Operations and tests on sets:
Implementation on DFAS



Operations and tests

Universe of objects U, sets of objexts X, Y, object x.

Operations on sets

Complement(X)
Intersection(X, Y)
Union(X, Y)

Tests on sets

returns U \ X.
returns X N Y.
returns X U Y.

Member(x, X)
Empty(X)
Universal(X)
Included(X, Y)
Equal(X,Y)

returns true if x € X, false otherwise.
returns true if X = (), false otherwise.
returns true if X = U, false otherwise.
returns true if X C Y, false otherwise.
returns true if X = Y, false otherwise.



Implementation on DFAS

Assumption: each object encoded by one word,
and vice versa.

Membership: trivial algorithm, linear in the
length of the word.

Complement: exchange final and non-final states.
Linear (or even constant) time.

Generic implementation of binary boolean
operations based on pairing.



Pairing

Definition. Let A; = (Q4,2, 61,901, F;) and A, =

The pairing [A4, A, ] of A; and A4, is the tuple (Q, X, §, q¢)
where

* Q={l91,92] 1 91 € Q1,97 €,}
« 6 ={(lq1,921,a,191,921) | (q1,a,q1) € 81,(q2,a,q3) € 6, }

* qo = 901, 902]
The run of [A, A,] on aword of £* is defined as for DFAs



Pairing

& == W N

a



Pairing

* Another example: DFA for the language of words
with an even number of as and even number of bs
(and even number of cs ...).



Generic algorihtm for binary boolean

operations

« \We assign to a binary boolean operator (© an operation

on languages O as follows:

LLOL,={weX|(weL)O WEL,)}

e For example:

Language operation b1 © by
Union b1 V by
Intersection b1 A by
Set difference (L \ L») by A\ —b»
Symmetric difference (L; \ L, ULy \ Ly) | by © —by



Generic algorihtm for binary boolean
operations

BinOp|©](A1,A>)
Input: DFAs A| = (Q1,X,91, Qo1, F1), A2 = (Q2, X, 62, Qo2, F2)
Output: DFA A = (0, X, 6, Qo, F) with L(A) = L(A;) ® L(A»)

1 Q,0,F «<0
2 qo < lq01,902]
3 W« {qo}
4 while W # 0 do
5 pick (g1, g2] from W
6  add|[q;,q2]to Q
7 if (g1 € F1)® (g2 € F») then add [gq1,q2] to F
8 for all a € X do
9 q, < 01(q1,a); g5 < 62(q2,a)
10 if [¢],45] ¢ O then add [q],q,] to W

P—
—

add ([g1.92),a.14}.45]) toé



Generic algorihtm for binary boolean
operations

o Complexity: the pairing of DFAs with n, and
n, states has 0 (n, - n,) states.

* Hence: for DFAs with n, and n, states over an
alphabet with k letters, binary operations can
be computed in O(k - nq - n,) time.

 Further: there is a family of languages for
which the computation of intersection takes




Language tests

Emptiness: a DFA Is empty Iff
It has no final states

Universality: a DFA Is universal iff
It has only final states

Inclusion: Ly € L, iff L{\ L, = @

Fquality: Ly = Lo iff (L;\L,) U (L,\L;) =@



Inclusion test

IncIDFA(A, A>)
Input: DFAs Ay = (Q1,%,61, Qo1, F1), A2 = (02, Z, 62, Q2. F2)
Output: true if L(A;) C L(A,), false otherwise
Q « 0;
W« {lq01, 9021}
while W # (0 do
pick (g1, g2] from W
add [q;,q2] to O
if (g1 € F1)and (g2 ¢ F») then return false
for alla € X do
q, < 01(q1,a); g5 < 62(q2,a)
if [¢].45] ¢ O then add [¢],q,] to W
10  return true

O 0 NN N b BW N -



Operations and tests on sets:
Implementation on NFAs



Membership

Prefix read | W

€ {1}

a {2}

aa {2, 3}

aada {1, 2, 3}
aaab {2,3,4}
aaabb {2,3,4}
aaabba {1,2, 3,4}



Membership

MemNFA[A](w)
Input: NFA A = (0, X, 6, Qp, F), word w € X*,
Output: true if w € L(A), false otherwise

1 W — QO;
2 whilew # £ do
3 U0
4 for all g € W do
5 add 6(q, head(w)) to U Complexity:
6 WeU * While loop executed |w| times
_ « For loop executed at most |Q] times
7 W tail(w) « Each execution of the loop body takes
8 return (WnNF #0) o(|Q]) time

« Overall: 0(|Q]? - |w]) time



Complement

Swapping final and non-final states does not work
Solution: determinize and then swap states
Problem: Exponential blow-up in size!!

To be avoided whenever possible!!

No better way: there are NFAs with n states such
that the smallest NFA for their
complement has 0(2") states.




Union and Iintersection

« The pairing construction still works for union and
Intersection, with the same complexity.

« Optimal construction for intersection (same example
as for DFAs).

« Non-optimal construction for union. There is another
construction which produces an NFA with |Q4| +

|0, | states, instead of |Q4] - |Q-|: just put the
automata side by side!



Intersection

IntersNFA(A1, Aj)
Input: NFA A = (Q1,X,91, Qo1, F1), A2 = (Q2, 2,62, Qo2, F2)
Output: NFA A; N As = (0, X, 8, Qo, F) with L(A| N As) = L(A;) N L(A»)

I Q,0,F < 0; Qo < Qo1 X Q2

2 W« Qo

3 while W # 0 do

4 pick [g1, g2] from W

5  add|[qg;,q2]to O

6 if (g1 € F1)and (¢> € F») then add [gq,q2] to F
7 for all a € X do

8 for all ¢} € 6,(q1,a), qf2 € 02(g2,a) do

9 if [¢7,4,] ¢ O thenadd [q],q,] to W

10 add ([q1.92],a.19},45]) too



Intersection

a, b a,b a, b




Emptiness and Universality

Like DFAs, an NFA Is empty Iff every state Is
non-final.

However, contrary to DFAs, it does not hold
tha an NFA is universal iff every state Is final.
Both directions fail!

Emptiness is decidable in linear time.
Universality is PSPACE-complete.



Crash course on PSPACE

PSPACE: Class of decision problems for which there is an
algorithm that
 always terminates and returns the correct answer, and
 only uses polynomial memory in the size of the input.
P € NP < PSPACE. Itis unknown if the inclusions are strict.
NPSPACE: Class of decision problems for which thereis a
nondeterministic algorithm that
 does not terminate or terminates and answers,,no“ for no-
Inputs,
 has at least one terminating execution answering ,yyes“ for
yes-inputs, and
 only uses polynomial memory in the size of the input.
Savitch’s theorem: PSPACE=NPSPACE



Crash course on PSPACE

o PSPACE-complete: A problem IT is PSPACE-complete if

* It belongs to PSPACE, and

 every PSPACE-problem can be reduced in polynomial time
to I1.

e PSPACE-complete problems:

« Given a deterministic Turing machine M that only visits the
cell tapes occupied by the input, and an input x, does M
accept x ?

 |sagiven quantified boolean formula true?



Universality is PSPACE complete

Theorem 4.7 The universality problem for NFAs is PSPACE-complete

Proof: We only sketch the proof. To prove that the problem is in PSPACE, we show that it belongs
to NPSPACE and apply Savitch’s theorem. The polynomial-space nondeterministic algorithm for
universality looks as follows. Given an NFA A = (Q, X, 6, Qp, F), the algorithm guesses a run of
B = NFAtoDFA(A) leading from {go} to a non-final state, i.e., to a set of states of A containing no
final state (if such a run exists). The algorithm only does not store the whole run, only the current
state, and so it only needs linear space in the size of A.



Universality is PSPACE complete

We prove PSPACE-hardness by reduction from the acceptance problem for linearly bounded
automata. A linearly bounded automaton is a deterministic Turing machine that always halts and
only uses the part of the tape containing the input. A configuration of the Turing machine on an
input of length k 1s coded as a word of length k. The run of the machine on an input can be encoded
as a word co#c; ... #c,, where the ¢;’s are the encodings of the configurations.



Universality is PSPACE complete

Let X be the alphabet used to encode the run of the machine. Given an input x, M accepts if
there exists a word w of X* satisfying the following properties:

(a) w has the form cp#c; ... #c,, where the ¢;’s are configurations;
(b) cp 1s the initial configuration;
(¢) ¢, 1s an accepting configuration; and

(d) forevery O <i < n—1: c¢is1 1s the successor configuration of ¢; according to the transition
relation of M.



Universality is PSPACE complete

The reduction shows how to construct in polynomial time, given a linearly bounded automaton
M and an input x, an NFA A(M, x) accepting all the words of X* that do not satisfy at least one of
the conditions (a)-(d) above. We then have

e [f M accepts x, then there is a word w(M, x) encoding the accepting run of M on x, and so
L(A(M, x)) = Z" \ {w(M, x)}.

e If M rejects x, then no word encodes an accepting run of M on x, and so L(A(M, x)) = X*.

So M accepts x if and only if L(A(M, x)) = £*, and we are done. ]



Universality is PSPACE complete

The reduction shows how to construct in polynomial time, given a linearly bounded automaton
M and an input x, an NFA A(M, x) accepting all the words of X* that do not satisfy at least one of
the conditions (a)-(d) above. We then have

e [f M accepts x, then there is a word w(M, x) encoding the accepting run of M on x, and so
L(A(M, x)) = Z" \ {w(M, x)}.

e If M rejects x, then no word encodes an accepting run of M on x, and so L(A(M, x)) = X*.

So M accepts x if and only if L(A(M, x)) = £*, and we are done. ]



Deciding universality of NFAs

« Complement and check for emptiness
— Needs exponential time and space.

e |Improvements:
— Check for emptiness while complementing
(on-the-fly check).
— Subsumption test.




Subsumption test

e« LletAbeanNFAandlet B = NFAtoDFA(A). A state Q'
of B is minimal if no other state Q"' satisfies Q"' c Q’.

e Proposition: A is universal iff every minimal state of B is
final.

Proof:

A Is universal

Iff B Is universal

Iff every state of B is final

Iff every state of B contains a final state of A

Iff every minimal state of B contains a final state of A
Iff every minimal state of B Is final



Subsumption test




Subsumption test

UnivNFA(A)
Input: NFA A = (0, %, 9, Qo, F)
Output: true if L(A) = X7, false otherwise
1 Q« 0
2 W {{q0}}
3 while W # 0 do
4 pick Q' from 'W
5 if O'NF =0 then return false
6 add Q' to Q
7 for all a € X do
8 if WU Q contains no Q" C 6(Q’, a) then add 6(Q’,a) to W
9 return true



Subsumption test

e Butisitcorrect ?

By removing a non-minimal state we may be

preventing the discovery of a minimal state in
the future!



Subsumption test

Proposition: Let A be an NFA and let B = NFAtoDFA(A).
After termination of UnivNFA(A) the set Q contains all

minimal states of B.

Proof: Assume the contrary. Then B has a shortest path
Q, » Q, » ... = Q, such that

\®)

- Q4 € Q (after termination), and
-Q, & Q and Q,, is minimal.

Since the path is shortest, Q,€& Q and so when UnivNFA
processes Q,, it does not add Q,. This can only be
because UnivNFA already added some Q;, < Q, .

But then B hasapathQ;, —» ... - Q, withQ;, € Q,, .
Since Q,, is minimal, Q,, is minimal (actually Q,, = Q,,).

So the path Q; — ... — Q,, satisfies
-(Q, € Q (after termination), and
- @, Is minimal.
contradicting that Q; —» Q, — ... — @Q,, Is shortest.

@(—_@
.0
0‘.
‘0
‘0
0‘.
.0




Inclusion

Proposition: The inclusion problem is PSPACE-complete.
Proof:

Membership in PSPACE. By Savitch’s theorem it suffices to
give a nondeterministic algorithm for non-inclusion. For this,
guess letter by letter a word, storing the sets of states Q1, Q-
reached by both NFAs on the word guessed so far. Stop when
Q1 contains a final state, but Q, does not.

PSPACE-hardness. A is universal iff L(A) € L(B), where B is
the one-state DFA for X*.



Deciding inclusion

Algorithm:use Ly € L, iff LN L, =@
Concatenate four algorithms:

(1) determinize 4,,

(2) complement the result,

(3) intersect it with A4, and

(4) check for emptiness.

State of (3): pair (g, Q) ,whereqg € Q; and Q < Q,
Easy optimizations:

— store only the states of (3), not its transitions;

— do not perform (1), then (2), then (3); instead, construct
directly the states of (3);

— check (4) while constructing (3).



Deciding inclusion

 Further optimization: subsumption test.

II’ICINFA(Al,Az)
Input: NFAs Ay = (Q1, 2,01, Qo1, F1), Az = (02, %, 02, Qu2, F2)
Output: true if L(A) C L(A,), false otherwise

I Q<0

2 W {lq01, Q0] 901 € Qo1 }

3 while W # 0 do

4 pick [g1, O>] from W

5 if (g € F1)and (Q> N F =0) then return false
6 add [gq;, Q2] to QO

7 foralla € X,q4| € 6,(q1,a) do

8 Q) «— 62(Q2,a)

9 if WU Q contains no [¢], Q7] s.t. ¢ = ¢} and QF C Q) then
10 add [¢], OQ,] to W

11 return true



o Complexity:

— Let A;, A, be NFAs with ny, n, states over an alphabet
with k letters.

— Without the subsumption test:
» The while-loop is executed at most n, - 2™2 times.
» The for-loop is executed at most O (k - n,) times.
« An execution of the for-loop takes 0(n3) time.
 Overall: O(k - n% - n% - 2™2) time.
— With the subsumption case the worst-case complexity Is
higher. Exercise: give an upper bound.



« Important special case: A, is an NFA, A, is a DFA.
— Complementing A, Is now easy.
— The while-loop is executed O(n, - n,) times.
— The for-loop is executed k times.
— An execution of the for-loop takes constant time.
— Overall: O(k -n;-n,) time.

» Checking equality: check inclusion in both
directions.



