Automata and Formal Languages - Homework 13

Due 03.02.2017

Exercise 13.1

Show that
(a) $\neg \mathbf{X} \varphi \equiv \mathbf{X} \neg \varphi$
(b) $\neg \mathbf{F} \varphi \equiv \mathbf{G} \neg \varphi$
(d) $\mathbf{X F} \varphi \equiv \mathbf{F X} \varphi$
(c) $\neg \mathbf{G} \varphi \equiv \mathbf{F} \neg \varphi$
(e) $\mathbf{X G} \varphi \equiv \mathbf{G X} \varphi$

Exercise 13.2
Let $\mathrm{AP}=\{p, q, r\}$. Give formulas that hold for the computations satisfying the following properties:
(a) p is false before q
(b) p becomes true before q
(c) p is true between q and r
(d) only p is true at even positions and only q is true at odd positions.

Exercise 13.3

Prove or disprove the following distributivity properties:
(a) $\mathbf{X}(\varphi \vee \psi) \equiv \mathbf{X} \varphi \vee \mathbf{X} \psi$
(b) $\mathbf{X}(\varphi \wedge \psi) \equiv \mathbf{X} \varphi \wedge \mathbf{X} \psi$
(c) $\mathbf{X}(\varphi \mathbf{U} \psi) \equiv(\mathbf{X} \varphi) \mathbf{U}(\mathbf{X} \psi)$
(d) $\mathbf{F}(\varphi \vee \psi) \equiv \mathbf{F} \varphi \vee \mathbf{F} \psi$
(e) $\mathbf{F}(\varphi \wedge \psi) \equiv \mathbf{F} \varphi \wedge \mathbf{F} \psi$
(f) $\mathbf{G}(\varphi \vee \psi) \equiv \mathbf{G} \varphi \vee \mathbf{G} \psi$
(g) $\mathbf{G}(\varphi \wedge \psi) \equiv \mathbf{G} \varphi \wedge \mathbf{G} \psi$
(h) $\mathbf{G F}(\varphi \vee \psi) \equiv \mathbf{G F} \varphi \vee \mathbf{G F} \psi$
(i) $\mathbf{G F}(\varphi \wedge \psi) \equiv \mathbf{G F} \varphi \wedge \mathbf{G F} \psi$
(j) $\rho \mathbf{U}(\varphi \vee \psi) \equiv(\rho \mathbf{U} \varphi) \vee(\rho \mathbf{U} \psi)$
(k) $(\varphi \vee \psi) \mathbf{U} \rho \equiv(\varphi \mathbf{U} \rho) \vee(\psi \mathbf{U} \rho)$
(l) $\rho \mathbf{U}(\varphi \wedge \psi) \equiv(\rho \mathbf{U} \varphi) \wedge(\rho \mathbf{U} \psi)$
(m) $(\varphi \wedge \psi) \mathbf{U} \rho \equiv(\varphi \mathbf{U} \rho) \wedge(\psi \mathbf{U} \rho)$

Exercise 13.4

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. An LTL formula is a tautology if it is satisfied by all computations. Which of the following LTL formulas are tautologies?
(a) $\mathbf{G} p \rightarrow \mathbf{F} p$
(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$
(f) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$

Exercise 13.5

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give LTL formulas for the following ω-languages:
(a) $\{p, q\} \emptyset \Sigma^{\omega}$
(b) $\Sigma^{*}\{q\}^{\omega}$
(c) $\Sigma^{*}(\{p\}+\{p, q\}) \Sigma^{*}\{q\} \Sigma^{\omega}$
(d) $\{p\}^{*}\{q\}^{*} \emptyset^{\omega}$

Exercise 13.6

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give Büchi automata for the ω-languages over Σ defined by the following LTL formulas:
(a) $\mathbf{X G} \neg p$
(b) $(\mathbf{G F} p) \rightarrow(\mathbf{F} q)$
(c) $p \wedge \neg(\mathbf{X F} p)$
(d) $\mathbf{G}(p \mathbf{U}(p \rightarrow q))$
(e) $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p))$

Solution 13.1

(a)

$$
\begin{aligned}
\sigma \models \neg \mathbf{X} \varphi & \Longleftrightarrow \sigma \not \models \mathbf{X} \varphi \\
& \Longleftrightarrow \sigma^{1} \not \models \varphi \\
& \Longleftrightarrow \sigma^{1} \models \neg \varphi \\
& \Longleftrightarrow \sigma \models \mathbf{X} \neg \varphi .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma \models \neg \mathbf{F} \varphi & \Longleftrightarrow \neg(\sigma \models \mathbf{F} \varphi) \\
& \Longleftrightarrow \neg\left(\exists k \geq 0 \sigma^{k} \models \varphi\right) \\
& \Longleftrightarrow \forall k \geq 0 \neg\left(\sigma^{k} \models \varphi\right) \\
& \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models \neg \varphi \\
& \Longleftrightarrow \mathbf{G} \neg \varphi .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sigma \models \neg \mathbf{G} \varphi & \Longleftrightarrow \neg(\sigma \models \mathbf{G} \varphi) \\
& \Longleftrightarrow \neg\left(\forall k \geq 0 \sigma^{k} \models \varphi\right) \\
& \Longleftrightarrow \exists k \geq 0 \neg\left(\sigma^{k} \models \varphi\right) \\
& \Longleftrightarrow \exists k \geq 0 \sigma^{k} \models \neg \varphi \\
& \Longleftrightarrow \mathbf{F} \neg \varphi .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\sigma \models \mathbf{X F} \varphi & \Longleftrightarrow \sigma^{1} \models \mathbf{F} \varphi \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{1}\right)^{k} \models \varphi \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k}\right)^{1} \models \varphi \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models \mathbf{X} \varphi \\
& \Longleftrightarrow \sigma \models \mathbf{F X} \varphi .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\sigma \models \mathbf{X G} \varphi & \Longleftrightarrow \sigma^{1} \models \mathbf{G} \varphi \\
& \Longleftrightarrow \forall k \geq 0\left(\sigma^{1}\right)^{k} \models \varphi \\
& \Longleftrightarrow \forall k \geq 0\left(\sigma^{k}\right)^{1} \models \varphi \\
& \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models \mathbf{X} \varphi \\
& \Longleftrightarrow \sigma \models \mathbf{G} \mathbf{X} \varphi .
\end{aligned}
$$

Solution 13.2

(a) $\mathbf{F} q \rightarrow(\neg p \mathbf{U} q)$
(b) $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p))$
(c) $\mathbf{G}((q \wedge \mathbf{F} r) \rightarrow \mathbf{X}(p \mathbf{U} r))$
(d) $\mathbf{G}(\neg r) \wedge \mathbf{G}(p \leftrightarrow \neg q) \wedge p \wedge G(p \rightarrow \mathbf{X} q) \wedge G(q \rightarrow \mathbf{X} p)$

Solution 13.3

(a-b) Both (a) and (b) hold. Let $\circ \in\{\vee, \wedge\}$. We have

$$
\begin{aligned}
\sigma \models \mathbf{X}(\varphi \circ \psi) & \Longleftrightarrow \sigma^{1} \models(\varphi \circ \psi) \\
& \Longleftrightarrow\left(\sigma^{1} \models \varphi\right) \circ\left(\sigma^{1} \models \psi\right) \\
& \Longleftrightarrow \sigma \models \mathbf{X} \varphi \circ \sigma \models \mathbf{X} \psi .
\end{aligned}
$$

(c) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{X}(\varphi \mathbf{U} \psi) & \Longleftrightarrow \sigma^{1} \models(\varphi \mathbf{U} \psi) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{1}\right)^{k} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{1}\right)^{i} \models \psi \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k}\right)^{1} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{i}\right)^{1} \models \psi \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models \mathbf{X} \varphi \text { and } \sigma^{i} \models \mathbf{X} \psi \text { for every } 0 \leq i<k \\
& \Longleftrightarrow \sigma \models(\mathbf{X} \varphi) \mathbf{U}(\mathbf{X} \psi) .
\end{aligned}
$$

(d) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{F}(\varphi \vee \psi) & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models(\varphi \vee \psi) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \varphi\right) \vee\left(\sigma^{k} \models \psi\right) \\
& \Longleftrightarrow\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \varphi\right) \vee\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \psi\right) \\
& \Longleftrightarrow \sigma \models \mathbf{F} \varphi \vee \mathbf{F} \psi .
\end{aligned}
$$

(e) False. Let $\sigma=\{p\}\{q\} \emptyset^{\omega}$. We have $\sigma \models \mathbf{F} p \wedge \mathbf{F} q$ and $\sigma \not \vDash \mathbf{F}(\varphi \wedge \psi)$.
(f) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \vee q)$ and $\sigma \not \vDash \mathbf{G} p \vee \mathbf{G} q$.
(g) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{G}(\varphi \wedge \psi) & \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models(\varphi \wedge \psi) \\
& \Longleftrightarrow \forall k \geq 0\left(\sigma^{k} \models \varphi\right) \wedge\left(\sigma^{k} \models \psi\right) \\
& \Longleftrightarrow\left(\forall k \geq 0 \sigma^{k} \models \varphi\right) \wedge\left(\forall k \geq 0 \sigma^{k} \models \psi\right) \\
& \Longleftrightarrow \sigma \models \mathbf{G} \varphi \wedge \mathbf{G} \psi
\end{aligned}
$$

(h) True. If $\sigma \models \mathbf{G F} \varphi \vee \mathbf{G F} \psi$, then $\sigma \models \mathbf{G F}(\varphi \vee \psi)$. If $\sigma \models \mathbf{G F}(\varphi \vee \psi)$, then there exist $i_{0}<i_{1}<\cdots$ such that

$$
\begin{equation*}
\sigma^{i_{j}} \models \varphi \vee \psi \text { for every } j \in \mathbb{N} \tag{1}
\end{equation*}
$$

Let $I=\left\{j \in \mathbb{N}: \sigma^{i_{j}} \models \varphi\right\}$ and $J=\left\{j \in \mathbb{N}: \sigma^{i_{j}} \models \psi\right\}$. If I and J are both finite, then (1) does not hold, which is a contradiction. Therefore, at least one of I and J is infinite. This implies that $\sigma \models \mathbf{G F} \varphi \vee \mathbf{G F} \psi$.
(i) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \not \vDash \mathbf{G F}(p \wedge q)$ and $\sigma \models \mathbf{G F} p \wedge \mathbf{G F} q$.
(j) True, since:

$$
\begin{aligned}
\sigma \models \rho \mathbf{U}(\varphi \vee \psi) & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models(\varphi \vee \psi) \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\left(\sigma^{k} \models \varphi\right) \vee\left(\sigma^{k} \models \psi\right)\right) \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \varphi \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho\right) \vee\left(\sigma^{k} \models \psi \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho\right) \\
& \Longleftrightarrow\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \varphi \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho\right) \vee\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \psi \text { and } \forall 0 \leq i<k \sigma^{i} \models \rho\right) \\
& \Longleftrightarrow \sigma \models(\rho \mathbf{U} \varphi) \vee(\rho \mathbf{U} \psi) .
\end{aligned}
$$

(k) False. Let $\sigma=\{p\}\{q\}\{r\} \emptyset^{\omega}$. We have $\sigma \models(p \vee q) \mathbf{U} r$ and $\sigma \not \vDash(p \mathbf{U} r) \vee(q \mathbf{U} r)$.
(l) False. Let $\sigma=\{r\}\{p, r\}\{q\} \emptyset^{\omega}$. We have $\sigma \not \vDash r \mathbf{U}(p \wedge q)$ and $\sigma \models(r \mathbf{U} p) \wedge(r \mathbf{U} q)$.
(m) True, since:

$$
\begin{aligned}
\sigma \models(\varphi \wedge \psi) \mathbf{U} \rho & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models \rho \text { and } \forall 0 \leq i<k \sigma^{i} \models(\varphi \wedge \psi) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models \rho \text { and } \forall 0 \leq i<k\left(\sigma^{i} \models \varphi \wedge \sigma^{i} \models \psi\right) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \rho \text { and } \forall 0 \leq i<k \sigma^{i} \models \varphi\right) \wedge\left(\sigma^{k} \models \rho \text { and } \forall 0 \leq i<k \sigma^{i} \models \psi\right) \\
& \left.\Longleftrightarrow(\exists) \nexists m \geq 0 \text { s.t. } \sigma^{m} \models \rho \text { and } \forall 0 \leq i<m \sigma^{i} \models \varphi\right) \wedge\left(\exists n \geq 0 \text { s.t. } \sigma^{n} \models \rho \text { and } \forall 0 \leq i<n \sigma^{i} \models \psi\right) \\
& \Longleftrightarrow \sigma \models(\varphi \mathbf{U} \rho) \wedge(\psi \mathbf{U} \rho) .
\end{aligned}
$$

where $\stackrel{(1)}{\rightleftharpoons}$ follows by taking $k=\min (m, n)$.

Solution 13.4

(a) $\mathbf{G} p \rightarrow \mathbf{F} q$ is a tautology since

$$
\begin{aligned}
\sigma \models \mathbf{G} p & \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models p \\
& \Longleftrightarrow \exists k \geq 0 \sigma^{k} \models q \\
& \Longleftrightarrow \exists \sigma \models \mathbf{F} q .
\end{aligned}
$$

(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$
\begin{align*}
& \sigma \not \models \mathbf{G}(p \rightarrow q), \text { and } \tag{2}\\
& \sigma \not \vDash(\mathbf{G} p \rightarrow \mathbf{G} q) . \tag{3}
\end{align*}
$$

By (3), we have

$$
\begin{aligned}
& \sigma \models \mathbf{G} p, \text { and } \\
& \sigma \not \models \mathbf{G} q .
\end{aligned}
$$

Therefore, there exists $k \geq 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (2).
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$ is a tautology since $\varphi \rightarrow \mathbf{F} \varphi$ is a tautology for every formula φ.
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$ is a tautology. We have

$$
\begin{aligned}
\mathbf{G} p \rightarrow \mathbf{F} q & \equiv \neg \mathbf{G} p \vee \mathbf{F} q & & \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \vee \mathbf{F} q & & \text { (by } \# 13.1 \mathrm{c}) \\
& \equiv \mathbf{F}(\neg p \vee q) & & \text { (by \#13.3d) } \\
& \equiv \mathbf{F}(p \rightarrow q) & & \text { (by def. of implication) }
\end{aligned}
$$

Therefore, we have to show that

$$
\mathbf{F}(p \rightarrow q) \leftrightarrow(p \mathbf{U}(p \rightarrow q)) .
$$

$\leftarrow)$ Let σ be such that $\sigma \models(p \mathbf{U}(p \rightarrow q))$. In particular, there exists $k \geq 0$ such that $\sigma^{k} \models(p \rightarrow q)$. Therefore, $\sigma \models \mathbf{F}(p \rightarrow q)$.
$\rightarrow)$ Let σ be such that $\sigma \models \mathbf{F}(p \rightarrow q)$. Let $k \geq 0$ be the smallest position such that $\sigma^{k} \models(p \rightarrow q)$. For every $0 \leq i<k$, we have $\sigma^{i} \not \models(p \rightarrow q)$ which is equivalent to $\sigma^{i} \vDash p \wedge \neg q$. Therefore, for every $0 \leq i<k$, we have $\sigma^{i} \models p$. This implies that $\sigma \models p \mathbf{U}(p \rightarrow q)$.
(f) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$ is not a tautology. Let $\sigma=\emptyset\{q\}^{\omega}$. We have $\sigma \models \neg(p \mathbf{U} q)$ and $\sigma \not \vDash(\neg p \mathbf{U} \neg q)$.
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$ is a tautology since

$$
\begin{aligned}
\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p) & \equiv \neg \mathbf{G}(\neg p \vee \mathbf{X} p) \vee(\neg p \vee \mathbf{G} p) & & \text { (by def. of implication) } \\
& \equiv \mathbf{F}(p \wedge \neg \mathbf{X} p) \vee \neg p \vee \mathbf{G} p & & \text { (by \#13.1c) } \\
& \equiv \neg \mathbf{G} p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) & & \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) & & \text { (by \#13.1c) } \\
& \equiv \mathbf{F} \neg p \rightarrow \mathbf{F} \neg p . & &
\end{aligned}
$$

Solution 13.5

(a) $(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q)$
(b) $\mathbf{F G}(\neg p \wedge q)$
(c) $\mathbf{F}(p \wedge \mathbf{X F}(\neg p \wedge q))$
(d) $(p \wedge \neg q) \mathbf{U}((\neg p \wedge q) \mathbf{U G}(\neg p \wedge \neg q))$

Solution 13.6

(a)

(b) Note that $(\mathbf{G F} p) \rightarrow(\mathbf{F} q) \equiv \neg(\mathbf{G F} p) \vee(\mathbf{F} q) \equiv(\mathbf{F G} \neg p) \vee(\mathbf{F} q)$. We build Büchi automata for $\mathbf{F G} \neg p$ and $\mathbf{F} q$, and take their union:

(c) Note that $p \wedge \neg(\mathbf{X F} p) \equiv p \wedge \mathbf{X G} \neg p$. We build a Büchi automaton for $p \wedge \mathbf{X G} \neg p$:

(d)

(e)

