Automata and Formal Languages - Homework 6

Due 25.11.2016

Exercise 6.1

Let val : $\{0,1\}^{*} \rightarrow \mathbb{N}$ be such that $\operatorname{val}(w)$ is the number represented by w with the "least significant bit first" encoding.
(a) Give a transducer that doubles numbers, i.e. a transducer accepting

$$
L_{1}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: \operatorname{val}(y)=2 \cdot \operatorname{val}(x)\right\}
$$

(b) Give an algorithm that takes $k \in \mathbb{N}$ as input, and that produces a transducer A_{k} accepting

$$
L_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: \operatorname{val}(y)=2^{k} \cdot \operatorname{val}(x)\right\} .
$$

(Hint: use (a) and consider operations seen in class.)
(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

$$
\left\{[x, y, z] \in(\{0,1\} \times\{0,1\} \times\{0,1\})^{*}: \operatorname{val}(z)=\operatorname{val}(x)+\operatorname{val}(y)\right\}
$$

(d) For every $k \in \mathbb{N}_{>0}$, let

$$
X_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: \operatorname{val}(y)=k \cdot \operatorname{val}(x)\right\} .
$$

Suppose you are given transducers A and B accepting respectively X_{a} and X_{b} for some $a, b \in \mathbb{N}_{>0}$. Sketch an algorithm that builds a transducer C accepting X_{a+b}. (Hint: use (b) and (c).)
(e) Let $k \in \mathbb{N}_{>0}$. Using (b) and (d), how can you build a transducer accepting X_{k} ?
(f) Show that the following language has infinitely many residuals, and hence that it is not regular:

$$
\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: \operatorname{val}(y)=\operatorname{val}(x)^{2}\right\}
$$

Exercise 6.2

Let $\operatorname{LSBF}_{k}:\left\{0,1, \ldots, 2^{k}-1\right\} \rightarrow\{0,1\}^{k}$ be such that $\operatorname{LSBF}_{k}(n)$ is the "least significant bit first" encoding of size k of n.
(a) For every language $L \subseteq\{0,1\}^{*}$ of length $k \in \mathbb{N}$, we define $L+1=\left\{\operatorname{LSBF}_{k}\left(\operatorname{val}(w)+1 \bmod 2^{k}\right): w \in L\right\}$.

Give an algorithm that takes a state q of the master automaton as input, and that computes the state of $L(q)+1$.
(b) Let $A=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a DFA for some language of length k. Let $X=\{\operatorname{val}(w): w \in L(A)\}$. In terms of X, describe the set of numbers accepted by $A^{\prime}=\left(Q,\{0,1\}, \delta^{\prime}, q_{0}, F\right)$ where $\delta^{\prime}(q, b)=\delta(q, 1-b)$.

Solution 6.1

(a) Let $\left[x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{n}\right] \in(\{0,1\} \times\{0,1\})^{n}$ where $n>1$. Multiplying a binary number by two shifts its bits and adds a zero. For example, the word

$$
\left[\begin{array}{l}
10110 \\
01011
\end{array}\right]
$$

belongs to the language since it encodes $[13,26]$. Thus, we have $\operatorname{val}(y)=2 \cdot \operatorname{val}(x)$ if, and only if $y_{1}=0$, $x_{n}=0$, and $y_{i}=x_{i-1}$ for every $1<i \leq n$. From this observation, we build a transducer that

- makes sure the first bit of y is 0 ,
- ensures that y is consistent with x by keeping the last bit of x in memory,
- accepts $[x, y]$ if the last bit of x is 0 .

Note that $[\varepsilon, \varepsilon]$ and $[0,0]$ both encode $[0,0]$. Therefore, they should also be accepted since $2 \cdot 0=0$. We obtain the following transducer:

(b) Let A_{0} be the following transducer accepting $\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: y=x\right\}$:

Let A_{1} be the transducer obtained in (a). For every $k>1$, we define $A_{k}=\operatorname{Join}\left(A_{k-1}, A_{k}\right)$. A simple inductions show that $L\left(A_{k}\right)=L_{k}$ for every $k \in \mathbb{N}$.
(c) We build a transducer that computes the addition by keeping the current carry bit. Consider some tuple $[x, y, z] \in\{0,1\}^{3}$ and a carry bit r. Adding x, y and r leads to the bit

$$
\begin{equation*}
z=x+y+r \bmod 2 . \tag{1}
\end{equation*}
$$

Moreover, it gives a new carry bit r^{\prime} such that $r^{\prime}=1$ if $x+y+r>1$ and $r^{\prime}=0$ otherwise. The folllowing tables identifies the new carry bit r^{\prime} of the tuples that satisfy (1):

	$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$r=0$	0	x	x	0	x	0	1	x
$r=1$	X	0	1	x	1	X	X	1

We deduce our transducer from the above table:

(d) Let $A=\left(Q_{A},\{0,1\}, \delta_{A}, q_{0 A}, F_{A}\right)$ and $B=\left(Q_{B},\{0,1\}, \delta_{B}, q_{0 B}, F_{B}\right)$. Let $D=\left(Q_{D},\{0,1\}, \delta_{D}, q_{0 D}, F_{D}\right)$ be the transducer for addition obtained in (c). We define C as $C=\left(Q_{C},\{0,1\}, \delta_{C}, q_{0 C}, F_{C}\right)$ where

- $Q_{C}=Q_{A} \times Q_{B} \times Q_{D}$,
- $q_{0 C}=\left(q_{0 A}, q_{0 B}, q_{0 D}\right)$,
- $F_{C}=F_{A} \times F_{B} \times F_{D}$,
and

$$
\left(p, p^{\prime}, p^{\prime \prime}\right) \xrightarrow{[a, c]} C_{C}\left(q, q^{\prime}, q^{\prime \prime}\right) \Longleftrightarrow \exists b, b^{\prime} \in\{0,1\} \text { s.t. } p \xrightarrow{[a, b]}_{A} q, p^{\prime}{\xrightarrow{\left[a, b^{\prime}\right]}}_{B} q^{\prime} \text { and } p^{\prime \prime}{\xrightarrow{\left[b, b^{\prime}, c\right]}}_{D} q^{\prime \prime}
$$

(e) Let $\ell=\left\lfloor\log _{2}(k)\right\rfloor$. There exist $c_{0}, c_{1}, \ldots, c_{\ell} \in\{0,1\}$ such that $k=c_{0} \cdot 2^{0}+c_{1} \cdot 2^{1}+\cdots+c_{\ell} \cdot 2^{\ell}$. Let $I=\left\{0 \leq i \leq \ell: c_{i}=1\right\}$. Note that $k=\sum_{i \in I} 2^{i}$. Therefore, it suffices to obtain A_{i} from (b) for each $i \in I$, and to combine them using (d).
(f) For every $n \in \mathbb{N}_{>0}$, let

$$
u_{n}=\left[\begin{array}{l}
0^{n} 1 \\
0^{n} 0
\end{array}\right] \text { and } v_{n}=\left[\begin{array}{l}
0^{n-1} 0 \\
0^{n-1} 1
\end{array}\right]
$$

Let $i, j \in \mathbb{N}_{>0}$ be such that $i \neq j$. We claim that $L^{u_{i}} \neq L^{u_{j}}$. We have

$$
u_{i} v_{i}=\left[\begin{array}{c}
0^{i} 10^{i} \\
0^{2 i} 1
\end{array}\right] \text { and } u_{j} v_{i}=\left[\begin{array}{l}
0^{j} 10^{i} \\
0^{i+j} 1
\end{array}\right] .
$$

Therefore, $u_{i} v_{i}$ encodes $\left[2^{i}, 2^{2 i}\right]$, and $u_{i} v_{j}$ encodes $\left[2^{j}, 2^{i+j}\right]$. We observe that $u_{i} v_{i}$ belongs to the language since $2^{2 i}=\left(2^{i}\right)^{2}$. However, $u_{j} v_{i}$ does not belong to the language since $2^{i+j} \neq 2^{2 j}=\left(2^{j}\right)^{2}$.

Solution 6.2

(a) We have

$$
L+1= \begin{cases}\emptyset & \text { if } L=\emptyset \\ \{\varepsilon\} & \text { if } L=\{\varepsilon\} \\ 1 \cdot L^{0} \cup 0 \cdot\left(L^{1}+1\right) & \text { otherwise }\end{cases}
$$

This observation gives rise to an algorithm:

```
Input: state q of the master automaton.
Output: state q}\mp@subsup{q}{}{\prime}\mathrm{ such that L(q')=L(q)+1
plus-one(q):
        if q\in{\mp@subsup{q}{\emptyset}{},\mp@subsup{q}{\varepsilon}{}}\mathrm{ then}
            return q
        else
            r\leftarrowplus-one( }\mp@subsup{q}{}{1
            return make(r,q}\mp@subsup{q}{}{0}
```

(b) A^{\prime} flips the bits of the numbers accepted by A. Thus, the numbers accepted by A^{\prime} are $\left\{2^{k}-1-n: n \in X\right\}$. In combination with (a), this allows to multiply a set of numbers by -1 in two's complement representation.

