
Technische Universität München Winter term 2016/17
I7
Prof. J. Esparza / Dr. M. Blondin 11.12.2016

Automata and Formal Languages — Homework 8

Due 16.12.2016

Exercise 8.1

Consider two processes (process 0 and process 1) being executed through the following generic mutual exclusion
algorithm:

while true do
enter(process id)
/* critical section */

leave(process id)
for arbitrarily many times do

/* non critical section */

(a) Consider the following implementations of enter and leave:

x← 0

enter(i):
while x = 1− i do

pass

leave(i):
x← 1− i

(i) Design a network of automata capturing the executions of the two processes.

(ii) Build the asynchronous product of the network.

(iii) Show that both processes cannot reach their critical sections at the same time.

(iv) If a process wants to enter its critical section, is it always the case that it can eventually enter it?
(Hint: reason in terms of infinite executions.)

(b) Consider the following alternative implementations of enter and leave:

x0 ← false
x1 ← false

enter(i):
xi ← true
while x1−i do

pass

leave(i):
xi ← false

(i) Design a network of automata capturing the executions of the two processes.

(ii) Can a deadlock occur, i.e. can both processes get stuck trying to enter their critical sections?

Exercise 8.2

Let Σ be a finite alphabet. A language L ⊆ Σ∗ is star-free if it can be expressed by a star-free regular expression,
i.e. a regular expression where Kleene star is forbidden, but complementation is allowed. For example, Σ∗ is
star-free since Σ∗ = ∅, but (aa)∗ is not.

(a) Give star-free regular expressions and FO(Σ) sentences for the following star-free languages:

(i) Σ+.

(ii) Σ∗AΣ∗ for some A ⊆ Σ.

(iii) A∗ for some A ⊆ Σ.

(iv) (ab)∗.

(v) {w ∈ Σ∗ : w does not contain two consecutive a}.

(b) Show that finite and cofinite languages are star-free.

(c) Show that for every sentence ϕ ∈ FO(Σ), there exists a formula ϕ+, with two free variables, such that for
every w ∈ Σ+ and 1 ≤ i ≤ j ≤ w,

w � ϕ+(i, j) ⇐⇒ wiwi+1 · · ·wj � ϕ .

(d) Give a polynomial time algorithm that tests whether ε � ϕ given some sentence ϕ ∈ FO(Σ).

(e) Show that every star-free language can be expressed by an FO(Σ) sentence. (Hint: use (c).)

Exercise 8.3

Let Σ = {a, b}.

(a) Give an FO(Σ) formula ϕn(x, y) of size O(n) such that ϕn(x, y) holds ⇐⇒ y = x+ 2n.

(b) Give an FO(Σ) sentence of size O(n) for Ln = {ww : w ∈ Σ∗ and |w| = 2n}.

(c) Show that the minimal DFA accepting Ln has at least 22
n

states. (Hint: consider the residuals of Ln.)

Solution 8.1

(a) (i)

0 1

x = 0

x← 0

x = 1

x← 1

x← 1

x← 0

e0 c0 `0 nc0
x = 0

x = 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 `1 nc1
x = 1

x = 0

c1 x← 0

x← 0

nc1

nc1

F As discussed in class, the previous network forces the two processes to read the content of x at
the same time. If we want to avoid this, we can add new disjoint actions x = 0′ and x = 1′ as follows:

0 1

x = 0, x = 0′

x← 0

x = 1, x = 1′

x← 1

x← 1

x← 0

e0 c0 `0 nc0
x = 0

x = 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 `1 nc1
x = 1′

x = 0′

c1 x← 0

x← 0

nc1

nc1

(ii)

0, e0, e1 0, c0, e1 0, `0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, `10, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1c1x← 0

nc1

nc1

x← 0

F For the second solution where asynchronous reading is allowed, we obtain the following automaton:

0, e0, e1 0, c0, e1 0, `0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, `10, e0, nc1

1, nc0, c11, nc0, `10, nc0, nc10, nc0, e1

0, c0, nc1 0, `0, nc1 1, nc0, nc1 1, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1′c1x← 0

nc1

nc1

x← 0

x = 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x = 0′

nc0

x = 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x = 1

x = 0′ x = 0′ x = 0′

x = 1x = 1x = 1

(iii) Both processes can reach their critical section at the same time if, and only if, the asynchronous
product contains a state of the form (x, c0, c1). Since it contains none, this behaviour cannot occur.

F It also cannot occur in our second modeling.

(iv) No. Consider the following infinite run:

(0, e0, e1)
x=0−−→ (0, c0, e1)

c0−→ (0, `0, e1)
x←1−−−→ (1, nc0, e1)

nc0−−→ (1, nc0, e1)
nc0−−→ · · ·

illustrated in red:

0, e0, e1 0, c0, e1 0, `0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, `10, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1c1x← 0

nc1

nc1

x← 0

The second process remains in e1 throughout this infinite run, so it never enters its critical section.
Since we have restricted x to be read at the same time, a process can stay in its non critical section
as long as it wants while the other one cannot do anything.

F In our second modeling, this infinite run still occurs as illustrated below.

However, here the second process is not stuck since it could take transition (1, nc0, e1)
x=1′−−−→ (1, nc0, c1)

to reach its critical section. Therefore, the red infinite run only occurs if the process scheduler can
let a process i run forever even though process 1− i could make progress.

0, e0, e1 0, c0, e1 0, `0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, `10, e0, nc1

1, nc0, c11, nc0, `10, nc0, nc10, nc0, e1

0, c0, nc1 0, `0, nc1 1, nc0, nc1 1, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1′c1x← 0

nc1

nc1

x← 0

x = 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x = 0′

nc0

x = 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x = 1

x = 0′ x = 0′ x = 0′

x = 1x = 1x = 1

(b) (i)

f t

x0 = 0

x0 ← 0

x0 = 1

x1 ← 1

x0 ← 1

x0 ← 0

f t

x1 = 0

x1 ← 0

x1 = 1

x1 ← 1

x1 ← 1

x1 ← 0

e0 e′0 c0 `0 nc0
x0 ← t

x1 = t

x1 = f c0 x0 ← f

x0 ← f

nc0

nc0

e1 e′1 c1 `1 nc1
x1 ← t

x0 = t

x0 = f c1 x1 ← f

x1 ← f

nc1

nc1

(ii) Yes, consider this fragment of the asynchronous product of the network:

f, f, e0, e1 t, f, e′0, e1 t, t, e′0, e
′
1

x0 ← t x1 ← t

x0 = t

x1 = t

When (t, t, e′0, e
′
1) is reached, both processes are still trying to enter their critical section, and it is

impossible to move to a new state.

Solution 8.2

(a) (i) ∅ · Σ and ∃x first(x).

(ii) ∅ ·A · ∅ and ∃x
∨
a∈AQa(x).

(iii) Σ∗AΣ∗ and ∀x
∧
a∈AQa(x).

(iv) bΣ∗ + Σ∗a+ Σ∗aaΣ∗ + Σ∗bbΣ∗ and

(¬∃x first(x)) ∨ [(∃x first(x) ∧Qa(x)) ∧ (∃x last(x) ∧Qb(x)) ∧
(∀x, y (Qa(x) ∧ y = x+ 1)→ Qb(y)) ∧ (∀x, y (Qb(x) ∧ y = x+ 1)→ Qa(y))] .

(v) Σ∗aaΣ∗ and ∀x, y (Qa(x) ∧ y = x+ 1)→ ¬Qa(y).

(b) Every finite language L = {w1, w2, . . . , wm} can be expressed as w1 + w2 + · · · + wm. For every cofinite
language L, there exists a finite language A such that L = A. Since star-free regular expressions allow for
complementation, cofinite languages are also star-free.

(c) We build ϕ+ using the following inductive rules:

(x < y)+(i, j) = x < y

Qa(x)+(i, j) = Qa(x)

(¬ψ)+(i, j) = ¬ψ+(i, j)

(ψ1 ∨ ψ2)+(i, j) = ψ+
1 (i, j) ∨ ψ+

2 (i, j)

(∃x ψ)+(i, j) = ∃x (i ≤ x ∧ x ≤ j) ∧ ψ+(i, j) .

(d)

Input: sentence ϕ ∈ FO(Σ).
Output: ε � ϕ?
has-empty(ϕ):

if ϕ = ¬ψ then
return ¬has-empty(ψ)

else if ϕ = ψ1 ∨ ψ2 then
return has-empty(ψ1) ∨ has-empty(ψ2)

else if ϕ = ∃ ψ then
return false

(e)

Input: star-free regular expression r.
Output: sentence ϕ ∈ FO(Σ) s.t. L(ϕ) = L(r).
formula(r):

if r = ε then
return ∀x first(x)

else if r = a for some a ∈ Σ then
return (∃x true) ∧ (∀x first(x) ∧Qa(x))

else if r = s then
return ¬formula(s)

else if r = s1 + s2 then
return formula(s1) ∨ formula(s2)

else if r = s1 · s2 then
return (¬∃x first(x) ∧ (ε ∈ L(s1)) ∧ (ε ∈ L(s2))) ∨

(formula(s1) ∧ (ε ∈ L(s2))) ∨
((ε ∈ L(s1)) ∧ formula(s2)) ∨
(∃x, y, y′, z first(x) ∧ y′ = y + 1 ∧ last(z) ∧ formula(s1)+(x, y) ∧ formula(s2)+(y′, z))

Solution 8.3

(a) To simplify the notation, let us write “y = x+2n” for “ϕn(x, y)”. We can define ϕn inductively as follows:

y = x+ 2n := ∃t (t = x+ 2n−1) ∧ (y = t+ 2n−1)) .

However, this yields a formula of exponential size. The formula can be made linear by rewriting it in the
following way:

y = x+ 2n := ∃t ∀x′, y′ ((x′ = x ∧ y′ = t)→ (y′ = x′ + 2n−1)) ∧ ((x′ = t ∧ y′ = y)→ (y′ = x′ + 2n−1))

= ∃t ∀x′, y′ (¬(x′ = x ∧ y′ = t) ∨ (y′ = x′ + 2n−1)) ∧ (¬(x′ = t ∧ y′ = y) ∨ (y′ = x′ + 2n−1))

= ∃t ∀x′, y′ ((¬(x′ = x ∧ y′ = t) ∧ (¬(x′ = t ∧ y′ = y)) ∨ (y′ = x′ + 2n−1)

= ∃t ∀x′, y′ ((x′ = x ∧ y′ = t) ∨ (x′ = t ∧ y′ = y))→ (y′ = x′ + 2n−1)

(b)

ϕ =

word has length 2n + 2n︷ ︸︸ ︷
[∃x, y, y′, z first(x) ∧ (y = x+ 2n) ∧ (y = y′ + 1) ∧ (z = y′ + 2n) ∧ last(z)]∧

[∀x, y
∧

σ∈{a,b}

(Qσ(x) ∧ y = x+ 2n)→ Qσ(y)]

︸ ︷︷ ︸
word is of the form ww

.

(c) Let u, v ∈ {a, b}∗ such that |u| = |v| = 2n and u 6= v. We have uu ∈ Ln and uv 6∈ Ln. Therefore, all
words of length 2n belong to distinct residuals. There are 22

n

such words, hence Ln has at least 22
n

residuals.

