## Automata and Formal Languages - Homework 1

Due 24.10.2017

Download JFLAP from www.jflap.org. We will use the finite automata and regular expression modes.

## Exercise 1.1

Let $L=\left\{w \in\{a, b, c\}^{*}: w\right.$ starts with $a c$ and ends with $\left.a b\right\}$.
(a) Give an NFA that accepts $L$.
(b) Give a DFA that accepts $L$.
(c) Give a regular expression for $L$.
(d) Use JFLAP to convert your NFA of (a) and your regular expression of (c) to DFAs.

## Exercise 1.2

Let msbf: $\{0,1\}^{*} \rightarrow \mathbb{N}$ and $\operatorname{lsbf}:\{0,1\}^{*} \rightarrow \mathbb{N}$ be such that $\operatorname{msbf}(w)$ and $\operatorname{lsbf}(w)$ are respectively the number represented by $w$ in the "most significant bit first" and "least significant bit first" encoding. For example,

$$
\begin{aligned}
\operatorname{msbf}(1010) & =10, & \operatorname{msbf}(100) & =4, \\
\operatorname{lsbf}(1010) & =5, & \operatorname{lsbf}(100) & =1,
\end{aligned}
$$

For every $n \geq 2$, let us define the following languages:

$$
\begin{aligned}
M_{n} & =\left\{w \in\{0,1\}^{*}: \operatorname{msbf}(w) \text { is a multiple of } n\right\} \\
L_{n} & =\left\{w \in\{0,1\}^{*}: \operatorname{lsbf}(w) \text { is a multiple of } n\right\} .
\end{aligned}
$$

(a) Give DFAs and regular expressions for $M_{2}, L_{2}$ and $M_{2} \cap L_{2}$.
(b) Give DFAs and regular expressions for $M_{4}, L_{4}$ and $M_{4} \cap L_{4}$.
(c) Give a DFA that accepts $M_{3}$. [Hint:
(d) Give a DFA that accepts $L_{3}$. [Hint:
(e) What can you say about $M_{3} \cap L_{3}$ ?
(f) Use JFLAP to obtain a regular expression for $M_{3}$.
(g) Give a general DFA construction for $M_{n}$ where $n \geq 2$.

## Exercise 1.3

The reverse of a word $w \in \Sigma^{*}$ is defined as

$$
w^{R}= \begin{cases}\varepsilon & \text { if } w=\varepsilon, \\ a_{n} a_{n-1} \cdots a_{1} & \text { if } w=a_{1} a_{2} \cdots a_{n} \text { where each } a_{i} \in \Sigma .\end{cases}
$$

The reverse of a language $L \subseteq \Sigma^{*}$ is defined as $L^{R}=\left\{w^{R}: w \in L\right\}$.
(a) Let $A$ be an NFA. Describe an NFA $B$ such that $L(B)=L(A)^{R}$.
(b) Does your construction in (a) works for DFAs as well? More precisely, does it preserve determinism?
(c) Show that $M_{n}=\left(L_{n}\right)^{R}$ for every $n \geq 2$.

## Exercise 1.4

Let $A$ and $B$ be DFAs over some alphabet $\Sigma$.
(a) Describe DFAs $C$ and $D$ such that $L(C)=L(A) \cup L(B)$ and $L(D)=L(A) \cap L(B)$.
(b) Prove that $D$ is correct, i.e. that indeed $L(C)=L(A) \cap L(B)$.
(c) If $A$ and $B$ were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.

