29.01.2017

Automata and Formal Languages — Homework 13

Due 03.02.2017

Exercise 13.1

Show that

(a) $\neg \mathbf{X}\varphi \equiv \mathbf{X} \neg \varphi$ (b) $\neg \mathbf{F}\varphi \equiv \mathbf{G} \neg \varphi$ (c) $\neg \mathbf{G}\varphi \equiv \mathbf{F} \neg \varphi$ (d) $\mathbf{X}\mathbf{F}\varphi \equiv \mathbf{F}\mathbf{X}\varphi$ (e) $\mathbf{X}\mathbf{G}\varphi \equiv \mathbf{G}\mathbf{X}\varphi$

Exercise 13.2

Let $AP = \{p, q, r\}$. Give formulas that hold for the computations satisfying the following properties:

- (a) p is false before q
- (b) p becomes true before q
- (c) p is true between q and r
- (d) only p is true at even positions and only q is true at odd positions.

Exercise 13.3

Prove or disprove the following distributivity properties:

(a) $\mathbf{X}(\varphi \lor \psi) \equiv \mathbf{X}\varphi \lor \mathbf{X}\psi$ (b) $\mathbf{X}(\varphi \land \psi) \equiv \mathbf{X}\varphi \land \mathbf{X}\psi$ (c) $\mathbf{X}(\varphi \lor \psi) \equiv (\mathbf{X}\varphi) \lor (\mathbf{X}\psi)$ (d) $\mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$ (e) $\mathbf{F}(\varphi \land \psi) \equiv \mathbf{F}\varphi \land \mathbf{F}\psi$ (f) $\mathbf{G}(\varphi \lor \psi) \equiv \mathbf{G}\varphi \lor \mathbf{G}\psi$ (g) $\mathbf{G}(\varphi \land \psi) \equiv \mathbf{G}\varphi \land \mathbf{G}\psi$ (h) $\mathbf{GF}(\varphi \lor \psi) \equiv \mathbf{GF}\varphi \lor \mathbf{GF}\psi$ (i) $\mathbf{GF}(\varphi \land \psi) \equiv \mathbf{GF}\varphi \land \mathbf{GF}\psi$ (j) $\rho \lor (\varphi \lor \psi) \equiv (\rho \lor \varphi) \lor (\rho \lor \psi)$ (k) $(\varphi \lor \psi) \lor (\rho \lor \psi) \lor (\phi \lor \psi)$ (l) $\rho \lor (\varphi \lor \psi) \equiv (\rho \lor \varphi) \land (\rho \lor \psi)$ (m) $(\varphi \land \psi) \lor (\rho \lor \psi)$

Exercise 13.4

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. An LTL formula is a tautology if it is satisfied by all computations. Which of the following LTL formulas are tautologies?

(a) $\mathbf{G}p \to \mathbf{F}p$ (b) $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$ (c) $\mathbf{F}\mathbf{G}p \lor \mathbf{F}\mathbf{G}\neg p$ (d) $\neg \mathbf{F}p \to \mathbf{F}\neg \mathbf{F}p$ (e) $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \mathbf{U} (\neg p \lor q))$ (f) $\neg (p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$ (g) $\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p)$

Exercise 13.5

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas for the following ω -languages:

- (a) $\{p,q\} \, \emptyset \, \Sigma^{\omega}$
- (b) $\Sigma^* \{q\}^{\omega}$
- (c) $\Sigma^* (\{p\} + \{p,q\}) \Sigma^* \{q\} \Sigma^{\omega}$
- (d) $\{p\}^* \{q\}^* \emptyset^{\omega}$

Exercise 13.6

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata for the ω -languages over Σ defined by the following LTL formulas:

- (a) $\mathbf{X}\mathbf{G}\neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \land \neg(\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

(a)

$$\sigma \models \neg \mathbf{X} \varphi \iff \sigma \not\models \mathbf{X} \varphi$$
$$\iff \sigma^{1} \not\models \varphi$$
$$\iff \sigma^{1} \models \neg \varphi$$
$$\iff \sigma \models \mathbf{X} \neg \varphi.$$

(b)

$$\sigma \models \neg \mathbf{F}\varphi \iff \neg(\sigma \models \mathbf{F}\varphi)$$
$$\iff \neg(\exists k \ge 0 \ \sigma^k \models \varphi)$$
$$\iff \forall k \ge 0 \ \neg(\sigma^k \models \varphi)$$
$$\iff \forall k \ge 0 \ \sigma^k \models \neg\varphi$$
$$\iff \mathbf{G}\neg\varphi.$$

(c)

$$\sigma \models \neg \mathbf{G}\varphi \iff \neg(\sigma \models \mathbf{G}\varphi)$$
$$\iff \neg(\forall k \ge 0 \ \sigma^k \models \varphi)$$
$$\iff \exists k \ge 0 \ \neg(\sigma^k \models \varphi)$$
$$\iff \exists k \ge 0 \ \sigma^k \models \neg\varphi$$
$$\iff \mathbf{F} \neg \varphi.$$

(d)

$$\sigma \models \mathbf{XF}\varphi \iff \sigma^{1} \models \mathbf{F}\varphi$$
$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^{1})^{k} \models \varphi$$
$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^{k})^{1} \models \varphi$$
$$\iff \exists k \ge 0 \text{ s.t. } \sigma^{k} \models \mathbf{X}\varphi$$
$$\iff \sigma \models \mathbf{FX}\varphi.$$

(e)

$$\sigma \models \mathbf{X}\mathbf{G}\varphi \iff \sigma^{1} \models \mathbf{G}\varphi$$
$$\iff \forall k \ge 0 \ (\sigma^{1})^{k} \models \varphi$$
$$\iff \forall k \ge 0 \ (\sigma^{k})^{1} \models \varphi$$
$$\iff \forall k \ge 0 \ \sigma^{k} \models \mathbf{X}\varphi$$
$$\iff \sigma \models \mathbf{G}\mathbf{X}\varphi.$$

Solution 13.2

(a) $\mathbf{F}q \to (\neg p \mathbf{U} q)$

(b)
$$\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$$

(c)
$$\mathbf{G}((q \wedge \mathbf{F}r) \to \mathbf{X}(p \mathbf{U} r))$$

(d)
$$\mathbf{G}(\neg r) \wedge \mathbf{G}(p \leftrightarrow \neg q) \wedge p \wedge G(p \rightarrow \mathbf{X}q) \wedge G(q \rightarrow \mathbf{X}p)$$

Solution 13.3

(a–b) Both (a) and (b) hold. Let $\circ \in \{\lor, \land\}$. We have

$$\sigma \models \mathbf{X}(\varphi \circ \psi) \iff \sigma^{1} \models (\varphi \circ \psi)$$
$$\iff (\sigma^{1} \models \varphi) \circ (\sigma^{1} \models \psi)$$
$$\iff \sigma \models \mathbf{X}\varphi \circ \sigma \models \mathbf{X}\psi.$$

(c) True, since:

$$\sigma \models \mathbf{X}(\varphi \mathbf{U} \psi) \iff \sigma^{1} \models (\varphi \mathbf{U} \psi)$$

$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^{1})^{k} \models \varphi \text{ and } \forall 0 \le i < k \ (\sigma^{1})^{i} \models \psi$$

$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^{k})^{1} \models \varphi \text{ and } \forall 0 \le i < k \ (\sigma^{i})^{1} \models \psi$$

$$\iff \exists k \ge 0 \text{ s.t. } \sigma^{k} \models \mathbf{X}\varphi \text{ and } \sigma^{i} \models \mathbf{X}\psi \text{ for every } 0 \le i < k$$

$$\iff \sigma \models (\mathbf{X}\varphi) \mathbf{U} \ (\mathbf{X}\psi).$$

(d) True, since:

$$\sigma \models \mathbf{F}(\varphi \lor \psi) \iff \exists k \ge 0 \text{ s.t. } \sigma^k \models (\varphi \lor \psi)$$
$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^k \models \varphi) \lor (\sigma^k \models \psi)$$
$$\iff (\exists k \ge 0 \text{ s.t. } \sigma^k \models \varphi) \lor (\exists k \ge 0 \text{ s.t. } \sigma^k \models \psi)$$
$$\iff \sigma \models \mathbf{F}\varphi \lor \mathbf{F}\psi.$$

(e) False. Let $\sigma = \{p\}\{q\}\emptyset^{\omega}$. We have $\sigma \models \mathbf{F}p \wedge \mathbf{F}q$ and $\sigma \not\models \mathbf{F}(\varphi \wedge \psi)$.

(f) False. Let $\sigma = (\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \lor q)$ and $\sigma \not\models \mathbf{G}p \lor \mathbf{G}q$.

(g) True, since:

$$\sigma \models \mathbf{G}(\varphi \land \psi) \iff \forall k \ge 0 \ \sigma^k \models (\varphi \land \psi)$$
$$\iff \forall k \ge 0 \ (\sigma^k \models \varphi) \land (\sigma^k \models \psi)$$
$$\iff (\forall k \ge 0 \ \sigma^k \models \varphi) \land (\forall k \ge 0 \ \sigma^k \models \psi)$$
$$\iff \sigma \models \mathbf{G}\varphi \land \mathbf{G}\psi.$$

(h) True. If $\sigma \models \mathbf{GF}\varphi \lor \mathbf{GF}\psi$, then $\sigma \models \mathbf{GF}(\varphi \lor \psi)$. If $\sigma \models \mathbf{GF}(\varphi \lor \psi)$, then there exist $i_0 < i_1 < \cdots$ such that

$$\sigma^{i_j} \models \varphi \lor \psi \text{ for every } j \in \mathbb{N}.$$
(1)

Let $I = \{j \in \mathbb{N} : \sigma^{i_j} \models \varphi\}$ and $J = \{j \in \mathbb{N} : \sigma^{i_j} \models \psi\}$. If I and J are both finite, then (1) does not hold, which is a contradiction. Therefore, at least one of I and J is infinite. This implies that $\sigma \models \mathbf{GF}\varphi \lor \mathbf{GF}\psi$.

- (i) False. Let $\sigma = (\{p\}\{q\})^{\omega}$. We have $\sigma \not\models \mathbf{GF}(p \land q)$ and $\sigma \models \mathbf{GF}p \land \mathbf{GF}q$.
- (j) True, since:

$$\begin{split} \sigma &\models \rho \ \mathbf{U} \ (\varphi \lor \psi) \iff \exists k \ge 0 \text{ s.t. } \sigma^k \models (\varphi \lor \psi) \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho \\ \iff \exists k \ge 0 \text{ s.t. } ((\sigma^k \models \varphi) \lor (\sigma^k \models \psi)) \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho \\ \iff \exists k \ge 0 \text{ s.t. } (\sigma^k \models \varphi \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho) \lor (\sigma^k \models \psi \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho) \\ \iff (\exists k \ge 0 \text{ s.t. } \sigma^k \models \varphi \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho) \lor (\exists k \ge 0 \text{ s.t. } \sigma^k \models \psi \text{ and } \forall 0 \le i < k \ \sigma^i \models \rho) \\ \iff \sigma \models (\rho \ \mathbf{U} \ \varphi) \lor (\rho \ \mathbf{U} \ \psi). \end{split}$$

(k) False. Let $\sigma = \{p\}\{q\}\{r\}\emptyset^{\omega}$. We have $\sigma \models (p \lor q) \mathbf{U} r$ and $\sigma \not\models (p \mathbf{U} r) \lor (q \mathbf{U} r)$.

(1) False. Let $\sigma = \{r\}\{p, r\}\{q\}\emptyset^{\omega}$. We have $\sigma \not\models r \mathbf{U} (p \land q)$ and $\sigma \models (r \mathbf{U} p) \land (r \mathbf{U} q)$.

(m) True, since:

$$\begin{split} \sigma \models (\varphi \land \psi) \mathbf{U} \rho \iff \exists k \ge 0 \text{ s.t. } \sigma^k \models \rho \text{ and } \forall 0 \le i < k \ \sigma^i \models (\varphi \land \psi) \\ \iff \exists k \ge 0 \text{ s.t. } \sigma^k \models \rho \text{ and } \forall 0 \le i < k \ (\sigma^i \models \varphi \land \sigma^i \models \psi) \\ \iff \exists k \ge 0 \text{ s.t. } (\sigma^k \models \rho \text{ and } \forall 0 \le i < k \ \sigma^i \models \varphi) \land (\sigma^k \models \rho \text{ and } \forall 0 \le i < k \ \sigma^i \models \psi) \\ \stackrel{(1)}{\iff} (\exists m \ge 0 \text{ s.t. } \sigma^m \models \rho \text{ and } \forall 0 \le i < m \ \sigma^i \models \varphi) \land (\exists n \ge 0 \text{ s.t. } \sigma^n \models \rho \text{ and } \forall 0 \le i < n \ \sigma^i \models \psi) \\ \iff \sigma \models (\varphi \mathbf{U} \rho) \land (\psi \mathbf{U} \rho). \end{split}$$

where $\stackrel{(1)}{\longleftarrow}$ follows by taking $k = \min(m, n)$.

Solution 13.4

(a) $\mathbf{G}p \to \mathbf{F}q$ is a tautology since

$$\sigma \models \mathbf{G}p \iff \forall k \ge 0 \ \sigma^k \models p$$
$$\implies \exists k \ge 0 \ \sigma^k \models q$$
$$\iff \exists \sigma \models \mathbf{F}q.$$

(b) $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$\sigma \models \mathbf{G}(p \to q), \text{ and}$$
 (2)

$$\sigma \not\models (\mathbf{G}p \to \mathbf{G}q). \tag{3}$$

By (3), we have

$$\sigma \models \mathbf{G}p, \text{ and} \\ \sigma \not\models \mathbf{G}q.$$

Therefore, there exists $k \ge 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (2).

- (c) $\mathbf{FG}p \vee \mathbf{FG}\neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.
- (d) $\neg \mathbf{F}p \rightarrow \mathbf{F} \neg \mathbf{F}p$ is a tautology since $\varphi \rightarrow \mathbf{F}\varphi$ is a tautology for every formula φ .
- (e) $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \mathbf{U} (\neg p \lor q))$ is a tautology. We have

$\mathbf{G}p ightarrow \mathbf{F}q \equiv \neg \mathbf{G}p \lor \mathbf{F}q$	(by def. of implication)
$\equiv {f F} eg p ee {f F} q$	(by #13.1c)
$\equiv \mathbf{F}(\neg p \lor q)$	$(by \ #13.3d)$
$\equiv \mathbf{F}(p \to q)$	(by def. of implication)

Therefore, we have to show that

$$\mathbf{F}(p \to q) \leftrightarrow (p \mathbf{U} \ (p \to q))$$

 \leftarrow) Let σ be such that $\sigma \models (p \mathbf{U} (p \rightarrow q))$. In particular, there exists $k \ge 0$ such that $\sigma^k \models (p \rightarrow q)$. Therefore, $\sigma \models \mathbf{F}(p \rightarrow q)$.

 \rightarrow) Let σ be such that $\sigma \models \mathbf{F}(p \rightarrow q)$. Let $k \ge 0$ be the smallest position such that $\sigma^k \models (p \rightarrow q)$. For every $0 \le i < k$, we have $\sigma^i \not\models (p \rightarrow q)$ which is equivalent to $\sigma^i \models p \land \neg q$. Therefore, for every $0 \le i < k$, we have $\sigma^i \models p$. This implies that $\sigma \models p \mathbf{U} \ (p \rightarrow q)$.

(f) $\neg(p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$ is not a tautology. Let $\sigma = \emptyset\{q\}^{\omega}$. We have $\sigma \models \neg(p \mathbf{U} q)$ and $\sigma \not\models (\neg p \mathbf{U} \neg q)$.

(g) $\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p)$ is a tautology since

$$\begin{aligned} \mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p) &\equiv \neg \mathbf{G}(\neg p \lor \mathbf{X}p) \lor (\neg p \lor \mathbf{G}p) & \text{(by def. of implication)} \\ &\equiv \mathbf{F}(p \land \neg \mathbf{X}p) \lor \neg p \lor \mathbf{G}p & \text{(by $\#13.1c$)} \\ &\equiv \neg \mathbf{G}p \to (\neg p \lor (\mathbf{F}(p \land \mathbf{X} \neg p))) & \text{(by def. of implication)} \\ &\equiv \mathbf{F} \neg p \to (\neg p \lor (\mathbf{F}(p \land \mathbf{X} \neg p))) & \text{(by $\#13.1c$)} \\ &\equiv \mathbf{F} \neg p \to \mathbf{F} \neg p. \end{aligned}$$

Solution 13.5

- (a) $(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q)$
- (b) $\mathbf{FG}(\neg p \land q)$
- (c) $\mathbf{F}(p \wedge \mathbf{XF}(\neg p \wedge q))$
- (d) $(p \wedge \neg q) \mathbf{U} ((\neg p \wedge q) \mathbf{U} \mathbf{G} (\neg p \wedge \neg q))$

Solution 13.6

(a)

(b) Note that $(\mathbf{GF}p) \to (\mathbf{F}q) \equiv \neg(\mathbf{GF}p) \lor (\mathbf{F}q) \equiv (\mathbf{FG}\neg p) \lor (\mathbf{F}q)$. We build Büchi automata for $\mathbf{FG}\neg p$ and $\mathbf{F}q$, and take their union:

(c) Note that $p \wedge \neg(\mathbf{XF}p) \equiv p \wedge \mathbf{XG}\neg p$. We build a Büchi automaton for $p \wedge \mathbf{XG}\neg p$:

(d)

(e)

