Logic

Logics on words

* Regular expressions give operational descriptions
of regular languages.

« Often the natural description of a language Is
declarative:

—even number of a's and even number of b's vs.
(aa + bb + (ab + ba)(aa + bb)*(ba + ab))*
—words not containing ‘hello’

e Goal: find a declarative language able to express
all the regular languages, and only the regular
languages.

Logics on words

 |dea: use a logic that has an interpretation on words

» A formula expresses a property that each word may
satisfy or not, like

— the word contains only a's
— the word has even length

— between every occurrence of an a and a b there
IS an occurrenceofa c¢

o Every formula (indirectly) defines a language: the
language of all the words over the given fixed
alphabet that satisfy it.

First-order logic on words

e Atomic formulas: for each letter a we
Introduce the formula Q,(x), with intuitive
meaning: the letter at position x is an a.

First-order logic on words: Syntax

e Formulas constructed out of atomic formulas
by means of standard “logic machinery’:
— Alphabet £ = {a, b, ... } and position variables
V={xy, .}
— Q4 (x)i1saformulaforeverya e Xandx € V.
—x < yisaformulaforeveryx,y €V
—If @, @, , @, are formulas then so are —¢ and

P11V @,
— If @ iIsaformulathensoisdx ¢ foreveryx € V

Abbreviations

Q1 APy = (2@ V@y)
P12 P = P1VPy

P1 © @z = (P1VP2) V (V1 @y)
Vxpp=—-dx @

first(x)

last(x) :=
y=x+1 :=
y=x+2 =
y=x+(k+1) :=

Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

e “Every a 1s immediately followed by a b.”

e “Every a is immediately followed by a b, unless it is the last letter.”

e “Between every a and every later b there 1s a ¢.”

Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

Ax Op(x) A Vx (last(x) = Qp(x) A —last(x) = Qu(x))

e “Every a 1s immediately followed by a b.”

e “Every a is immediately followed by a b, unless it is the last letter.”

e “Between every a and every later b there 1s a ¢.”

Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

Ax Op(x) A Vx (last(x) = Qp(x) A —last(x) = Qu(x))

e “Every a 1s immediately followed by a b.”

VX (Qu(x) = dy(y =x+ 1A Qp(y)))

e “Every a is immediately followed by a b, unless it is the last letter.”

e “Between every a and every later b there 1s a ¢.”

Examples (without semantics yet)

e “The last letter 1s a b and before it there are only a’s.”

Ax Op(x) A Vx (last(x) = Qp(x) A —last(x) = Qu(x))

e “Every a is immediately followed by a b.”

VX (Qu(x) = dy(y =x+ 1A Qp(y)))

e “Every a is immediately followed by a b, unless it is the last letter.”

Vx(Qu(x) = Vy(y=x+1-> 0p())

e “Between every a and every later b there 1s a ¢.”

Examples (without semantics yet)

e “The last letter 1s a b and before it there are only a’s.”

Ax Op(x) A Vx (last(x) = Op(x) A =last(x) = Qu(x))

e “Every a is immediately followed by a b.”

Vx(Qu(x) = Ay (y =x+ 1A Qp(y)))

e “Every a is immediately followed by a b, unless it is the last letter.”

Vx(Qu(x) = Vy(y=x+1 - 0Op()))

e “Between every a and every later b there 1s a ¢.”

VxVy (Qu(x) A Qp() Ax<y— Az(x <zAz2<yA Q:2))

First-order logic on words: Semantics

e Formulas are interpreted on pairs (w,) called
Interpretations, where

— w IS aword, and

— /J assigns positions to the free variables of the
formula (and maybe to others too—who cares)

|t does not make sense to say a formula is true or false:
It can only be true or false for a given interpretation.

o If the formula has no free variables (if it Is a sentence),
then for each word 1t is either true or false.

o Satisfaction relation:

(w,J)
(w,J)
(w,J)
(w,J)
(w,J)

 More logic jargon:

[l

Qu(x)
X<y
P

el V@
dx ¢

wlI(x)] = a

J(x) < J(y)

w,J) F ¢

(w,J) E @1 or W, J) F ¢2

lw| > 1 and some i € {1,...,|w|}

satisfies (w,J[i/x]) E ¢

— A formulais valid if it is true for all its
Interpretations

— A formula is satisfiable if is i1s true for at least
one of its interpretations

The empty word ...

 ...Isasusual a pain in the eh, neck.

o |t satisfies all universally quantified formulas,
and no existentially quantified formula.

Can we only express regular languages?
Can we express all regular languages?

* The language L(¢) of a sentence ¢ is the set of
words that satisfy ¢.

» Alanguage L is expressible in first-order logic or FO-
definable if some sentence ¢ satisfies L(¢p) = L.

* Proposition: a language over a one-letter alphabet is
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

« Consequence: we can only express regular
languages, but not all, not even the language of
words of even length.

Proof sketch

1. If L 1s finite, then it i1s FO-definable

2. If L Is co-finite, then it i1s FO-definable.

Proof sketch

3. If L I1s FO-definable (over a one-letter
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free
fragment)

2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.

1) The logic QF

e x <k x>k
x<y+k x>y+k
k < last k > last

are formulas for every variable x, y and every
k=>0.

e If f7, f, are formulas, thenso are f; vV f, and

finf

2) L 1s QF-definable iff it is finite or co-finite

(=) Let f be a sentence of QF.

Then f 1s an and-or combination of formulas
k < last and k > last.

L(k <last) ={k+ 1,k + 2,...}Is co-finite (we identify
words and numbers)

L(k > last) = {0,1, ..., k} is finite
L(f1V f2) = L(f1) U L(f,) andsoif L(f) and L(g)

finite or co-finite then L is finite or co-finite.

L(fi A f2) = L(f1) nL(fz)andsoif L(f) and L(g)

finite or co-finite then L is finite or co-finite.

2) L 1s QF-definable iff it is finite or co-finite

(<) If L = {kq,.. k,}is finite, then
(ki —1<last A last<k;+1)V:-V
(k, —1<last A last <k, +1)
EXPresses L.

If L Is co-finite, then its complement is finite, and so expressed by
some formula. We show that for every f some formula neg(f)
expresses L(f)

e neg(k <last)=(k—1<last A last <k+1)V last <k
« neg(f1V fz) = neg(f1) Aneg(fz)
* neg(fi Af;) =neg(f1)Vvneg(f,)

3) Every first-order formula ¢ has an equivalent
QF-formula QF (¢)

* QF(x<y)=x<y+0

* QF(—¢) = neg(QF (¢))
* QF(@p1V @) = QF(91) V QF(¢3)
* QF (@1 A @3) = QF(91) A QF (¢3)

* QF(3x ¢) =

— Put QF (@) in disjunctive normal form. Assume QF (@)= (¢, V ...
V ¢,), where each ¢; is a conjunction of atomic formulas.

— Sinceax (@, V..V@,) =3IXe,V ... VIX@,, itsufficesto define
QF (3x) for the case in which ¢ Is a conjunction of atomic
formulas of QF

— For this case, see example in the next slide.

e Consider the formula
dx x<y+3 A

z<x+4 A
z<y+2 A
y<x+1

* The equivalent QF-formula is
z<y+8 AN y<y+5HbH A z<y+?2

Monadic second-order logic

 First-order variables: interpreted on positions

* Monadic second-order variables: interpreted
on sets of positions.

— Diadic second-order variables: interpreted on
relations over positions

— Monadic third-order variables: interpreted on sets
of sets of positions

— New atomic formulas: x € X

Expressing ,,even length®

e EXpress
There Is a set Xof positions such that
— X contains exactly the even positions, and
— the last position belongs to X.

e EXpress
X contains exactly the even positions
as

A position is in X Iff it Is the second position or
the second successor of another position of X

Syntax and semantics of MSO

e Newset{X,Y,Z, ..} ofsecond-order variables
« Newsyntax: x € X and 3X ¢

 New semantics:

— Interpretations now also assign sets of positions to
the free second-order variables.

— Satisfaction defined as expected.

Expressing ,,even length®

e second(x) =3y (first(y) Ax =y + 1)
e Even(X) =
Vy (x EX o (Second(x) Viy(x=y+2AyE X)))

 Evenlength(X) =
3X (Even(X) A Vx (last(x) - x € X))

Expressing c¢*(ab)*d”

e EXpress:
There is a block X of consecutive positions such that
— before X there are only c's;
— after X there are only d's;
— a'‘sand b‘s alternate in X;
— the first letter in X is an a, and the last is a b.

 Then we can take the formula
3X (Cons(X) ANBoc(X) AAod(X) N Alt(X)
ANFa(X)ALb(X))

e X Is a block of consecutive positions

e Before X there are only c's

e |In X a's and b's alternate

e X Is a block of consecutive positions

Cons(X):=VxeXVyeX (x<y—->Vz(x<zAz<y)—z€X))

e Before X there are only c's

e |In X a's and b’s alternate

e X Is a block of consecutive positions

Cons(X):=VxeXVyeX (x<y—->Vz(x<zAz<y)—z€X))

e Before X there are only c's

Before(x,X) :=Vye X x <y
Before_only_c(X) := VYx Before(x, X) = Q.(x)

e In X a‘s and b‘s alternate

e X Is a block of consecutive positions

Cons(X):=VxeXVyeX (x<y—->Vz(x<zAz<y)—z€X))

e Before X there are only c's

Before(x, X) =Vye X x <y
Before_only_c(X) := VYx Before(x, X) = Q.(x)

e In X a‘s and b‘s alternate

Alternate(X) := Vxe X (Qux) ->VyeX(y=x+1- 0p))
A

Op(x) = VyeX(y=x+1-040y)))

Every regular language Is expressible In
MSO logic

« Goal: given an arbitrary regular language L,
construct an MSO sentence ¢ such having

L = L(o).
o We use: If L is regular, then there isa DFA A
recognizing L.

* |dea: construct a formula expressing
the run of 4 on this word Is accepting

-Ix a regular language L.

-Ix a DFA A with states q,, ..., q,, recognizing L.
FIxaword w = aq{a, ... a,,.

_et P, be the set of positions i such that after
reading a,a, ... a; the automaton A Is in state q.
We have:

A accepts w Iff m € P, for some final state q.

* Assume we can construct a formula
Visits(X,, ..., X;,)
which is true for (w,) iff
I(Xo) =Py, ... 9(Xy) = B,
 Then (w, 7) satisfies the formula

Ya = X, ... X, Visits(Xp,...X,) A dx (last(x) A \/ X € X;

qi€lF
Iff w has a last letter and w € L, and we easily
get a formula expressing L .

e To construct Visits(X,, ..., X,,) we observe that
the sets F, are the unique sets satisfying
a) 1€ Ps,aq, I-€.,afterreading the first letter the
DFA is in state §(qgy, aq).

b) The sets P, build a partition of the set of positions,
l.e., the DFA is always in exactly one state.

c) IfiePyand8(q,a;41) =q' theni+1€ P e,
the sets ,,match“ §.
* \We give formulas for a) , b), and ¢)

Init(Xo, .. ., X,) = 3x (ﬁrst(x) A [\/(Qa(x) Axe X,-“)]]

Partition(Xj, . .

LX) = Vx

acx

n
xeX; A /\ (x€X;i > x¢ X))
i,j=0
]

\

y

e Formula for c)
Respect(Xy, ..., X,) =

,
Va¥y [y=x+1-> \/ (eXiAQMx)AyeX)
ae€x
i, j€{0,..., nj
\ 5(‘11‘»0) = q.l

» Together:

ViSitS(X(), c o X,,) = Init(X(), & X,,) AN
Partition(Xy, ..., X,,) A
Respect(Xy, ..., X,)

Every language expressible in MSQO logic Is
regular

 Recall: an interpretation of a formula is a pair
(w, 7) consisting of a word w and
assignments 7 to the free first and second
order variables (and perhaps to others).

(x| \ (XxXH—2)
y+= 3 oy]
aab X i {2.3) ba , Y s 0
\ Y — {1,2}) \ Y - {1})

* \We encode interpretations as words.

(

\

x|l
yH3

aabs s 2.3)
Y — {1,2})
a a b

X 1 0 O

y 0 0 1

X 0 1 1

Y 1 1 0

(

ba

~ o e =

X2)
y 1
X0
Y = {1})

b
0
1
0
I

o OO = Q

e Given a formula with n free variables, we
encode an interpretation (w,) as a word
enc(w, J) over the alphabet = < {0,1}".

* The language of the formula ¢ , denoted by
L(¢), Is given by
L(p)={enc(w,3)| (w,7) F ¢}
« \We prove by induction on the structure of ¢

that L(¢) Is regular (and explicitely construct
an automaton for It).

Case ¢ = Qq(x)

e ¢ = (Q,(x). Then free(p) = x, and the interpretations of ¢ are encoded as words over
2 x {0, 1}. The language L(¢) 1s given by

k>0,
L(p) = [g'] [Z"] a; € X and b; € {0, 1} forevery i € {1,...,k}, and
e PR = for exactly one index i € {1,...,k} such that ¢; = a
and 1s recognized by
al |b al |b
ol oo

Case p =x <y

e ¢ = x <y. Then free(¢) = {x,y}, and the interpretations of ¢ are encoded as words
over X X {0, 1}>. The language L(y) is given by

(k>0,)
a ap|| a; € Xand b;,c; € {0, 1} forevery i € {1,...,k},
L((p):<‘ I ' } b; = 1 for exactly one index i € {1,...,k},
c; = 1 for exactly one index j € {1,...,k}, and

| <]

W

and 1s recognized by

b
0
0

b
.10
0

a

0
0

b
0
0

a a

0

0 0

b
1

b
0
1

a
1
0

a

Case p = x € X

e ¢ = x € X. Then free(¢) = {x, X}, and interpretations are encoded as words over
¥ x {0, 1}>. The language L(¢) is given by

(k>0, \
L) = - Zl Zk a;i € X and b;, c; € {0, 1} forevery i € {1,...,k}, |
$)= Cl C"' b; =1 for exactly one index i € {1,. k} and
] Ck.

foreveryie{l,... ,k},if b, =1 then ci =1

\

and 1s recognized by

a b a b

JIIET
ol

Case ¢ =

Then free(p) = free(y)) . By i.h. L(y) is regular.

L(¢g) is equal to L(xp) minus the words that do not encode any
Implementation (,,the garbage®).

Equivalently, L(¢) is equal to the intersection of L(y) and the
encodings of all interpretations of .

We show that the set of these encodings is regular.

— Condition for encoding: Let x be a free first-oder variable of
Y . The projection of an encoding onto x must belong to
0"10" (because it represents one position).

— S0 we just need an automaton for the words satisfying this
condition for every free first-order variable.

Example: free(p) = {x, y}

Case ¢ = @1V @,

 Then free(p) = free(p,) U free(¢,). By i.h. L(¢p,)
and L(¢p-) are regular.

o Iffree(p,) = free(¢,) then L(¢) = L(¢1) U L(¢3)
and so L(¢) is regular.

o If free(¢p,) + free(¢,) then we extend L(¢,) to L,
encoding all interpretations of free(¢,) U free(¢,)
whose projection onto free(¢,) belongs to L(¢,).
Similarly we extend L(¢-,) to L,. We have

— L, and L, are regular.
— L(p) =Ly VULs,.

Example: ¢ = Q,(x) V Q,(y)

L, contains the encodings of all
interpretations (w,{x — nq,y + n,}) such
that the encoding of (w, {x — n,}) belongs

0 L(Qq(x)).
o Automata for L(Q,(x)) and L:

al |b al |b . . \ \ \ \
0110 01’10 O 1] [0] |1 O] 1| [O] |1

8 : 8 6 il 8

Cases @ = dx ¢ andp = 3IX

e Then free(p)= free(y)\ {x} or
free(p)= free(y)\ {X}
e By L.h. L(1) Is regular.

* L(¢) Isthe result of projecting L(y) onto the
components for free(y)\ {x} or for

free(y)\ {X}.

Example: ¢ = Q,(x)

o Automata for Q,(x) and 3Ix Q,(x)
t

8[718 6_8

The mega-example

* We compute an automaton for
Jx (Iast(x) A Qy (x)) A VX (—-Iast(x) — Qa(x))
e First we rewrite It into
Jx (Iast(x) A Qy (x)) A —3x (—-Iast(x) A —-Qa(x))
e In the next slides we

1. compute a DFA for last(x)

2. compute DFAs for 3x (last(x) A Q,(x)) and
—3x (—last(x) A =Q,(x))

3. compute a DFA for the complete formula.
* \We denote the DFA for a formula i by [y].

[x <y] [y x < y]

T - I I I
i [G2

[x <yl [y x < y]

N
2 Bl

il {0 HH Hll

ollol Bl
i

Enc(dy x <y)

[x <y] [y x <yl

ol
oYigey

il {0 H I

ll l
® i ®

Enc(dy x <y)

i
S e B m@ o

[Gx (Iast(x) A Qy, (x))]

il o il 1o

S8 8.0

[Op(X)] [dx (Iast(x) A Qp(x))]

Enc(Qq(x))

il Bl

i}l

it ,
»8 il »8 8 g »8 (~Q.(0)]

[—3x (—-Iast(x) Al —-Qa(x))]
i i 1 —

SR ‘6 »8”8 86
8-

()] —last(x)]

> } »8 [3x (last(x) A =Qa(x))]

[—3x (mlast(x) A = Qu(X))]

8-

[Gx (Iast(x) A Qyp (x)) A —3x (—-Iast(x) A —-Qa(x))]

B0 B0

[dx (last(x) A Qp(x))] [—3x (mlast(x) A =2 Qu(x))]

o

[dx (last(x) A Op(x)) A —dx (mlast(x) A =Q,(x))]

