Automata and Formal Languages - Homework 9

Due 23.12.2016

Exercise 9.1

(a) Give an MSO formula Block_between such that Block_between (X, i, j) holds whenever $X=\{i, i+1, \ldots, j\}$.
(b) Let $0 \leq m<n$. Give an MSO formula $\operatorname{Mod}^{m, n}$ such that $\operatorname{Mod}^{m, n}(i, j)$ holds whenever $\left|w_{i} w_{i+1} \cdots w_{j}\right| \equiv$ $m(\bmod n)$, i.e. whenever $j-i+1 \equiv m(\bmod n)$.
(c) Let $0 \leq m<n$. Give an MSO sentence for $a^{m}\left(a^{n}\right)^{*}$.
(d) Give an MSO sentence for the language of words such that every two b 's with no other b in between are separated by a block of a 's of odd length.

Exercise 9.2

Let $r \geq 0, n \geq 1$. Give a Presburger formula φ such that $\mathcal{J} \vDash \varphi$ if, and only if, $\mathcal{J}(x) \geq \mathcal{J}(y)$ and $\mathcal{J}(x)-\mathcal{J}(y) \equiv$ $r(\bmod n)$. Give an automaton that accepts the solutions of φ for $r=0$ and $n=2$.

Exercise 9.3

Use algorithms seen in class and algorithm EqtoDFA (p. 207) to build an automaton for $\exists y x=3 y$.

Exercise 9.4

Consider the extension of $\operatorname{FO}(\Sigma)$ where addition of variables is allowed. Give a sentence of this logic for palindromes over $\{a, b\}$, i.e. $\left\{w \in\{a, b\}^{*}: w=w^{R}\right\}$.

Solution 9.1

\star Note that questions (b) and (c) were updated in light of the discussions we had in class.
(a) Block_between $(X, i, j)=\forall x(x \in X) \leftrightarrow(i \leq x \wedge x \leq j)$.
(b) $\operatorname{Mod}^{m, n}(i, j)=\exists x(x=i+m) \wedge \operatorname{Mult}^{n}(x, j)$ where

$$
\operatorname{Mult}^{n}(i, j)=\exists X(j \in X) \wedge(\forall x \in X[(x=i+n-1) \vee \exists y \in X(y=x+n)])
$$

(c) $[(m=0) \wedge(\neg \exists x \operatorname{first}(x))] \vee\left[\forall x Q_{a}(x) \wedge \exists x, y \operatorname{first}(x) \wedge \operatorname{last}(y) \wedge \operatorname{Mod}^{m, n}(x, y)\right]$.
(d)

$$
\begin{aligned}
\forall x, y\left[(x<y) \wedge Q_{b}(x)\right. & \left.\wedge Q_{b}(y) \wedge \forall z\left(x<z<y \wedge \neg Q_{b}(z)\right)\right] \rightarrow \\
\quad[(\forall z(x<z<y) & \left.\left.\wedge Q_{a}(z)\right) \wedge\left(\exists x^{\prime}, y^{\prime}\left(x^{\prime}=x+1\right) \wedge\left(y=y^{\prime}+1\right) \wedge \operatorname{Mod}^{1,2}\left(x^{\prime}, y^{\prime}\right)\right)\right]
\end{aligned}
$$

Solution 9.2

$$
(x \leq y) \wedge\left(\exists a, b \bigvee_{0 \leq r^{\prime}<n}\left(x-y=n \cdot a+r^{\prime}\right) \wedge\left(r=n \cdot b+r^{\prime}\right)\right)
$$

Let $k \in \mathbb{N}$ and $x, y \in \Sigma^{k}$. First note that $\operatorname{val}(x)-\operatorname{val}(y) \equiv 0(\bmod 2)$ if, and only if, $\operatorname{val}(x)$ and $\operatorname{val}(y)$ are either both odd or both even. Thus, the first bit of x and y should be the same. Moreover, $\operatorname{val}(x) \geq \operatorname{val}(y)$ if, and only if, $x=y$ or if there exists $\ell \in[k]$ such that $x_{\ell}=1, y_{\ell}=0$, and $x_{i} \geq y_{i}$ for every $\ell<i \leq k$. These observations yield the following automaton:

Solution 9.3

We can rewrite the formula as $\exists y x-3 y=0$. We first use $E q t o D F A$ to obtain an automaton for $x-3 y=0$:

It remains to project the automaton on x, i.e. on the first component of the letters. We obtain:

Solution 9.4

$$
\begin{aligned}
& (\neg \exists x \text { first }(x)) \vee\left(\exists x, y \text { first }(x) \wedge \operatorname{last}(y) \wedge \bigvee_{a \in \Sigma}\left(Q_{a}(x) \wedge Q_{a}(y)\right) \wedge\right. \\
& \left.\quad\left[\forall x^{\prime}, y^{\prime}, \ell\left(x^{\prime}=x+\ell \wedge y=y^{\prime}+\ell\right) \rightarrow \bigvee_{a \in \Sigma}\left(Q_{a}\left(x^{\prime}\right) \wedge Q_{a}\left(y^{\prime}\right)\right)\right]\right) .
\end{aligned}
$$

