Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

19.10.2017

Automata and Formal Languages — Homework 1

Due 24.10.2017

Download JFLAP from www.jflap.org. We will use the *finite automata* and *regular expression* modes.

Exercise 1.1

Let $L = \{w \in \{a, b, c\}^* : w \text{ starts with } ac \text{ and ends with } ab\}.$

- (a) Give an NFA that accepts L.
- (b) Give a DFA that accepts L.
- (c) Give a regular expression for L.
- (d) Use JFLAP to convert your NFA of (a) and your regular expression of (c) to DFAs.

Exercise 1.2

Let msbf: $\{0,1\}^* \to \mathbb{N}$ and lsbf: $\{0,1\}^* \to \mathbb{N}$ be such that msbf(w) and lsbf(w) are respectively the number represented by w in the "most significant bit first" and "least significant bit first" encoding. For example,

msbf(1010) = 10,	msbf(100) = 4,	msbf(0011) = 3,
lsbf(1010) = 5,	lsbf(100) = 1,	lsbf(0011) = 12.

For every $n \ge 2$, let us define the following languages:

 $M_n = \{ w \in \{0,1\}^* : \operatorname{msbf}(w) \text{ is a multiple of } n \},$ $L_n = \{ w \in \{0,1\}^* : \operatorname{lsbf}(w) \text{ is a multiple of } n \}.$

- (a) Give DFAs and regular expressions for M_2 , L_2 and $M_2 \cap L_2$.
- (b) Give DFAs and regular expressions for M_4 , L_4 and $M_4 \cap L_4$.
- (c) Give a DFA that accepts M_3 . [Hint:
- (d) Give a DFA that accepts L_3 . [Hint:
- (e) What can you say about $M_3 \cap L_3$?
- (f) Use JFLAP to obtain a regular expression for M_3 .
- (g) Give a general DFA construction for M_n where $n \ge 2$.

Exercise 1.3

The *reverse* of a word $w \in \Sigma^*$ is defined as

$$w^{R} = \begin{cases} \varepsilon & \text{if } w = \varepsilon, \\ a_{n}a_{n-1}\cdots a_{1} & \text{if } w = a_{1}a_{2}\cdots a_{n} \text{ where each } a_{i} \in \Sigma. \end{cases}$$

The reverse of a language $L \subseteq \Sigma^*$ is defined as $L^R = \{w^R : w \in L\}$.

- (a) Let A be an NFA. Describe an NFA B such that $L(B) = L(A)^R$.
- (b) Does your construction in (a) works for DFAs as well? More precisely, does it preserve determinism?
- (c) Show that $M_n = (L_n)^R$ for every $n \ge 2$.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ .

- (a) Describe DFAs C and D such that $L(C) = L(A) \cup L(B)$ and $L(D) = L(A) \cap L(B)$.
- (b) Prove that D is correct, i.e. that indeed $L(C) = L(A) \cap L(B)$.
- (c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.