Verification of liveness properties

Programs and ω -executions

- Recall: a full execution of a program is an execution that cannot be extended (either infinite or ending at a configuration without successors).
- We consider programs that may have ω -executions.
- We assume w.l.o.g. that every full execution of the program is infinite (see next slide).
- Therefore: full executions = ω -executions

Handling finite full executions

```
1 while x = 1 do

2 if y = 1 then

3 x \leftarrow 0

4 y \leftarrow 1 - x

5 end
```

We artificially ensure that every full execution is infinite by adding a self-loop to every state without successors.

Verifying a program

- Goal: automatically check if some ω -execution violates a property.
- Safety property: "nothing bad happens"
 - No configuration satisfies x = 1.
 - No configuration is a deadlock.
 - Along an execution the value of x cannot decrease.
- Liveness property: "something good eventually happens"
 - Eventually x has value 1.
 - Every message sent during the execution is eventually received.

Safety and liveness: more precisely

- A finite execution w is bad for a given property if every potential ω -execution of the form w w' violates the property.
- A property is a safety property if every ω-execution that violates the property has a bad prefix.
 (Intuitively: after finite time we can already say that the property does not hold)
- A property is a liveness property if some ω-execution that violates the property has no bad prefix.
 (We can only tell that the property is a violation ``after seeing the complete ω-execution).

Approach to automatic verification

- Represent the set of ω -executions of the program as a NBA. (The system NBA).
- Represent the set of possible ω -executions that violate the property as a NBA (or an ω -regular expression). (The property NBA).
- Check emptiness of the intersection of the two NBAs.

Problem: Fairness

- We may want to exclude some ω -executions because they are "unfair".
- Example: finite waiting property in Lamport's mutex algorithm.

Lamport's algorithm

Asynchronous product

- Finite waiting: If a process is trying to access the critical section, it eventually will.
- Formalization: Let NC_i, T_i, C_i be atomic propositions mapped to the sets of configurations where process i is in the non-critical section, trying to access it, and in the critical section, respectively.

The full executions that violate finite waiting for process *i* are

$$\Sigma^*T_i (\Sigma \setminus C_i)^{\omega}$$

 Observe: all states of the system NBA are final, and so we can intersect NBAs using the algorithm for NFAs

The finite waiting property does not hold because of

$$[0,0,nc_0,nc_1]$$
 $[1,0,t_0,nc_1]$ $[1,1,t_0,t_1]^{\omega}$

- Is this a real problem of the algorithm?
 No! We have not specified correctly.
- Fairness assumption: both processes execute infinitely many actions.
 - (Usually a weaker assumption is used: if a process can execute actions infinitely often, it executes infinitely many actions.)
- Reformulation: in every fair ω -execution, if a process is trying to access the critical section, it will eventually access it.

- The violations of the property under fairness are the intersection of $\Sigma^*T_i(\Sigma \setminus C_i)^{\omega}$ and the ω -executions in which both processes make a move infinitely often.
- Problem: how do we represent this condition as an ω -regular language?
- Solution: enrich the alphabet of the NBA
 Letter: pair (c, i) where c is a configuration and i is the index of the process making the move.

- Denote by M₀ and M₁ the set of letters with index 0 and 1, respectively.
- The possible ω executions where both processes move infinitely often is given by

$$((M_0 + M_1)^* M_0 M_1)^{\omega}$$

 Finite waiting holds under fairness for process 0 but not for process 1 because of

```
 ( [0,0,nc_0,nc_1][0,1,nc_0,t_1][1,1,t_0,t_1][1,1,t_0,q_1]   [1,0,t_0,q_1'][1,0,c_0,q_1'][0,0,nc_0,q_1'] )^{\omega}
```

Temporal logic

- Writing property NBAs requires training in automata theory
- We search for a more intuitive (but still formal) description language: Temporal Logic.
- Temporal logic extends propositional logic with temporal operators like always and eventually.
- Linear Temporal Logic (LTL) is a temporal logic interpreted over linear structures.

Linear Temporal Logic (LTL)

- We are given:
 - A set AP of atomic propositions (names for basic properties)
 - A valuation assigning to each atomic proposition a set of configurations (intended meaning: the set of configurations that satisfy the property).

Example

```
1 while x = 1 do

2 if y = 1 then

3 x \leftarrow 0

4 y \leftarrow 1 - x

5 end
```

- AP: at₁, at₂,..., at₅, x=0, x=1, y=0, y=1
- $V(at_i) = \{ [\ell, x, y] \in C \mid \ell = i \} \text{ for every } i \in \{1, ..., 5\}$
- $V(x=0) = \{ [\ell, x, y] \in C \mid x = 0 \}$

Computations

- A computation is an infinite sequence of subsets of AP.
- Examples for $AP = \{p, q\}$ $\emptyset^{\omega} \quad (\{p\}\{p, q\})^{\omega} \quad \{p\}\{p, q\} \not \otimes \emptyset \{p\}^{\omega}$
- We map every possible execution to a computation by mapping each configuration to the set of atomic propositions it satisfies.
- A computation is executable if some execution maps to it.

Example

$$e_1 = [1,0,0] [5,0,0]^{\omega}$$

$$\omega$$
-executions: $e_2 = ([1,1,0][2,1,0][4,1,0])^{\omega}$

$$e_3 = [1,0,1][5,0,1]^{\omega}$$

$$e_4 = [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]^{\omega}$$

From executions to computations

```
e_1 = [1,0,0] [5,0,0]^{\omega}
e_2 = ([1,1,0] [2,1,0] [4,1,0])^{\omega}
\sigma_1 = \{at1, x=0, y=0\} \{at5, x=0, y=0\}^{\omega}
\sigma_2 = (\{at1, x=0, y=0\} \{at2, x=1, y=0\} \{at4, x=1, y=0\})^{\omega}
```

Syntax of LTL

- Given: set AP of atomic propositions, valuation assigning to each atomic proposition a set configurations.
- The formulas of LTL are given by the syntax:

$$\varphi ::= \mathbf{true} \mid p \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid X \varphi_1 \mid \varphi_1 U \varphi_2$$

where $p \in AP$

Semantics of LTL

- Formulas are interpreted on computations (executable or not).
- The satisfaction relation $\sigma \models \varphi$ is given by:

```
\sigma \vDash \mathbf{true}
\sigma \vDash p \text{ iff } p \in \sigma(0)
\sigma \vDash \neg \varphi \text{ iff not } \sigma \vDash \varphi
\sigma \vDash \varphi_1 \land \varphi_2 \text{ iff } \sigma \vDash \varphi_1 \text{ and } \sigma \vDash \varphi_2
\sigma \vDash X\varphi \text{ iff } \sigma^1 \vDash \varphi
\sigma \vDash \varphi_1 U \varphi_2 \text{ iff there is } k \ge 0 \text{ s. t.} : \sigma^k \vDash \varphi_2 \text{ and } \sigma^i \vDash \varphi_1 \text{ for all } 0 \le i \le k
```

Abbreviations

- The boolean abbreviations false, ∨, →, ↔ etc. are defined as usual.
- $F\varphi := \mathbf{true} \cup \varphi$ (eventually φ).

According to the semantics:

$$\sigma \vDash F\varphi$$
 iff there is $k \ge 0$ s. t. $\sigma^k \vDash \varphi$

• $G\varphi := \neg F \neg \varphi$ (always φ or globally φ).

According to the semantics:

$$\sigma \vDash G\varphi \text{ iff } \sigma^k \vDash \varphi \text{ for every } k \ge 0$$

Examples of formulas

- $AP: at_1, at_2, ..., at_5, x=0, x=1, y=0, y=1$ $V(at_i) = \{[\ell, x, y] \in C \mid \ell = i\} \text{ for every } i \in \{1, ..., 5\}$ $V(x=0) = \{[\ell, x, y] \in C \mid x=0\}$
- $\varphi_0 = x=1 \wedge X y=1 \wedge X X at3$
- $\varphi_1 = F = 0$
- $\varphi_2 = x=0 U at5$
- $\varphi_3 = y=1 \land F(x=0 \land at5) \land \neg (F(y=0 \land X y=1))$

Lamport's algorithm

- $AP = \{ NC_0, T_0, C_0, NC_1, T_1, C_1, M_0, M_1 \}$ Valuation as expected.
- Mutual exclusion:

- Naïve finite waiting:
- Finite waiting with fairness:

Lamport's algorithm

Bounded overtaking:

$$G\left(T_0 \to \left(\neg C_1 \ U\left(\ C_1 U\left(\neg C_1 U\ C_0\right)\right)\right)\right)$$

Whenever T_0 holds, the computation continues with a (possibly empty) interval at which $\neg C_1$ holds, followed by a (possibly empty) interval at which C_1 holds, followed by a point at which C_0 holds.

Getting used to LTL

- Express in natural language FGp, GFp
- Are these pairs of formulas equivalent?

```
FFpFpGGpGpFGpGFpFGFpGFpp U q p U (p \land q)Fpp \land XFpFpp \lor XFpGpp \land XGpp U q p \lor X (p U q)p U q p \land X (p U q)p U q q \lor X (p U q)p U q q \land X (p U q)p U q q \lor V (p \land X (p U q))p U q q \land V (p \lor X (p U q))
```

From formulas to NBAs

- Given: set AP of atomic propositions
- Language $L(\varphi)$ of a formula φ : set of computations satisfying φ .
- Examples for $AP = \{p, q\}$
 - $-L(Fp) = \text{computations } s_1 s_2 s_3 \dots \text{ such that } p \in s_i \text{ for some } i \geq 1$
 - $-L(G(p \wedge q)) = \{\{p, q\}^{\omega}\}\$
- $L(\varphi)$ is an ω -language over the alphabet 2^{AP}
- For $AP = \{p, q\}$ we get $2^{AP} = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}$

NBAs for some formulas

$$AP = \{p, q\}$$

- *Fp*
- *Gp*
- p U q
- *GFp*

From LTL formulas to NGAs

We present an algorithm that takes a formula φ over a fixed set AP of atomic propositions as input and returns a NGA A_{φ} such that $L(A_{\varphi}) = L(\varphi)$.

Closure of a formula

- Define $neg(\psi) = \begin{cases} \psi & \text{if } \varphi = \neg \psi \\ \neg \varphi & \text{otherwise} \end{cases}$
- The closure $cl(\varphi)$ of φ is the set containing ψ and $neg(\psi)$ for every subformula ψ of φ
- Example:

$$cl(p U \neg q) = \{p, \neg p, \neg q, q, pU \neg q, \neg (pU \neg q)\}$$

• The satisfaction sequence of a computation $s_0s_1s_2$... with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2$... where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2}$...

- The satisfaction sequence of a computation $s_0s_1s_2...$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2...$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2}...$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. p U q is:

- The satisfaction sequence of a computation $s_0s_1s_2...$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2...$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2}...$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. p U q is:

$$\{p, \neg q, \neg (p \ U \ q)\}^{\omega}$$

- The satisfaction sequence of a computation $s_0s_1s_2...$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2...$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2}...$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. p U q is:

$$\{p, \neg q, \neg (p \ U \ q)\}^{\omega}$$

• The satisfaction sequence of $(\{p\}\{q\})^{\omega}$ w.r.t. p U q is:

- The satisfaction sequence of a computation $s_0s_1s_2...$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2...$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2}...$
- The satisfaction sequence of $\{p\}^{\omega}$ w.r.t. p U q is:

$$\{p, \neg q, \neg (p \ U \ q)\}^{\omega}$$

• The satisfaction sequence of $(\{p\}\{q\})^{\omega}$ w.r.t. p U q is:

$$(\{p, \neg q, p \ U \ q\} \{ \neg p, q, p \ U \ q\})^{\omega}$$

Atoms

• Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \land "

- Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \wedge "
- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \wedge \psi_2 \in cl(\varphi)$, $\psi_1 \wedge \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$

- Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \wedge "
- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \wedge \psi_2 \in cl(\varphi)$, $\psi_1 \wedge \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = (\neg p \land q) U F p$:

- Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \land "
- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \wedge \psi_2 \in cl(\varphi)$, $\psi_1 \wedge \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) U F p$: $\{\neg p, \neg q, \neg (p \land q), F p, \varphi\} \{p, q, (p \land q), \neg F p, \neg \varphi\}$

- Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \wedge "
- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \wedge \psi_2 \in cl(\varphi)$, $\psi_1 \wedge \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \ U \ Fp$: $\{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \ \{p, q, (p \land q), \neg Fp, \neg \varphi\}$
- Examples of non-atoms for $\varphi = \neg (p \land q) U Fp$:

- Intuition: an atom is a maximal set of formulas of $cl(\varphi)$ that "could be simultaneously true by looking only at \neg and \wedge "
- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following two conditions:
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $neg(\psi)$ belong to α
 - For every $\psi_1 \wedge \psi_2 \in cl(\varphi)$, $\psi_1 \wedge \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
- Examples of atoms for $\varphi = \neg (p \land q) \ U \ F p$: $\{ \neg p, \neg q, \neg (p \land q), F p, \varphi \} \ \{ p, q, (p \land q), \neg F p, \neg \varphi \}$
- Examples of non-atoms for $\varphi = \neg (p \land q) \ U \ Fp$: $\{p,q,p \land q,Fp\} \ \{p \land q,Fp,\varphi\}$

Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ of subsets of $cl(\varphi)$ satisfying the following conditions for every $i \ge 0$:
 - For every $X\psi \in cl(\varphi)$: $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 - For every $\psi_1 U \psi_2 \in cl(\varphi)$: $\psi_1 U \psi_2 \in \alpha_i$ iff $\psi_2 \in \alpha_i$ or $\psi_1 \in \alpha_i$ and $\psi_1 U \psi_2 \in \alpha_{i+1}$

Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ of subsets of $cl(\varphi)$ satisfying the following conditions for every $i \ge 0$:
 - For every $X\psi \in cl(\varphi)$: $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 - For every $\psi_1 U \psi_2 \in cl(\varphi)$: $\psi_1 U \psi_2 \in \alpha_i \text{ iff } \psi_2 \in \alpha_i \text{ or } \psi_1 \in \alpha_i \text{ and } \psi_1 U \psi_2 \in \alpha_{i+1}$
- A pre-Hinttika sequence is a Hinttika sequence if it also satisfies for every $i \ge 0$:
 - For every $\psi_1 U \psi_2 \in cl(\varphi)$: if $\psi_1 U \psi_2 \in \alpha_i$ then there exists $j \geq i$ such that $\psi_2 \in \alpha_i$

```
1. \{p, \neg q, r, s, \varphi\}^{\omega}
```

1.
$$\{p, \neg q, r, s, \varphi\}^{\omega}$$

2.
$$\{\neg p, r, \neg \varphi\}^{\omega}$$

```
1. \{p, \neg q, r, s, \varphi\}^{\omega}
```

2.
$$\{\neg p, r, \neg \varphi\}^{\omega}$$

3.
$$\{\neg p, q, \neg r, r \land s, \neg \varphi\}^{\omega}$$

```
1. \{p, \neg q, r, s, \varphi\}^{\omega}
```

2.
$$\{\neg p, r, \neg \varphi\}^{\omega}$$

3.
$$\{\neg p, q, \neg r, r \land s, \neg \varphi\}^{\omega}$$

4.
$$\{p, q, p \land q, r, s, r \land s, \neg \varphi\}$$

1.
$$\{p, \neg q, r, s, \varphi\}^{\omega}$$

2.
$$\{\neg p, r, \neg \varphi\}^{\omega}$$

3.
$$\{\neg p, q, \neg r, r \land s, \neg \varphi\}^{\omega}$$

4.
$$\{p, q, p \land q, r, s, r \land s, \neg \phi\}$$

5.
$$\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^{\omega}$$

1.
$$\{p, \neg q, r, s, \varphi\}^{\omega}$$

2.
$$\{\neg p, r, \neg \varphi\}^{\omega}$$

3.
$$\{\neg p, q, \neg r, r \land s, \neg \varphi\}^{\omega}$$

4.
$$\{p, q, p \land q, r, s, r \land s, \neg \phi\}$$

5.
$$\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^{\omega}$$

6.
$$\{p,q,(p \land q),r,s,(r \land s,)\varphi\}^{\omega}$$

Main theorem

- Definition: A Hintikka sequence $\alpha_0 \alpha_1 \alpha_2 \dots$ extends a computation $s_0 s_1 s_2 \dots$ if $s_i \cap cl(\varphi) = \alpha_i \cap AP$ for every $i \geq 0$.
- Theorem: Every computation $s_0s_1s_2\dots$ can be extended to a unique Hintikka sequence, and this extension is equal to the satisfaction sequence.

Strategy for the NFA of a formula

• Let σ be a computation over AP.

Strategy for the NFA of a formula

• Let σ be a computation over AP.

```
• We have: \sigma \models \varphi

iff \varphi belongs to the first set of the satisfaction sequence for \sigma

iff \varphi belongs to the first set of the Hintikka sequence for \sigma
```

Strategy for the NFA of a formula

- Let σ be a computation over AP.
- We have: $\sigma \models \varphi$ iff φ belongs to the first set of the satisfaction sequence for σ iff φ belongs to the first set of the
 - Hintikka sequence for σ
- Strategy: design the NGA so that for every σ
 - The runs on σ correspond to the pre-Hintikka sequences $\alpha_0\alpha_1\alpha_2$... that extend σ and satisfy φ ∈ α_0
 - A run is accepting iff its corresponding pre-Hintikka sequence is also a Hintikka sequence.

• Alphabet: 2^{AP}

- Alphabet: 2^{AP}
- States: atoms of φ .

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap \{p, \neg p \mid p \in AP\} = s$ and α, β satisfies the conditions of a pre-Hintikka sequence.

- Alphabet: 2^{AP}
- States: atoms of φ .
- Initial states: atoms containing φ .
- Transitions: triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap AP = s$ and α, β satisfies the conditions of a pre-Hintikka sequence.
- Sets of accepting states: A set $F_{\psi_1 U \psi_2}$ for every until-subformula $\psi_1 U \psi_2$ of φ .
 - $F_{\psi_1 U \psi_2}$ contains the atoms α such that $\psi_1 U \psi_2 \notin \alpha$ or $\psi_2 \in \alpha$.

Example: The NGA $A_{p U q}$

(Labels of transitions omitted. The label of a transition from atom α is the set $\{p \in AP \mid p \in \alpha\}$. There is only one set of accepting states.)

Some observations

- All transitions leaving a state carry the same label.
- For every computation $s_0s_1s_2$... satisfying φ there is a unique accepting run $\alpha_0 \xrightarrow{s_0} \alpha_1 \xrightarrow{s_1} \alpha_2 \xrightarrow{s_2} \cdots$, namely the one such that $\alpha_0\alpha_1\alpha_2$... is the satisfaction sequence for $s_0s_1s_2$...
- The sets of computations accepted from each initial state are pairwise disjoint.
- The number of states is bounded by $2^{|\varphi|}$.