Verification of liveness properties

Programs and w-executions

Recall: a full execution of a program Is an
execution that cannot be extended (either
Infinite or ending at a configuration without
successors).

We consider programs that may have
w-executions.

We assume w.l.o0.g. that every full execution of
the program is infinite (see next slide).

Therefore: full executions = w-executions

Handling finite full executions

| while x = 1do We artificially ensure that every full
2 ify=1then execution is infinite by adding a self-
3 x 0 loop to every state without successors.
4 ye—1-x
5 end
5.0,0] \ > [5,0,0]
[1,0,0]
[2,1,0] [4,1,0]

) 15,0, 1]

Verifying a program

e Goal: automatically check if some w-execution violates a
property.
o Safety property: “nothing bad happens”
— No configuration satisfies x = 1.
— No configuration is a deadlock.
— Along an execution the value of x cannot decrease.
 Liveness property: “something good eventually happens”
— Eventually x has value 1.

— Every message sent during the execution is eventually
received.

Safety and liveness: more precisely

* Afinite execution w is bad for a given property if every
potential w-execution of the form w w' violates the
property.

e A property is a safety property if every w-execution
that violates the property has a bad prefix.

(Intuitively: after finite time we can already say that the
property does not hold)

* A property is a liveness property if some w-execution
that violates the property has no bad prefix.

(We can only tell that the property is a violation after
seeing the complete w-execution).

Approach to automatic verification

e Represent the set of w-executions of the program
as a NBA. (The system NBA).

e Represent the set of possible w-executions that
violate the property as a NBA (or an w-regular
expression). (The property NBA).

* Check emptiness of the intersection of the two
NBAs.

Problem: Fairness

« \WWe may want to exclude some w-executions
because they are “unfair”.

e Example: finite waiting property in Lamport's
mutex algorithm.

Lamport's algorithm

Asynchronous product

Finite waiting property

 Finite waiting: If a process is trying to access the critical
section, it eventually will.

e Formalization: Let NC;, T;, C; be atomic propositions
mapped to the sets of configurations where process i
IS In the non-critical section, trying to access it, and Iin
the critical section, respectively.
The full executions that violate finite waiting for
process | are

LT (BN G

* Observe: all states of the system NBA are final, and so
we can intersect NBAs using the algorithm for NFAs

Finite waiting property

The finite waiting property does not hold because of
10,0, ncy, ncy] [1,0,ty,nncy] [1,1, 80, t1]%

s this a real problem of the algorithm?
No! We have not specified correctly.
airness assumption: both processes execute infinitely

many actions.
(Usually a weaker assumption is used: if a process can execute
actions infinitely often, it executes infinitely many actions.)

Reformulation: in every fair w-execution, if a process is
trying to access the critical section, it will eventually
access It.

Finite waiting property

* The violations of the property under fairness are the
intersection of X*T;(Z \ C;)“and the w-executions
In which both processes make a move infinitely
often.

* Problem: how do we represent this condition as an
w-regular language?

 Solution: enrich the alphabet of the NBA
Letter: pair (¢, i) where c Is a configuration and i Is
the index of the process making the move.

Finite waiting property

e Denote by M, and M, the set of letters with
Index 0 and 1, respectively.

e The possible wexecutions where both processes
move Infinitely often is given by
% w
(Mo + My)*MoM,)

 Finite waiting holds under fairness for process 0
but not for process 1 because of
([0,0,ncy,nc][0,1,ncy, t1][1,1, o, t1][1,1, 0, g1]

[1101 tOi qi] [1101 Co, qi] [0101 ncy, qi])w

Temporal logic

Writing property NBAs requires training in
automata theory

We search for a more intuitive (but still
formal) description language: Temporal Logic.

Temporal logic extends propositional logic
with temporal operators like always and
eventually.

Linear Temporal Logic (LTL) Is a temporal logic
Interpreted over linear structures.

Linear Temporal Logic (LTL)

« \We are given:
— A set AP of atomic propositions (names for basic
properties)
— A valuation assigning to each atomic proposition a

set of configurations (intended meaning: the set of
configurations that satisfy the property).

Example

while x = 1 do
if y = 1 then
x <0
ye—1-x
end

nh B W N -

e AP : at,, at,,..., ate, x=0, x=1, y=0, y=1

o V(aty) ={|¢,x,yleC| ¥ =i}foreveryi e {1,..

o V(x=0)={[#,x,y] € C|x=0}

, O}

Computations

A computation is an infinite sequence of subsets of AP.
Examples for AP = {p,q}

0? ({pHp.q})® {p}{p.q} 00 {p}®

We map every possible execution to a computation by
mapping each configuration to the set of atomic
propositions it satisfies.

A computation is executable if some execution maps to it.

e, = [1,0,0] [5,0,0]¢

e, = ([1,1,0] [2,1,0] [4,1,0])®

es = [1,0,1][5,0,1]¢

e, = [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]¢

w-executions:

From executions to computations

e, = [1,0,0] [5,0,0]¢

e, = ([1,1,0][2,1,0] [4,1,0])®

o; = {atl, x=0, y=0} {at5, x=0, y=0}¢

g, = ({atl x=0,y=0} {at2,x=1,y=0} {at4, x=1,y=0})*

Syntax of LTL

e Glven: set AP of atomic propositions, valuation
assigning to each atomic proposition a set
configurations.

* The formulas of LTL are given by the syntax:
@ ==true|p| @1 | @1 Ay | Xp1| 91U @,
where p € AP

Semantics of LTL

* Formulas are interpreted on computations (executable
or not).

* The satisfaction relation o = ¢ Is given by:
o E true
okpiff p€ao(0)
ok Iff noto E @
ocE@p, AN, Iffc =E@p;ando E @,
o EXpiffol E @

o F @Ug, iffthereisk > 0s.t.:0" F ¢, and
ot forall0<i<k

Abbreviations

 The boolean abbreviations false, v, —, < etc. are
defined as usual.

 Fp :=1trueU ¢ (eventually ¢).
According to the semantics:
o = Foiffthereisk >0s.t. ¥ E ¢
e G = F-p (always @ or globally ¢).
According to the semantics:

o E G iffa® = ¢ foreveryk >0

Examples of formulas

AP : aty, at,,..., ats, x=0, x=1, y=0, y=1

V(aty)) = {[f,x,yle C | ¥ =1i}foreveryi € {1,...,5}
V(x=0)={[£,x,y] € C | x=0}

Qo= X=1A Xy=1A X X at3

@1 = F x=0

@, = x=0U at5

@3 =y=1AN F(x=0Aats) A=(F (y=0AXy=1))

Lamport’s algorithm

AP — { NCO, To, Co, NCl, Tl’ Cl’ Mo, Ml}
Valuation as expected.

Mutual exclusion:
Naive finite waiting:

Finite waiting with fairness:

Lamport’s algorithm

Bounded overtaking:

G (TO R (ﬁc1 U (C,U (—~C,U CO))))

Whenever T, holds, the computation continues
with a (possibly empty) interval at which —C; holds,
followed by a (possibly empty) interval at which C;
holds, followed by a point at which C, holds.

Getting used to LTL

e Express Iin natural language FGp, GFp
 Are these pairs of formulas equivalent?

FFp
FGp

pUq

Fp
Gp

pUq
pUq
pUq

Fp
GFp
pU(Aq)

pV XFp
pV XGp

pVX(Uq)
qVvX(pUq)
qgV(pAX(pUqg)

GGp Gp
FGFp GFp

Fp p ANXFp
Gp p AN XGp

pUq pAX(pUgq)
pUq gnX (pUgq)
pUq qA(pVX(pUq)

From formulas to NBAS

Given: set AP of atomic propositions

Language L(¢p) of a formula ¢ : set of
computations satisfying ¢.
Examples for AP = {p, q}

— L(Fp) = computations s;s,s5 ... such that p € s; for
somei >1

-L(GpA®) ={{p.q}*}
L(¢p) is an w-language over the alphabet 247

For AP = {p, q} we get 2" = {0, {p} {q}.{p, q}}

NBAs for some formulas

AP ={p,q}

From LTL formulas to NGAs

We present an algorithm that takes a formula ¢ over a
fixed set AP of atomic propositions as input and returns

aNGA A, such that L(4,) = L(¢).

Closure of a formula
e Define neg(y) = {fwloﬁerwife

e The closure cl(¢p) of ¢ Is the set containing 1 and
neg(y) for every subformula y of ¢

e Example:

cl(p U—q) ={p,—p,—q,q,pU—q,~(pU—q)}

Satisfaction sequence

* The satisfaction sequence of a computation
SpS1S, ... WIth respect to ¢ Is the sequence
aya, - ... Where a; contains the formulas of
cl(¢e) satisfiled by s;5;,1S;45 ...

Satisfaction sequence

* The satisfaction sequence of a computation
SpS1S, ... WIth respect to ¢ Is the sequence
aya, - ... Where a; contains the formulas of
cl(¢e) satisfiled by s;5;,1S;45 ...

e The satisfaction sequence of {p}* w.rt. p U g is:

Satisfaction sequence

* The satisfaction sequence of a computation
SpS1S, ... WIth respect to ¢ Is the sequence
aya, - ... Where a; contains the formulas of
cl(¢e) satisfiled by s;5;,1S;45 ...

e The satisfaction sequence of {p}* w.rt. p U g is:
{p,—q,-(p U q)}*

Satisfaction sequence

* The satisfaction sequence of a computation
SpS1S, ... WIth respect to ¢ Is the sequence
aya, - ... Where a; contains the formulas of
cl(¢e) satisfiled by s;5;,1S;45 ...

e The satisfaction sequence of {p}* w.rt. p U g is:

p,—q,~(pUq)}®

» The satisfaction sequence of ({p}{g})® w.r.t.
p U qls:

Satisfaction sequence

* The satisfaction sequence of a computation
SpS1S, ... WIth respect to ¢ Is the sequence
aya, - ... Where a; contains the formulas of
cl(¢e) satisfiled by s;5;,1S;45 ...

e The satisfaction sequence of {p}* w.rt. p U g is:

w,—q,~(pUq)}®
» The satisfaction sequence of ({p}{g})® w.r.t.
p U qls:
(tr.~q.pU q}{-p,q.p U q})”

Atoms

 Intuition: an atom is a maximal set of formulas of c/(¢) that
“could be simultaneously true by looking only at — and A”

Atoms

Intuition: an atom is a maximal set of formulas of cl(¢) that
“could be simultaneously true by looking only at — and A”

Aset a € cl(¢) Is an atom If it satisfies the following two

conditions:
— Forevery i € cl(¢), exactly one of ¢y and neg(y) belong to «

— Forevery iy, AY, € cl(g), Y1 AP, € a Iff P, € aand
W, € a

Atoms

 Intuition: an atom is a maximal set of formulas of c/(¢) that
“could be simultaneously true by looking only at — and A”

« Aseta C cl(g) Isan atom if it satisfies the following two

conditions:
— Forevery i € cl(¢), exactly one of ¢y and neg(y) belong to «

— Forevery iy, AY, € cl(g), Y1 AP, € a Iff P, € aand

W, € a
o Examples of atomsforo = (=p Aq) U Fp :

Atoms

 Intuition: an atom is a maximal set of formulas of c/(¢) that
“could be simultaneously true by looking only at — and A”

« Aseta C cl(g) Isan atom if it satisfies the following two
conditions:
— Forevery i € cl(¢), exactly one of ¢y and neg(y) belong to «
— Forevery iy, AY, € cl(g), Y1 AP, € a Iff P, € aand

W, € a

 Examplesof atomsforo = —(pAqg) U Fp :
{.q,~(pAq) Fp, o} {p.q.(p Aq),~Fp,~¢}

Atoms

 Intuition: an atom is a maximal set of formulas of c/(¢) that
“could be simultaneously true by looking only at — and A”

« Aseta C cl(g) Isan atom if it satisfies the following two

conditions:
— Forevery i € cl(¢), exactly one of ¢y and neg(y) belong to «

— Forevery iy, AY, € cl(g), Y1 AP, € a Iff P, € aand

W, € a

 Examplesof atomsforo = —(pAqg) U Fp :
{.q,~(pAq) Fp, o} {p.q.(p Aq),~Fp,~¢}

e Examples of non-atomsforo = —-(pAq) U Fp :

Atoms

 Intuition: an atom is a maximal set of formulas of c/(¢) that
“could be simultaneously true by looking only at — and A”

« Aseta C cl(g) Isan atom if it satisfies the following two
conditions:
— Forevery i € cl(¢), exactly one of ¢y and neg(y) belong to «
— Forevery iy, AY, € cl(g), Y1 AP, € a Iff P, € aand

W, € a

 Examplesof atomsforo = —(pAqg) U Fp :
{.q,~(pAq) Fp, o} {p.q.(p Aq),~Fp,~¢}

e Examples of non-atomsforo = —-(pAq) U Fp :
{p.apA qFp} {pAq Fp ¢}

Hintikka sequences

e A pre-Hinttika sequence for ¢ Is a sequence aya,a, ... Of
subsets of cl(¢) satisfying the following conditions for every
i = 0:
— Forevery Xy € cl(op):
Xl'b (S a; Iff lp (S dix1q

— Forevery Y, U Y, € cl(p) :
l,blU lpz € q; Iff lpz € a; or ¢1 € q; and ¢1 Ulpz € ajyq

Hintikka sequences

e A pre-Hinttika sequence for ¢ Is a sequence aya,a, ... Of
subsets of cl(¢) satisfying the following conditions for every
i = 0:
— Forevery Xy € cl(op):
Xl'b (S a; Iff lp (S dix1q
— Forevery Y, U Y, € cl(p):
l,blU lpz € q; Iff lpz € a; or ¢1 € q; and ¢1 Ulpz € ajyq
« A pre-Hinttika sequence is a Hinttika sequence If it also
satisfies for every i = O:

— Foreveryy,U Y, € cl(p): if YUY, € a; then
there exists j = i such that i, € «;

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

1. {p,—q,r s @}?

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

1. {p,—q,r s @}?
2. {—p1r @}

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

1. {p,—q,r, s @}*
2. {—-p,r e}
3. {—-wp,q 1 rAs-@}?

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

{p,—q,r s, @}?
{-p, 7, @}

{-p,q,—r,r As,—@}®

> W N

{p.qpANqgr.sTAs @}

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

{p,—q,r s, @}?
{—p, 7,2}
{-p,q,—r,r As,—@}®

{p.qpANqgr.sTAs @}

a kW b =

w,~q,~(pAq),~7r,s,~(rAs), @}

Hintikka sequences: An example

e Lletp =—=(pAq) U (rns).Which of the following are
pre-Hintikka and Hintikka sequences ?

p,—q,7. 8,9}

{(—p, 7, —p}®

{=p,q,—7r, T As,—p}®
{p.gpAqgrsrAs e}

0, —q,~(PAqQ),r,5,~(rAs), p}®

L o

wq@Aqg,T,s,(rAs,) @}

Main theorem

 Definition: A Hintikka sequence a,a; a5, ... extends a
computation sys;s, ... if s; N cl(p) = a; N AP for every
i = 0.

e Theorem: Every computation s,s; s, ... can be extended
to a unique Hintikka sequence, and this extension is
equal to the satisfaction sequence.

Strategy for the NFA of a formula

e Let o be a computation over AP.

Strategy for the NFA of a formula

e Let o be a computation over AP.
* We have: oE Q@

Iff ¢ belongs to the first set of the
satisfaction sequence for o
Iff ¢ belongs to the first set of the

Hintikka sequence for o

Strategy for the NFA of a formula

e Let o be a computation over AP.

* We have: oE Q@

Iff ¢ belongs to the first set of the
satisfaction sequence for o
Iff ¢ belongs to the first set of the

Hintikka sequence for o

o Strategy: design the NGA so that for every o

— The runs on o correspond to the pre-Hintikka sequences
aoaq a5, ... that extend o and satisfy ¢ € «

— Arun is accepting iff its corresponding pre-Hintikka
sequence Is also a Hintikka sequence.

The NGA Ay

The NGA Ay

o Alphabet: 24F

The NGA Ay

o Alphabet: 24F
o States: atoms of .

The NGA Ay

o Alphabet: 24F
o States: atoms of .
* |nitial states: atoms containing ¢.

The NGA Ay

Alphabet: 24F
States: atoms of ¢.
Initial states: atoms containing ¢.

Transitions: triples « 5 fsuchthata N{p,—p | p €
AP} = s and «, [satisfies the conditions of a pre-
Hintikka sequence.

The NGA Ay

Alphabet: 24F
States: atoms of ¢.
Initial states: atoms containing ¢.

S
Transitions: triples a« — [such that « N AP = s and
a, [satisfies the conditions of a pre-Hintikka
sequence.

Sets of accepting states: Aset Fy, ., for every
until-subformula 1, Uy, of @.

Fyy. uy,contains the atoms « such that y, Uy, ¢ a
ory, € a.

Example: The NGA A,

(Labels of transitions omitted. The label of a transition from
atom a istheset {p € AP | p € a}. There is only one set of
accepting states.)

Some observations

All transitions leaving a state carry the same label.
For every computation sys; s, ... satisfying ¢ there is a

. . SO Sl 52
unique accepting run a, —» a; — a, — ---, namely the

one such that oy, « ... Is the satisfaction sequence for
S0S1S2

The sets of computations accepted from each initial
state are pairwise disjoint.

The number of states is bounded by 2!¢!.

