example,

msbf(1010) = 10,	msbf(100) = 4,	msbf(0011) = 3,
lsbf(1010) = 5,	lsbf(100) = 1,	lsbf(0011) = 12.

For every $n \ge 2$, let us define the following languages:

 $M_n = \{ w \in \{0,1\}^* : \operatorname{msbf}(w) \text{ is a multiple of } n \},\$ $L_n = \{ w \in \{0,1\}^* : \operatorname{lsbf}(w) \text{ is a multiple of } n \}.$

- (a) Give DFAs and regular expressions for M_2 , L_2 and $M_2 \cap L_2$.
- (b) Give DFAs and regular expressions for M_4 , L_4 and $M_4 \cap L_4$.
- (c) Give a DFA that accepts M_3 . [Hint:
- (d) Give a DFA that accepts L_3 . [Hint:
- (e) What can you say about $M_3 \cap L_3$?
- (f) Use JFLAP to obtain a regular expression for M_3 .
- (g) Give a general DFA construction for M_n where $n \ge 2$.

Exercise 1.3

The *reverse* of a word $w \in \Sigma^*$ is defined as

$$w^{R} = \begin{cases} \varepsilon & \text{if } w = \varepsilon, \\ a_{n}a_{n-1}\cdots a_{1} & \text{if } w = a_{1}a_{2}\cdots a_{n} \text{ where each } a_{i} \in \Sigma. \end{cases}$$

The reverse of a language $L \subseteq \Sigma^*$ is defined as $L^R = \{w^R : w \in L\}$.

- (a) Let A be an NFA. Describe an NFA B such that $L(B) = L(A)^R$.
- (b) Does your construction in (a) works for DFAs as well? More precisely, does it preserve determinism?
- (c) Show that $M_n = (L_n)^R$ for every $n \ge 2$.

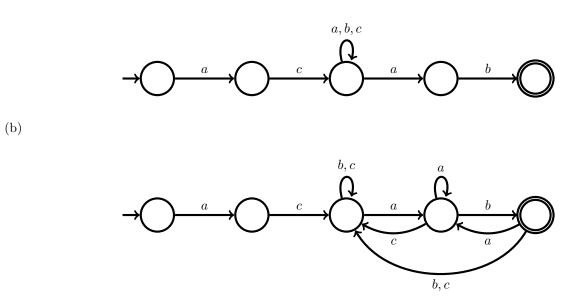
Exercise 1.4

Let A and B be DFAs over some alphabet Σ .

- (a) Describe DFAs C and D such that $L(C) = L(A) \cup L(B)$ and $L(D) = L(A) \cap L(B)$.
- (b) Prove that D is correct, i.e. that indeed $L(D) = L(A) \cap L(B)$.
- (c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.

Solution 1.1

(a)



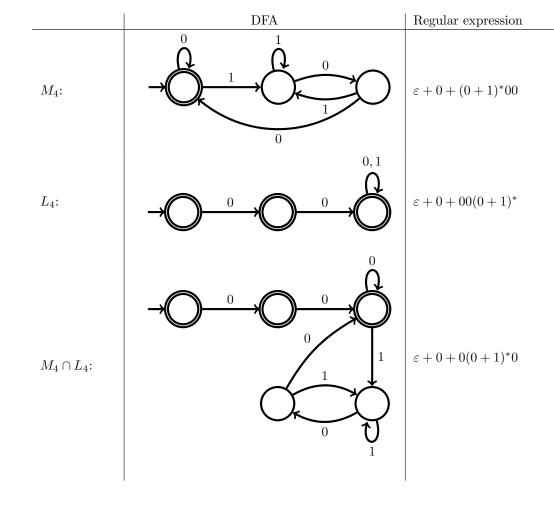
(c) $ac(a+b+c)^*ab$

Solution 1.2

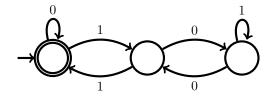
(a)

	DFA	Regular expression
M_2 :		$\varepsilon + (0+1)^*0$
L_2 :	$\rightarrow \bigcirc 0 \rightarrow \bigcirc 0, 1$	$\varepsilon + 0(0+1)^*$
$M_2 \cap L_2$:		$\varepsilon + 0 + 0(0+1)^*0$

(b)



(c)



- (d) The automaton for L_3 is the same as the one given in (c).
- (e) $M_3 \cap L_3 = M_3 = L_3$.
- (f) JFLAP yields $(0 + 11 + 10(1 + 00)^*01)^*$.
- (g) The automaton for M_n is defined as $A_n = (Q_n, \{0, 1\}, \delta_n, 0, \{0\})$ where

$$Q_n = \{0, 1, \dots, n-1\},\$$

 $\delta_n(q, b) = (2q + b) \mod n \text{ for every } q \in Q_n \text{ and } b \in \{0, 1\}.$

Solution 1.3

- (a) We reverse the transitions of A and swap its initial and final states. More formally, let $A = (Q, \Sigma, \delta, Q_0, F)$. We define B as $B = (Q, \Sigma, \delta', F, Q_0)$ where $\delta'(p, a) = \{q \in Q : p \in \delta(q, a)\}$.
- (b) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied to the DFA of #1.2(a) for M_2 does not yield a DFA.

(c) We have

w

Solution 1.4

(a) Let $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ and $B = (Q_B, \Sigma, \delta_B, q'_0, F_B)$. We define C and D as follows:

$$C = (Q_A \times Q_B, \Sigma, \delta', (q_0, q'_0), F_C),$$

$$D = (Q_A \times Q_B, \Sigma, \delta', (q_0, q'_0), F_D),$$

where $\delta'((p,q),a) = (\delta_A(p,a), \delta_B(q,a))$ and

$$F_C = \{ (p,q) \in Q_A \times Q_B : p \in F_A \lor q \in F_B \},\$$

$$F_D = \{ (p,q) \in Q_A \times Q_B : p \in F_A \land q \in F_B \}.$$

(b) It suffices to prove that

$$(p,q) \xrightarrow{w}_D (p',q') \iff p \xrightarrow{w}_A p' \text{ and } q \xrightarrow{w}_B q'.$$

We proceed by induction on |w|. If |w| = 0, then $w = \varepsilon$ and the claim trivially holds. Assume that |w| > 0 and suppose that the claim holds for every word of length |w| - 1. There exist $a \in \Sigma$ and $u \in \Sigma^*$ such that w = au. We have,

$$(p,q) \xrightarrow{w}_{D} (p',q') \iff \delta'((p,q),a) = (p'',q'') \qquad \text{and} \ (p'',q'') \xrightarrow{u}_{D} (p',q') \iff \delta'((p,q),a) = (p'',q'') \qquad \text{and} \ p'' \xrightarrow{u}_{A} p' \text{ and} \ q'' \xrightarrow{u}_{B} q' \quad (by \text{ ind. hyp.}) \iff \delta_A(p,a) = p'' \text{ and} \ \delta_B(q,a) = q'' \text{ and} \ p'' \xrightarrow{u}_{A} p' \text{ and} \ q'' \xrightarrow{u}_{B} q' \quad (by \text{ def. of } C) \iff p \xrightarrow{au}_{A} p' \text{ and } q \xrightarrow{au}_{B} q' \iff p \xrightarrow{w}_{A} p' \text{ and } q \xrightarrow{w}_{B} q'.$$

(c) Intersection sometimes require the $|Q_A| \cdot |Q_B|$ states from the product construction (e.g. see [1, Thm. 11]), however it is possible to do better with union. Since multiple initial states are allowed in this course, we can build the following NFA:

$$C = (Q_A \cup Q_B, \Sigma, \delta_A \cup \delta_B, Q_0 \cup Q'_0, F_A \cup F_B).$$

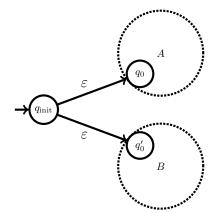
If we were restricted to a single initial state, we could build the following NFA:

$$C = (q_{\text{init}} \cup Q_A \cup Q_B, \Sigma, \delta', q_{\text{init}}, F_A \cup F_B)$$

where

$$\delta'(q,a) = \begin{cases} \delta_A(q_0,a) \cup \delta_B(q'_0,a) & \text{if } q = q_{\text{init}}, \\ \delta_A(q,a) & \text{if } q \in Q_A, \\ \delta_B(q,a) & \text{if } q \in Q_B. \end{cases}$$

The last construction would even be simpler if ε -transitions were allowed:



References

 Markus Holzer and Martin Kutrib. State complexity of basic operations on nondeterministic finite automata. In Proc. 7th International Conference on Implementation and Application of Automata (CIAA), pages 148– 157, 2002.