Automata and Formal Languages - Homework 12

Due 27.01.2017

Exercise 12.1

Consider the following Büchi automaton over $\Sigma=\{a, b\}$:

(a) Sketch $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Let r_{w} be the ranking of $\operatorname{dag}(w)$ defined by

$$
r_{w}(q, i)= \begin{cases}1 & \text { if } q=q_{0} \text { and }\left\langle q_{0}, i\right\rangle \text { appears in } \operatorname{dag}(w) \\ 0 & \text { if } q=q_{1} \text { and }\left\langle q_{1}, i\right\rangle \text { appears in } \operatorname{dag}(w) \\ \perp & \text { otherwise. }\end{cases}
$$

Are $r_{a b a b \omega}$ and $r_{(a b)^{\omega}}$ odd rankings?
(c) Show that r_{w} is an odd ranking if and only if $w \notin L_{\omega}(B)$.
(d) Build a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. (Hint: by (c), it is sufficient to use $\{0,1\}$ as ranks.)

Exercise 12.2

Let B be the following Büchi automaton:

(a) Execute the emptiness algorithm NestedDFS on B.
(b) Recall that NestedDFS is a non deterministic algorithm and different choices of runs may return different lassos. Which lassos of B can be found by NestedDFS?
(c) Show that NestedDFS is non optimal by exhibiting some search sequence on B.
(d) Execute the emptiness algorithm TwoStack on B.
(e) Which lassos of B can be found by TwoStack?

Exercise 12.3

A Büchi automaton is weak if none of its strongly connected components contains both accepting and nonaccepting states. Give an emptiness algorithm for weak Büchi automata. What is the complexity of the algorithm?

Solution 12.1

(a) $\operatorname{dag}\left(a b a b^{\omega}\right)$:

$\operatorname{dag}\left((a b)^{\omega}\right):$

(b) - r is not an odd rank for $\operatorname{dag}\left(a b a b^{\omega}\right)$ since

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{1}, 4\right\rangle \xrightarrow{b}\left\langle q_{1}, 5\right\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}\left(a b a b^{\omega}\right)$ not visiting odd nodes infinitely often.

- r is an odd rank for $\operatorname{dag}\left((a b)^{\omega}\right)$ since it has a single infinite path:

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{0}, 4\right\rangle \xrightarrow{a}\left\langle q_{0}, 5\right\rangle \xrightarrow{b} \cdots
$$

which only visits odd nodes.
(c) $\Rightarrow)$ Let $w \in L_{\omega}(B)$. We have $w=u b^{\omega}$ for some $u \in\{a, b\}^{*}$. This implies that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{0},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}(w)$. Since this path does not visit odd nodes infinitely often, r is not odd for $\operatorname{dag}(w)$.
$\Leftarrow)$ Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of $\operatorname{dag}(w)$ that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\left\langle q_{1}, i\right\rangle$. Therefore, there exists $u \in\{a, b\}^{*}$ such that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{1},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

This implies that $w=u b^{\omega} \in L_{\omega}(B)$ which is contradiction.
(d) By (c), for every $w \in\{a, b\}^{\omega}$, if $\operatorname{dag}(w)$ has an odd ranking, then it has one ranging over 0 and 1 . Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 . We obtain the following Büchi automaton:

\star Actually, by (c), it is sufficient to only explore the blue states as they correspond to the family of rankings $\left\{r_{w}: w \in \Sigma^{\omega}\right\}$.

Solution 12.2

(a) Let us assume that the algorithms always pick states in ascending order with respect to their indices. dfs1 visits $q 0, q 1, q 2, q 3, q 4, q 5, q 6$, then calls $d f s 2$ which visits $q 6, q 1, q 2, q 3, q 4, q 5, q 6$ and reports "non empty".
(b) Since q_{7} does not belong to any lasso, only lassos containing q_{1} or q_{6} can be found. In every run of the algorithm, $d f s 1$ blackens q_{6} before q_{1}. The only lasso containing q_{6} is: $q_{0}, q_{1}, q_{3}, q_{4}, q_{6}, q_{1}$. Therefore, this is the only lasso that can be found by the algorithm.
(c) The execution given in (a) shows that NestedDFS is non optimal since it returns the lasso $q_{0}, q_{1}, q_{3}, q_{4}, q_{6}, q_{1}$ even though the lasso $q_{0}, q_{1}, q_{2}, q_{1}$ was already appearing in the explored subgraph.
(d) Let us assume that the algorithms always pick states in ascending order with respect to their indices. The algorithm reports "non empty" after the following execution:

(e) All of them. The lasso $q_{0}, q_{1}, q_{2}, q_{1}$ is found by the above execution. The lasso $q_{0}, q_{1}, q_{3}, q_{4}, q_{6}, q_{1}$ is found by the following execution:

The lasso $q_{0}, q_{1}, q_{3}, q_{4}, q_{5}, q_{1}$ is found by the following execution:

Solution 12.3

The following algorithm works in linear time:

```
Input: Weak Büchi automaton \(B=\left(Q, \Sigma, \delta, q_{0}, F\right)\).
Output: \(L_{\omega}(B)=\emptyset\) ?
\(S, V \leftarrow \emptyset\)
dfs \(\left(q_{0}\right)\)
report "empty"
dfs(q):
    \(S . \operatorname{add}(q)\)
    \(V \cdot \operatorname{add}(q)\)
    for \(r \in \operatorname{succ}(q)\) do
        if \(r \notin S\) then
            dfs \((r)\)
        else if \(r \in V\) and \(r \in F\) then
            report "non empty"
    \(V\).remove \((q)\)
```

