
Operations and tests on sets:
Implementation on DFAs

Operations and tests

Universe of objects ܷ, sets of objexts ܺ,ܻ, object ݔ.

Implementation on DFAs

• Assumption: each object encoded by one word,
and vice versa.

• Membership: trivial algorithm, linear in the
length of the word.

• Complement: exchange final and non-final states.
Linear (or even constant) time.

• Generic implementation of binary boolean
operations based on pairing.

Pairing

Definition. Let ଵܣ = (ܳଵ,Σ, ,ଵߜ (ଵܨ,଴ଵݍ and ܣଶ =
(ܳଶ,Σ, (ଶܨ,଴ଶݍ,ଶߜ be DFAs.

The pairing ܣଵ,ܣଶ of ܣଵ and ܣଶ is the tuple (ܳ,Σ, ,ߜ (଴ݍ
where
• ܳ = {	 ,ଵݍ ଶݍ ∣ ଵݍ ∈ ܳଵ, ଶݍ ∈ଶ}
• ߜ = ଶݍ,ଵݍ ,ܽ, ଵᇱݍ , ଶᇱݍ ,ܽ,ଵݍ ଵᇱݍ ∈ ,ଵߜ ,ܽ,ଶݍ ଶᇱݍ ∈ ଶߜ
• ଴ݍ = ,଴ଵݍ ଴ଶݍ
The run of ଶܣ,ଵܣ on a word of Σ∗ is defined as for DFAs

Pairing

Pairing
• Another example: DFA for the language of words

with an even number of ܽs and even number of ܾs
(and even number of ܿs …).

Generic algorihtm for binary boolean
operations

• We assign to a binary boolean operator ⊙ an operation
on languages ⊙෢ as follows:

ଵܮ ⊙෢	ܮଶ = ݓ	 ∈ Σ∗ ݓ ∈ ଵܮ ⊙ ݓ ∈ ଶܮ

• For example:

Generic algorihtm for binary boolean
operations

Generic algorihtm for binary boolean
operations

• Complexity: the pairing of DFAs with ݊ଵ and
݊ଶ states has ܱ ݊ଵ ⋅ ݊ଶ states.

• Hence: for DFAs with ݊ଵ and ݊ଶ states over an
alphabet with ݇ letters, binary operations can
be computed in ܱ ݇ ⋅ ݊ଵ ⋅ ݊ଶ time.

• Further: there is a family of languages for
which the computation of intersection takes
Θ(݇ ⋅ ݊ଵ ⋅ ݊ଶ) time.

Language tests

• Emptiness: a DFA is empty iff
it has no final states

• Universality: a DFA is universal iff
it has only final states

• Inclusion: ܮଵ ⊆ ଶܮ iff ܮଵ	 ଶܮ	⃥	 = Ø

• Equality: ܮଵ = ଶܮ iff (ܮଵ	 (ଶܮ	⃥	 	∪ 	ଶܮ) (ଵܮ	⃥	 = Ø

Inclusion test

Operations and tests on sets:
Implementation on NFAs

Membership

Membership

Complexity:
• While loop executed ݓ times
• For loop executed at most |ܳ| times
• Each execution of the loop body takes
ܱ ܳ time

• Overall: ܱ(ܳ ଶ ⋅ ݓ) time

Complement

• Swapping final and non-final states does not work
• Solution: determinize and then swap states
• Problem: Exponential blow-up in size!!

To be avoided whenever possible!!
• No better way: there are NFAs with ݊ states such

that the smallest NFA for their
complement has Θ 2௡ states.

Union and intersection

• The pairing construction still works for union and
intersection, with the same complexity.

• Optimal construction for intersection (same example
as for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ +
ܳଶ states, instead of ܳଵ ⋅ ܳଶ : just put the

automata side by side!

Intersection

Intersection

Emptiness and Universality

• Like DFAs, an NFA is empty iff every state is
non-final.

• However, contrary to DFAs, it does not hold
tha an NFA is universal iff every state is final.
Both directions fail!

• Emptiness is decidable in linear time.
• Universality is PSPACE-complete.

Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input.

• P ⊆ NP ⊆ PSPACE. It is unknown if the inclusions are strict.
• NPSPACE: Class of decision problems for which there is a

nondeterministic algorithm that
• does not terminate or terminates and answers„no“ for no-

inputs,
• has at least one terminating execution answering „yes“ for

yes-inputs, and
• only uses polynomial memory in the size of the input.

• Savitch´s theorem: PSPACE=NPSPACE

• PSPACE-complete: A problem Π is PSPACE-complete if
• it belongs to PSPACE, and
• every PSPACE-problem can be reduced in polynomial time

to Π.
• PSPACE-complete problems:

• Given a deterministic Turing machine ܯ that only visits the
cell tapes occupied by the input, and an input does ,ݔ ܯ
accept ݔ ?

• Is a given quantified boolean formula true?

Crash course on PSPACE

Universality is PSPACE complete

Universality is PSPACE complete

Universality is PSPACE complete

Universality is PSPACE complete

Universality is PSPACE complete

• Complement and check for emptiness
– Needs exponential time and space.

• Improvements:
– Check for emptiness while complementing

(on-the-fly check).
– Subsumption test.

Deciding universality of NFAs

Subsumption test

• Let ܣ be an NFA and let ܤ = ′ܳ A state .(ܣ)ܣܨܦ݋ݐܣܨܰ
of ܤ is minimal if no other state ܳ′′ satisfies ܳᇱᇱ ⊂ ܳᇱ.

• Proposition: ܣ is universal iff every minimal state of ܤ is
final.
Proof:
ܣ is universal
iff ܤ is universal
iff every state of ܤ is final
iff every state of ܤ contains a final state of ܣ
iff every minimal state of ܤ contains a final state of ܣ
iff every minimal state of ܤ is final

Subsumption test

Subsumption test

Subsumption test

• But is it correct ?
By removing a non-minimal state we may be
preventing the discovery of a minimal state in
the future!

Proposition: Let ܣ be an NFA and let ܤ = .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all
minimal states of ܤ.
Proof: Assume the contrary. Then ܤ has a shortest path
ܳଵ → ܳଶ →	… 	→ ܳ௡ such that

- ܳଵ ∈ 	࣫ (after termination), and
- ܳ௡ ∉ 	࣫ and		ܳ௡ is minimal.

Since the path is shortest, 	ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ, it does not add ܳଶ. This can only be
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ →	… 	→ ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ .
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ →	… 	→ ܳ௡ᇱ satisfies

- ܳଶ ∈ 	࣫ (after termination), and
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ →	… 	→ ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫

ܳଶᇱ

ܳଷᇱ

⊆

⊆

Inclusion

• Proposition: The inclusion problem is PSPACE-complete.
• Proof:

Membership in PSPACE. By Savitch´s theorem it suffices to
give a nondeterministic algorithm for non-inclusion. For this,
guess letter by letter a word, storing the sets of states ܳଵᇱ ,ܳଶᇱ
reached by both NFAs on the word guessed so far. Stop when
ܳଵᇱcontains a final state, but ܳଶᇱ does not.
PSPACE-hardness. ܣ is universal iff ܮ ܣ ⊆ where ,(ܤ)ܮ ܤ is
the one-state DFA for Σ∗.

Deciding inclusion
• Algorithm: use ܮଵ ⊆ ଶܮ iff ܮଵ ଶܮ	∩ = Ø
• Concatenate four algorithms:

(1) determinize ,ଶܣ
(2) complement the result,
(3) intersect it with ܣଵ, and
(4) check for emptiness.

• State of (3): pair (ݍ,ܳ)	, where ݍ ∈ ܳଵ and ܳ ⊆ ܳଶ
• Easy optimizations:

– store only the states of (3), not its transitions;
– do not perform (1), then (2), then (3); instead, construct

directly the states of (3);
– check (4) while constructing (3).

Deciding inclusion
• Further optimization: subsumption test.

• Complexity:
– Let ܣଵ,ܣଶ be NFAs with ݊ଵ,݊ଶ states over an alphabet

with ݇ letters.
– Without the subsumption test:

• The while-loop is executed at most ݊ଵ ∙ 2௡మ times.
• The for-loop is executed at most ܱ ݇ ∙ ݊ଵ times.
• An execution of the for-loop takes ܱ ݊ଶଶ time.
• Overall: ܱ(݇ ∙ 	݊ଵଶ ∙ ݊ଶଶ ∙ 2௡మ) time.

– With the subsumption case the worst-case complexity is
higher. Exercise: give an upper bound.

• Important special case: ଵܣ is an NFA, ܣଶ is a DFA.
– Complementing 	ܣଶ is now easy.
– The while-loop is executed ܱ(݊ଵ ∙ ݊ଶ) times.
– The for-loop is executed ݇ times.
– An execution of the for-loop takes constant time.
– Overall: ܱ(݇	 ∙ ݊ଵ∙ ݊ଶ) time.

• Checking equality: check inclusion in both
directions.

