Automata and Formal Languages - Homework 11

Due 20.01.2017

Exercise 11.1

(a) Give a deterministic Rabin automaton for $L=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many a 's $\}$.
(b) Give a Büchi automaton for L and try to "determinize" it by using the NFA to DFA powerset construction.
(c) What ω-language is accepted by the following Muller automaton with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}\right\}$?

(d) Show that any Büchi automaton that accepts the ω-language of (c) has more than 3 states.
(e) For every $m, n \in \mathbb{N}_{>0}$, let $L_{m, n}$ be the ω-language over $\{a, b\}$ described by $(a+b)^{*}\left(\left(a^{m} b b\right)^{\omega}+\left(a^{n} b b\right)^{\omega}\right)$.
(i) Describe a family of Büchi automata accepting the family of ω-languages $\left\{L_{m, n}\right\}_{m, n \in \mathbb{N}>0}$.
(ii) Show that there exists $c \in \mathbb{N}$ such that for every $m, n \in \mathbb{N}_{>0}, L_{m, n}$ is accepted by a Rabin automaton with at most $\max (m, n)+c$ states.
(iii) Modify your construction in (ii) to obtain Muller automata instead of Rabin automata.
(iv) Convert the Rabin automaton obtained in (ii) for $L_{m, n}$ into a Büchi automaton.

Exercise 11.2

(a) Give deterministic Büchi automata for L_{a}, L_{b}, L_{c} where $L_{\sigma}=\left\{w \in\{a, b, c\}^{\omega}: w\right.$ contains infinitely many $\left.\sigma^{\prime} s\right\}$, and build the intersection of these automata.
(b) Give Büchi automata for the following ω-languages:

- $L_{1}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains infinitely many a 's $\}$,
- $L_{2}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many b 's $\}$,
- $L_{3}=\left\{w \in\{a, b\}^{\omega}\right.$: each occurrence of a in w is followed by a $\left.b\right\}$,
and build the intersection of these automata.

Solution 11.1

(a) The following Rabin automaton with acceptance condition $\left\{\left(\left\{q_{1}\right\},\left\{q_{0}\right\}\right)\right\}$, i.e. where q_{1} must be visited infinitely often and q_{0} must be visited finitely often:

(b) This Büchi automaton accepts L :

However, the powerset construction yields the following Büchi automaton which does not accept L since it does not accept $b a b^{\omega}$:

(c) $\Sigma^{*}\left(a^{\omega}+b^{\omega}+c^{\omega}\right)$.
(d) Assume there exists a Büchi automaton $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ such that $|Q| \leq 3$ and $L_{\omega}(B)$ is the ω language of (c). Let $w_{\sigma}=a b c \sigma^{\omega}$. Since $w_{a}, w_{b}, w_{c} \in L_{\omega}(B)$, a pigeonhole argument shows that there exist $p_{1}, p_{2}, p_{3} \in Q_{0}, q_{1}, q_{2}, q_{3} \in F, m_{1}, m_{2}, m_{3} \in \mathbb{N}$ and $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{>0}$ such that

$$
\begin{aligned}
& p_{1} \xrightarrow{a b c a^{m_{1}}} q_{1} \xrightarrow{a^{n_{1}}} q_{1}, \\
& p_{2} \xrightarrow{a b c b^{m_{2}}} q_{2} \xrightarrow{b^{n_{2}}} q_{2}, \\
& p_{3} \xrightarrow{a b c c^{m_{3}}} q_{3} \xrightarrow{c^{n_{3}}} q_{3} .
\end{aligned}
$$

We must have $q_{i} \neq q_{j}$ for every $i \neq j$, otherwise we would obtain a contradiction. For example, if $q_{1}=q_{2}$, we have

$$
p_{1} \xrightarrow{a b c a^{m_{1}}} q_{2} \xrightarrow{a^{n_{1}}} q_{2} \xrightarrow{b^{n_{2}}} q_{2} \xrightarrow{a^{n_{1}}} \cdots
$$

which is a contradiction since $a b c a^{m_{1}}\left(a^{n_{1}} b^{n_{2}}\right)^{\omega} \notin L_{\omega}(B)$. Therefore, $|Q|=3$ and $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$.
We have $p_{i} \neq q_{i}$ for every $i \in[3]$, otherwise we would again obtain a contradiction. For example, if $p_{1}=q_{1}$, we have

$$
p_{1} \xrightarrow{a b c a^{m_{1}}} p_{1} \xrightarrow{a b c a^{m_{1}}} \cdots
$$

which is a contradiction since $\left(a b c a^{m_{1}}\right)^{\omega} \notin L_{\omega}(B)$.
Suppose $p_{1}=q_{2}$. If $p_{2}=q_{1}$, then $\left(a b c a^{m_{1}} a b c b^{m_{2}}\right)^{\omega} \in L_{\omega}(B)$, which is a contradiction. Hence, $p_{2}=q_{3}$. If $p_{3}=q_{2}$, then $\left(a b c a^{m_{2}} a b c b^{m_{3}}\right)^{\omega} \in L_{\omega}(B)$, which is a contradiction. Hence, $p_{3}=q_{1}$. This also yields a contradiction since it implies $\left(a b c a^{n_{1}} a b c c^{n_{3}} a b c b^{n_{2}}\right)^{\omega}$. We conclude that $p_{1} \neq q_{2}$.
A similar argument shows that $p_{1} \neq q_{3}$, which contradicts $|Q|=3$.
(e) (i)

(ii) Let $m, n \in \mathbb{N}_{>0}$. Let $x=\min (m, n)$ and $y=\max (m, n)$. We build the following Rabin automaton $B_{m, n}$:

$B_{m, n}$ accepts $L_{m, n}$ when taking the acceptance condition $\{(\{r\},\{s\}),(\{s\},\{r\})\}$. Moreover, $B_{m, n}$ has $\max (m, n)+3$ states.
(iii) We keep the same automaton $B_{m, n}$, but we change the acceptance condition to:

$$
\left\{\left\{p_{0}, p_{1}, \ldots, p_{x}, r\right\},\left\{p_{0}, p_{1}, \ldots, p_{y}, s\right\}\right\}
$$

(iv) The following Büchi automaton $C_{m, n}$ is obtained from the conversion of $B_{m, n}$:

Solution 11.2
(a) The following deterministic Büchi automata respectively accept L_{a}, L_{b} and L_{c} :

As seen in $\# 10.1(\mathrm{c}), L_{a} \cap L_{b} \cap L_{b}$ is accepted by a smaller deterministic Büchi automaton:

(b) The following Büchi automata respectively accept L_{1}, L_{2} and L_{3} :

Taking the intersection of these automata leads to the following Büchi automaton:

Note that this automaton accepts \emptyset.

