Technische Universitat Miinchen Winter term 2016/17
I7
Prof. J. Esparza / Dr. M. Blondin 28.11.2016

Automata and Formal Languages — Homework 7

Due 02.12.2016

Exercise 7.1
Let Ly = {abb, bba, bbb} and Lo = {aba, bbb}.

(a) Suppose you are given a fixed-length language L described explicitely by a set instead of an automaton.
Give an algorithm that ouputs the state ¢ of the master automaton for L.

(b) Use the previous algorithm to build the states of the master automaton for L; and Lo.
(c) Compute the state of the master automaton representing Lq U Lo.

(d) Identify the kernels (L), (L2), and (L1 U Lo).

Exercise 7.2

(a) Give an algorithm to compute L(p) - L(q) given states p and ¢ of the master automaton.
(b) Give an algorithm to compute both the length and size of L(q) given a state ¢ of the master automaton.

(¢) The length and size of L(q) could be obtained in constant time if they were simply stored in the master
automaton table. Give a new implementation of make for this representation.

Exercise 7.3

Let k € N-g. Let flip : {0,1}* — {0,1}* be the function that inverts the bits of its input, e.g. flip(010) = 101.
Let val : {0,1}* — N be such that val(w) is the number represented by w with the “least significant bit first”
encoding.

(a) Describe the minimal transducer that accepts
Ly, = {[z,y] € ({0,1} x {0,1})* : val(y) = val(flip(z)) + 1 mod 2¥} .

(b) Build the state r of the master transducer for Ls, and the state ¢ of the master automaton for {010,110}.

(¢) Adapt the algorithm pre seen in class to compute post(r, q).

Solution 7.1
(a)

Input: Set of words L of fixed-length.

Output: state ¢ of the master automaton such that L(g) = L.
1 make-lang(L):

2 if L =0 then
3 return gp
4 else if L = {¢} then
5 return q.
6 else

7 for a € ¥ do

8 L* «+ {u:au € L}

9 Sq < make-lang(L?)
10 return make(s)

(b) Executing make-lang(L,) yields the following computation tree:

make-lang({abb, bba, bbb})

©®

make(make-lang({bb}), make-lang({bb}))

/ \.

make(make-lang((}), make lang({b})) make(make-lang(()), make-lang({a,b}))
@ / O]
. make(make-lang()), make-lang({c})) . make(make-lang({c}), make-lang({c}))

/\ /N

The table obtained after the execution is as follows:

Ident. | a-succ b-succ
2 a0 Qe
3 qp 2
4 qe ge
5 qp 4
6 3 5

Calling make-lang(Ls) adds the following rows to the table and returns 9:

Ident. | a-succ b-succ
7 4e qp
8 qp 7
9 8 3

The new master automaton fragment is:

Ly

(c) We first adapt the algorithm for intersection to obtain an algorithm for union:

Input: states p, q of the master automaton with same length.

Output: state r of the master automaton such that L(r) = L(p) U L(q).
1 union(p,q):

2 if G(p,q) is not empty then

3 return G(p, q)

4 else if p = gy and ¢ = gy then
5 return g

6 else if p = ¢. or ¢ = ¢. then
7 return q.

8 else

9 for a € ¥ do

10 Sq < union(p?, ¢%)

11 G(p,q) < make(s)

12 return G(p, q)

Executing union(6,9) yields the following computation tree:

union(6,9)

make(union(3,8), wunion(5,3))

./ \.

make(union(qp,qg), union(2,7)) make(union(gg,qg), union(4,2))

/@) o

. make(union(gg,q:), union(ge,qp)) . make(union(qe,qg), union(qe,q:))

/N \

/

Calling union(6,9) adds the following row to the table and returns 10:

Ident. | a-succ b-succ
10 | 5 5

The new fragment of the master automaton is:

Lo

% Note that union could be slightly improved by returning ¢ whenever p = ¢, and updating G(q, p) at
the same time as G(p, q).

(d) The kernels are:

(L1) = Lu,
(L2) = Lo,
<L1 U L2> = {ba, bb}

Solution 7.2
(a) Let L, L’ be fixed-length languages. We have

0 if L =0,

L= if L= {e},
U a-L%- L' otherwise.
aceX

These identities give rise to the following algorithm:

Input: states p, ¢ of the master automaton.
Output: state r of the master automaton such that L(r) = L(p) - L(q).
1 concat(L):

2 if G(p,q) is not empty then
3 return G(p, q)
4 else if p = gy then
5 return gy
6 else if p = ¢. then
7 return q
8 else
9 for a € ¥ do
10 Sq concat(p?,q)
11 G(p,q) < make(s)
12 G(q,p) < G(p,q)
13 return G(p,q)

(b) Let L be a fixed-length language. We have

00 if L=10,
length(L) =< 0 if L = {e},
length(L*) + 1 for any a € ¥ s.t. L* # () otherwise.
and
0 if L=0,
L ={1 if L= {e},

Y aex | L4 otherwise.

These identities give rise to the following algorithm:

Input: state p of the master automaton.
Output: length and size of L(q).

1 len-size(q):

2 if G(q) is not empty then

3 return G(q)

4 else if ¢ = ¢y then

5 return (oo, 0)

6 else if ¢ = g. then

7 return (0, 1)

8 else

9 k o0
10 n <0
11 for a € ¥ do
12 kE'.n' < len-size(q®)
13 if k' # oo then k + max(k, k') +1
14 n<<n+n

15 G(q) + (k,n)

16 return G(q)

(¢) Let g be a state of the master automaton. We denote the length and the size of g respectively by len(q)
and |g|. These values are encoded in two new columns of the master automaton table. We set

len(qp) = oo, |qg| = 0.
len(QE) = 0, ‘CIE| =1

From the observations made in the previous question, we obtain the following algorithm:

Input: mapping s from ¥ to the master automaton states.
Output: state g such that L(q)* = s, for every a € X.

1 make’ (q):

2 Qmax < 0

3 for row g,t € Table do

4 if s =1t then

5 return ¢q

6 else

7 Gmax < MaX(gmax, q)-

8 T 4 Qmax + 1

9 k + oo /* Compute length and size */
10 n <+ 0

11 for a € ¥ do
12 if s, # qp then k < |s,| + 1
13 n < n+ len(s,)

14 Table(r) < (s, k,n)

15 return r

Solution 7.3
(a) Let [z,y] € Lx. We may flip the bits of x at the same time as adding 1. If z; = 1, then -2 = 0, and hence
adding 1 to val(flip(x)) results in y; = 1. Thus, for every 1 < i < k, we have y; = —x;. If z; = 0, then
-x1 = 1. Adding 1 yields y; = 0 with a carry. This carry is propagated as long as —x; = 1, and thus as
long as x; = 0. When some position j with z; = 1 is encountered, the carry is “consumed”, and we flip
the remaining bits of . These observations give rise to the following minimal transducer for Ly:

(c) We can establish the following identities similar to those obtained for pre:

] if R=0or L =10,
post (L) = {e} if R ={[e,e]} and L = {e},
U b post a1 (L*) otherwise.
a,bex

To see that these identities hold, let b € ¥ and v € £* for some k € N. We have,

bv € postp(L) <= Ja € X,uc X¥ st. au € L and [au,bv] € R

<~ JaeX,ueL”st. [au,bv] € R
<« JaeX,uel®st. [u,v] € R
<= Jda € ¥ s.t. v € Postplan (L?)
= ve U Post pra,u (L)
a€y
= bve b Postgn(L?).
a€x

We obtain the following algorithm:

Input: state r of the master transducer and state g of the master automaton.
Output: Postr(L) where R = L(r) and L = L(q).

1 post(r,q):

© 0w N o Ooh W oN

[e ot i
g W N = O

if G(r,q) is not empty then
return G(r,q)
else if r =ry or ¢ = qy then
return g
else if r = r. and ¢ = ¢. then
return q.
else
for b € ¥ do
P qp
for a € ¥ do
p < union(p, post (rl*? ¢%))
Sp < p
G(q,r) < make(s)
return G(q,r)

Note that the transducer for L3 has some “strong” deterministic property. Indeed, for every state r and
b € {0,1}, if rl* £ 4 then 7[°%% = ry. Hence, for a fixed b € {0,1}, at most one post(r[»?, ¢%) can
differ from ¢p at line 12 of the algorithm. Thus, unions made by the algorithm on this transducer are
trivial, and executing post(6,4) yields the following computation tree:

post(6,4)

make(post (4,3),post(5,3))

o/\

make(post(2,qp), post(3 make(post(3,2),post(3,qp))

/ @\ @/ A
. make(post(re, qp), post(re, ge)) .

[

Calling post(6,4) adds the following rows to the master automaton table and returns 8:

Ident. | O-succ 1-succ

5 qp qe
6 qp)
7 5 q0
8 6 7

The new master automaton fragment:

Post(L3,{010,110})

0,1

