Automata and Formal Languages - Homework 14

Due 10.02.2017

Exercise 14.1

Prove (via a proof) or disprove (via a counterexample) the following LTL equivalence.

$$
(\mathbf{G} p) \mathbf{U}(\mathbf{G} q) \equiv \mathbf{G}(p \mathbf{U} q)
$$

Exercise 14.2

Let $\Sigma=\{a, b\}$. Give a formula of $\operatorname{MSO}(\Sigma)$ for $(a b+b a)^{*}$. You may use the following macros from the lecture notes:

$$
\begin{aligned}
\operatorname{first}(x) & :=\neg \exists y y<x \\
y=x+1 & :=x<y \wedge \neg \exists z(x<z \wedge z<y) \\
y=x+2 & :=\exists z(z=x+1 \wedge y=z+1) \\
X \subseteq Y & :=\forall x(x \in X \rightarrow x \in Y) \\
\operatorname{Odd}(X) & :=\forall x(x \in X \leftrightarrow(\operatorname{first}(x) \vee \exists z(x=z+2 \wedge z \in X)))
\end{aligned}
$$

Exercise 14.3

Let A be a DFA recognizing a language $L \subseteq \Sigma^{n}$ of a fixed length n. What is the language recognized by A seen as a co-Büchi automaton? (Recall that transition function of a DFA is total.)

Exercise 14.4

Describe the language recognized by the following Muller automaton with $F=\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{1}\right\}\right\}$:

Exercise 14.5

(a) Draw a DFA recognising $(a+b b)^{*}$.
(b) Given a language $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$, give a formal definition of the residual L^{w}.
(c) Give regular expressions for every residual of the language $(a+b b)^{*}$.
(d) Prove that the language $L^{\prime}=\left\{a^{2^{n}}: n \in \mathbb{N}_{0}\right\}$ has infinitely many residuals. Is L^{\prime} regular? Justify your answer.

Exercise 14.6

Consider the following program with two parallel processes. The domain of x is $\{0,1\}$ and the initial value is 0 .

Process 1:
while true do
if $x=0$ then
$x \leftarrow 1$
2

Process 2:

while true do $x \leftarrow 0$
1

Model the program by constructing a network of three automata (one for each process and one for the variable x) and then drawing their asynchronous product.

Exercise 14.7

Given a finite automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing a language $L \subseteq \Sigma^{*}$, construct a transducer $T=$ $\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ recognizing $\left\{\left(a_{1} \cdots a_{n}, b_{1} \cdots b_{n}\right) \in \Sigma^{*} \times \Sigma^{*}: a_{1} a_{2} \cdots a_{n} \in L\right.$ and $\left.a_{1} b_{1} a_{2} b_{2} \cdots a_{n} b_{n} \in L\right\}$.

Exercise 14.8
Construct a LazyDFA recognizing words over the alphabet $\{a, b, c\}$ that contain the pattern abacab.

Solution 14.1

The equivalence is false. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \mathbf{U} q)$, but $\sigma \not \vDash(\mathbf{G} p) \mathbf{U}(\mathbf{G} q)$ since $\mathbf{G} q$ never becomes true.

Solution 14.2

$$
\underbrace{\forall x \neg \operatorname{first}(x)}_{\varepsilon} \vee \exists X \operatorname{Odd}(X) \wedge \underbrace{\forall x \in X[\exists y(y=x+1)}_{|w| \text { is even }} \wedge \underbrace{\left.\left(Q_{a}(x) \leftrightarrow Q_{b}(y)\right)\right]}_{w_{x} w_{x+1} \in\{a b, b a\}} .
$$

Solution 14.3

Σ^{ω}. Every word can be read by A as it is total, and every word is accepted by A since A does not contain any lasso containing an accepting state (otherwise it would accept an infinite language when interpreted as a DFA).

Solution 14.4

$$
L=\left\{w \in\{a, b\}^{\omega}: w \text { has infinitely many } b \text { 's }\right\}
$$

Solution 14.5

(a)

(b) $L^{w}=\left\{u \in \Sigma^{*}: w u \in L\right\}$.
(c) $(a+b b)^{*}, b(a+b b)^{*}$ and \emptyset
(d) Let $i, j \in \mathbb{N}$ be such that $i<j$. We have

$$
\begin{align*}
& a^{2^{i}} a^{2^{i}}=a^{2^{i+1}} \in L^{\prime}, \\
& a^{2^{j}} a^{2^{i}}=a^{2^{i}+2^{j}} \notin L^{\prime}, \tag{1}
\end{align*}
$$

where (1) follows from $2^{j}<2^{i}+2^{j}<2^{j}+2^{j}=2^{j+1}$. Therefore, L^{\prime} has infinitely many residuals, and hence L^{\prime} is not regular, since every regular language has finitely many residuals.

Solution 14.6

Network of automata:

Solution 14.7
T is defined by

$$
\begin{aligned}
Q^{\prime} & =Q \times Q \\
\Sigma^{\prime} & =\Sigma \times \Sigma \\
q_{0}^{\prime} & =\left(q_{0}, q_{0}\right) \\
F^{\prime} & =F \times F
\end{aligned}
$$

and for every $p, q \in Q, a, b \in \Sigma$,

$$
\delta^{\prime}((p, q),(a, b))=(\delta(p, a), \delta(\delta(q, a), b))
$$

Solution 14.8

