Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

# Automata and Formal Languages — Homework 11

Due 20.01.2017

### Exercise 11.1

- (a) Give a deterministic Rabin automaton for  $L = \{w \in \{a, b\}^{\omega} : w \text{ contains finitely many } a's\}.$
- (b) Give a Büchi automaton for L and try to "determinize" it by using the NFA to DFA powerset construction.
- (c) What  $\omega$ -language is accepted by the following Muller automaton with acceptance condition  $\{\{q_0\}, \{q_1\}, \{q_2\}\}$ ?



- (d) Show that any Büchi automaton that accepts the  $\omega$ -language of (c) has more than 3 states.
- (e) For every  $m, n \in \mathbb{N}_{>0}$ , let  $L_{m,n}$  be the  $\omega$ -language over  $\{a, b\}$  described by  $(a+b)^*((a^mbb)^\omega + (a^nbb)^\omega)$ .
  - (i) Describe a family of Büchi automata accepting the family of  $\omega$ -languages  $\{L_{m,n}\}_{m,n\in\mathbb{N}_{>0}}$ .
  - (ii) Show that there exists  $c \in \mathbb{N}$  such that for every  $m, n \in \mathbb{N}_{>0}$ ,  $L_{m,n}$  is accepted by a Rabin automaton with at most  $\max(m, n) + c$  states.
  - (iii) Modify your construction in (ii) to obtain Muller automata instead of Rabin automata.
  - (iv) Convert the Rabin automaton obtained in (ii) for  $L_{m,n}$  into a Büchi automaton.

### Exercise 11.2

- (a) Give deterministic Büchi automata for  $L_a, L_b, L_c$  where  $L_{\sigma} = \{w \in \{a, b, c\}^{\omega} : w \text{ contains infinitely many } \sigma$ 's}, and build the intersection of these automata.
- (b) Give Büchi automata for the following  $\omega$ -languages:
  - $L_1 = \{ w \in \{a, b\}^{\omega} : w \text{ contains infinitely many } a's \},$
  - $L_2 = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } b's \},$
  - $L_3 = \{ w \in \{a, b\}^{\omega} : \text{each occurrence of } a \text{ in } w \text{ is followed by a } b \},$

and build the intersection of these automata.

#### Solution 11.1

(a) The following Rabin automaton with acceptance condition  $\{(\{q_1\}, \{q_0\})\}$ , i.e. where  $q_1$  must be visited infinitely often and  $q_0$  must be visited finitely often:



(b) This Büchi automaton accepts L:



However, the powerset construction yields the following Büchi automaton which does not accept L since it does not accept  $bab^{\omega}$ :



- (c)  $\Sigma^*(a^{\omega} + b^{\omega} + c^{\omega}).$
- (d) Assume there exists a Büchi automaton  $B = (Q, \Sigma, \delta, Q_0, F)$  such that  $|Q| \leq 3$  and  $L_{\omega}(B)$  is the  $\omega$ language of (c). Let  $w_{\sigma} = abc\sigma^{\omega}$ . Since  $w_a, w_b, w_c \in L_{\omega}(B)$ , a pigeonhole argument shows that there exist  $p_1, p_2, p_3 \in Q_0, q_1, q_2, q_3 \in F, m_1, m_2, m_3 \in \mathbb{N}$  and  $n_1, n_2, n_3 \in \mathbb{N}_{>0}$  such that

$$p_1 \xrightarrow{abca^{m_1}} q_1 \xrightarrow{a^{n_1}} q_1,$$

$$p_2 \xrightarrow{abcb^{m_2}} q_2 \xrightarrow{b^{n_2}} q_2,$$

$$p_3 \xrightarrow{abcc^{m_3}} q_3 \xrightarrow{c^{n_3}} q_3.$$

We must have  $q_i \neq q_j$  for every  $i \neq j$ , otherwise we would obtain a contradiction. For example, if  $q_1 = q_2$ , we have

$$p_1 \xrightarrow{abca^{m_1}} q_2 \xrightarrow{a^{n_1}} q_2 \xrightarrow{b^{n_2}} q_2 \xrightarrow{a^{n_1}} \cdots$$

which is a contradiction since  $abca^{m_1}(a^{n_1}b^{n_2})^{\omega} \notin L_{\omega}(B)$ . Therefore, |Q| = 3 and  $Q = \{q_1, q_2, q_3\}$ .

We have  $p_i \neq q_i$  for every  $i \in [3]$ , otherwise we would again obtain a contradiction. For example, if  $p_1 = q_1$ , we have

$$p_1 \xrightarrow{abca^{m_1}} p_1 \xrightarrow{abca^{m_1}} \cdots$$

which is a contradiction since  $(abca^{m_1})^{\omega} \notin L_{\omega}(B)$ .

Suppose  $p_1 = q_2$ . If  $p_2 = q_1$ , then  $(abca^{m_1}abcb^{m_2})^{\omega} \in L_{\omega}(B)$ , which is a contradiction. Hence,  $p_2 = q_3$ . If  $p_3 = q_2$ , then  $(abca^{m_2}abcb^{m_3})^{\omega} \in L_{\omega}(B)$ , which is a contradiction. Hence,  $p_3 = q_1$ . This also yields a contradiction since it implies  $(abca^{n_1}abcc^{n_3}abcb^{n_2})^{\omega}$ . We conclude that  $p_1 \neq q_2$ .

A similar argument shows that  $p_1 \neq q_3$ , which contradicts |Q| = 3.



(ii) Let  $m, n \in \mathbb{N}_{>0}$ . Let  $x = \min(m, n)$  and  $y = \max(m, n)$ . We build the following Rabin automaton  $B_{m,n}$ :



 $B_{m,n}$  accepts  $L_{m,n}$  when taking the acceptance condition  $\{(\{r\}, \{s\}), (\{s\}, \{r\})\}$ . Moreover,  $B_{m,n}$  has  $\max(m, n) + 3$  states.

(iii) We keep the same automaton  $B_{m,n}$ , but we change the acceptance condition to:

 $\{\{p_0, p_1, \ldots, p_x, r\}, \{p_0, p_1, \ldots, p_y, s\}\}.$ 

(iv) The following Büchi automaton  $C_{m,n}$  is obtained from the conversion of  $B_{m,n}$ :



## Solution 11.2

(a) The following deterministic Büchi automata respectively accept  $L_a, L_b$  and  $L_c$ :





As seen in #10.1(c),  $L_a \cap L_b \cap L_b$  is accepted by a smaller deterministic Büchi automaton:



(b) The following Büchi automata respectively accept  $L_1, L_2$  and  $L_3$ :



Taking the intersection of these automata leads to the following Büchi automaton:



Note that this automaton accepts  $\emptyset$ .