Automata and Formal Languages - Homework 1

Due 24.10.2017

Download JFLAP from www.jflap.org. We will use the finite automata and regular expression modes.

Exercise 1.1

Let $L=\left\{w \in\{a, b, c\}^{*}: w\right.$ starts with $a c$ and ends with $\left.a b\right\}$.
(a) Give an NFA that accepts L.
(b) Give a DFA that accepts L.
(c) Give a regular expression for L.
(d) Use JFLAP to convert your NFA of (a) and your regular expression of (c) to DFAs.

Exercise 1.2

Let msbf: $\{0,1\}^{*} \rightarrow \mathbb{N}$ and $\operatorname{lsbf}:\{0,1\}^{*} \rightarrow \mathbb{N}$ be such that $\operatorname{msbf}(w)$ and $\operatorname{lsbf}(w)$ are respectively the number represented by w in the "most significant bit first" and "least significant bit first" encoding. For example,

$$
\begin{aligned}
\operatorname{msbf}(1010) & =10, & \operatorname{msbf}(100) & =4, \\
\operatorname{lsbf}(1010) & =5, & \operatorname{lsbf}(100) & =1,
\end{aligned}
$$

For every $n \geq 2$, let us define the following languages:

$$
\begin{aligned}
M_{n} & =\left\{w \in\{0,1\}^{*}: \operatorname{msbf}(w) \text { is a multiple of } n\right\} \\
L_{n} & =\left\{w \in\{0,1\}^{*}: \operatorname{lsbf}(w) \text { is a multiple of } n\right\} .
\end{aligned}
$$

(a) Give DFAs and regular expressions for M_{2}, L_{2} and $M_{2} \cap L_{2}$.
(b) Give DFAs and regular expressions for M_{4}, L_{4} and $M_{4} \cap L_{4}$.
(c) Give a DFA that accepts M_{3}. [Hint:
(d) Give a DFA that accepts L_{3}. [Hint:
(e) What can you say about $M_{3} \cap L_{3}$?
(f) Use JFLAP to obtain a regular expression for M_{3}.
(g) Give a general DFA construction for M_{n} where $n \geq 2$.

Exercise 1.3

The reverse of a word $w \in \Sigma^{*}$ is defined as

$$
w^{R}= \begin{cases}\varepsilon & \text { if } w=\varepsilon, \\ a_{n} a_{n-1} \cdots a_{1} & \text { if } w=a_{1} a_{2} \cdots a_{n} \text { where each } a_{i} \in \Sigma .\end{cases}
$$

The reverse of a language $L \subseteq \Sigma^{*}$ is defined as $L^{R}=\left\{w^{R}: w \in L\right\}$.
(a) Let A be an NFA. Describe an NFA B such that $L(B)=L(A)^{R}$.
(b) Does your construction in (a) works for DFAs as well? More precisely, does it preserve determinism?
(c) Show that $M_{n}=\left(L_{n}\right)^{R}$ for every $n \geq 2$.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ.
(a) Describe DFAs C and D such that $L(C)=L(A) \cup L(B)$ and $L(D)=L(A) \cap L(B)$.
(b) Prove that D is correct, i.e. that indeed $L(D)=L(A) \cap L(B)$.
(c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.

Solution 1.1
(a)

(b)

(c) $a c(a+b+c)^{*} a b$

Solution 1.2
(a)

(b)
$M_{4} \cap L_{4}:$ Regular expression
(c)

(d) The automaton for L_{3} is the same as the one given in (c).
(e) $M_{3} \cap L_{3}=M_{3}=L_{3}$.
(f) JFLAP yields $\left(0+11+10(1+00)^{*} 01\right)^{*}$.
(g) The automaton for M_{n} is defined as $A_{n}=\left(Q_{n},\{0,1\}, \delta_{n}, 0,\{0\}\right)$ where

$$
\begin{aligned}
Q_{n} & =\{0,1, \ldots, n-1\}, \\
\delta_{n}(q, b) & =(2 q+b) \bmod n \text { for every } q \in Q_{n} \text { and } b \in\{0,1\} .
\end{aligned}
$$

Solution 1.3

(a) We reverse the transitions of A and swap its initial and final states. More formally, let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$. We define B as $B=\left(Q, \Sigma, \delta^{\prime}, F, Q_{0}\right)$ where $\delta^{\prime}(p, a)=\{q \in Q: p \in \delta(q, a)\}$.
(b) No, if A is deterministic, then B is not necessarily deterministic. For example, the construction applied to the DFA of $\# 1.2(\mathrm{a})$ for M_{2} does not yield a DFA.
(c) We have

$$
\begin{aligned}
w \in M_{n} & \Longleftrightarrow \operatorname{msbf}(w) \equiv 0(\bmod n) & & \text { (by def. of } \left.M_{n}\right) \\
& \Longleftrightarrow \operatorname{lsbf}\left(w^{R}\right) \equiv 0(\bmod n) & & \left(\text { by } \operatorname{msbf}(w)=\operatorname{lsbf}\left(w^{R}\right)\right) \\
& \Longleftrightarrow w^{R} \in L_{n} & & \left(\text { by def. of } L_{n}\right) \\
& \Longleftrightarrow w \in L_{n}^{R} & & \left(\text { by } u \in L_{n} \Longleftrightarrow u^{R} \in\left(L_{n}\right)^{R} \text { and }\left(u^{R}\right)^{R}=u\right) .
\end{aligned}
$$

Solution 1.4

(a) Let $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{0}^{\prime}, F_{B}\right)$. We define C and D as follows:

$$
\begin{aligned}
& C=\left(Q_{A} \times Q_{B}, \Sigma, \delta^{\prime},\left(q_{0}, q_{0}^{\prime}\right), F_{C}\right) \\
& D=\left(Q_{A} \times Q_{B}, \Sigma, \delta^{\prime},\left(q_{0}, q_{0}^{\prime}\right), F_{D}\right),
\end{aligned}
$$

where $\delta^{\prime}((p, q), a)=\left(\delta_{A}(p, a), \delta_{B}(q, a)\right)$ and

$$
\begin{aligned}
& F_{C}=\left\{(p, q) \in Q_{A} \times Q_{B}: p \in F_{A} \vee q \in F_{B}\right\} \\
& F_{D}=\left\{(p, q) \in Q_{A} \times Q_{B}: p \in F_{A} \wedge q \in F_{B}\right\}
\end{aligned}
$$

(b) It suffices to prove that

$$
(p, q) \xrightarrow{w}_{D}\left(p^{\prime}, q^{\prime}\right) \Longleftrightarrow p \xrightarrow{w}_{A} p^{\prime} \text { and } q \xrightarrow{w}_{B} q^{\prime} .
$$

We proceed by induction on $|w|$. If $|w|=0$, then $w=\varepsilon$ and the claim trivially holds. Assume that $|w|>0$ and suppose that the claim holds for every word of length $|w|-1$. There exist $a \in \Sigma$ and $u \in \Sigma^{*}$ such that $w=a u$. We have,

$$
\begin{array}{rlr}
(p, q) \xrightarrow{w}_{D}\left(p^{\prime}, q^{\prime}\right) & \Longleftrightarrow \delta^{\prime}((p, q), a)=\left(p^{\prime \prime}, q^{\prime \prime}\right) & \text { and }\left(p^{\prime \prime}, q^{\prime \prime}\right) \xrightarrow{u}_{D}\left(p^{\prime}, q^{\prime}\right) \\
& \Longleftrightarrow \delta^{\prime}((p, q), a)=\left(p^{\prime \prime}, q^{\prime \prime}\right) & \text { and } p^{\prime \prime} \xrightarrow{u}_{A} p^{\prime} \text { and } q^{\prime \prime} \xrightarrow{u}_{B} q^{\prime} \text { (by ind. hyp.) } \\
& \Longleftrightarrow \delta_{A}(p, a)=p^{\prime \prime} \text { and } \delta_{B}(q, a)=q^{\prime \prime} \text { and } p^{\prime \prime} \xrightarrow{u}_{A} p^{\prime} \text { and } q^{\prime \prime} \xrightarrow{u}_{B} q^{\prime} \text { (by def. of } C \text {) } \\
& \Longleftrightarrow p \xrightarrow{a}_{A} p^{\prime} \text { and } q \xrightarrow{a u}_{B} q^{\prime} \\
& \Longleftrightarrow p \xrightarrow{w}_{A} p^{\prime} \text { and } q \xrightarrow{w}_{B} q^{\prime} .
\end{array}
$$

(c) Intersection sometimes require the $\left|Q_{A}\right| \cdot\left|Q_{B}\right|$ states from the product construction (e.g. see [1, Thm. 11]), however it is possible to do better with union. Since multiple initial states are allowed in this course, we can build the following NFA:

$$
C=\left(Q_{A} \cup Q_{B}, \Sigma, \delta_{A} \cup \delta_{B}, Q_{0} \cup Q_{0}^{\prime}, F_{A} \cup F_{B}\right)
$$

If we were restricted to a single initial state, we could build the following NFA:

$$
C=\left(q_{\text {init }} \cup Q_{A} \cup Q_{B}, \Sigma, \delta^{\prime}, q_{\text {init }}, F_{A} \cup F_{B}\right)
$$

where

$$
\delta^{\prime}(q, a)= \begin{cases}\delta_{A}\left(q_{0}, a\right) \cup \delta_{B}\left(q_{0}^{\prime}, a\right) & \text { if } q=q_{\text {init }} \\ \delta_{A}(q, a) & \text { if } q \in Q_{A} \\ \delta_{B}(q, a) & \text { if } q \in Q_{B}\end{cases}
$$

The last construction would even be simpler if ε-transitions were allowed:

References

[1] Markus Holzer and Martin Kutrib. State complexity of basic operations on nondeterministic finite automata. In Proc. $7^{\text {th }}$ International Conference on Implementation and Application of Automata (CIAA), pages 148157, 2002.

