
Technische Universität München Winter term 2016/17
I7
Prof. J. Esparza / Dr. M. Blondin 14.11.2016

Automata and Formal Languages — Homework 5

Due 18.11.2016

Exercise 5.1

Let Ln ⊆ {a, b}∗ be the language described by the regular expression (a+ b)∗a(a+ b)nb(a+ b)∗.

(a) Give an NFA with n+ 3 states that accepts Ln.

(b) Show that for every w ∈ {a, b}∗, if |w| = n+ 1, then ww 6∈ Ln.

(c) Show that any NFA accepting Ln has at least 2n+1 states. (Hint: use (b) and the pigeonhole principle.)

Exercise 5.2

Use the algorithm UnivNFA to test whether the following NFA is universal.

q0

q1 q2

q3 q4

b
a

b

a, b

a, b

a

a a, b

Exercise 5.3

(a) Build Bp and Cp for the word pattern p = mammamia.

(b) How many transitions are taken when reading t = mami in Bp and Cp?

(c) Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}∗ such that testing whether p occurs in t
takes n transitions in Bp and 2n− 1 transitions in Cp.

Exercise 5.4

Two-way DFAs are an extension of lazy automata where the reading head is also allowed to move left. Formally,
a two-way DFA (2DFA) is a tuple A = (Q,Σ, δ, q0, F) where δ : Q × (Σ ∪ {`,a}) → Q × {L, S,R}. Given a
word w ∈ Σ∗, A starts in q0 with its reading tape initialized with ` w a, and its reading head pointing on `.
When reading a letter, A moves the head according to δ (Left, Stationnary, Right). Moving left on ` or right
on a does not move the reading head. A accepts w if, and only if, it reaches a in a state of F .

(a) Let n ∈ N. Give a 2DFA that accepts (a+ b)
∗
a(a+ b)

n
.

(b) Give a 2DFA that does not terminate on any input.

(c) Describe an algorithm to test whether a given 2DFA A accepts a given word w.

(d) Let A1, A2, . . . , An be DFAs over a common alphabet. Give a 2DFA B such that

L(B) = L(A1) ∩ L(A2) ∩ · · · ∩ L(An) .

Solution 5.1

(a)

p q r1 r2 rn s

a, b

a a, b a, b b

a, b

a, b

(b) Let w ∈ {a, b}∗ be such that |w| = n+ 1. Assume for the sake of contradiction that ww ∈ Ln. There exist
x, y, z ∈ {a, b}∗ such that ww = xaybz and |y| = n. Let i = |x| and j = |z|. We have

i+ 1 + n+ 1 + j = 2(n+ 1) ,

hence i + j = n. Therefore, wi+1 = a and wn+1−j = b. We have n + 1 − j = i + 1. This implies that
a = wi+1 = wn+1−j = b which is a contradiction.

(c) Assume there exists an NFA An = (Q, {a, b}, δ, Q0, F) such that L(An) = Ln and |Q| < 2n+1. Let
W = {w ∈ {a, b}∗ : |w| = n + 1}. By (b), ww ∈ Ln for every word w ∈ W . Therefore, for every w ∈ W ,

there exist pw ∈ Q0, qw ∈ Q and rw ∈ F such that pw
w−→ qw

w−→ rw. Since |W | = 2n+1, by the pigeonhole
principle, there exist w,w′ ∈ W such that w 6= w′ and qw = qw′ . Since w 6= w′, there exist 1 ≤ i ≤ n+ 1
such that wi 6= w′i. Without loss of generality, wi = a and w′i = b. Thus, ww′ = uau′vbv′. Moreover
|u′| = n− i+ 1 and |v| = i− 1. Therefore, |u′v| = n which implies that ww′ ∈ Ln. This is a contradiction,

since pw
w−→ qw′

w′

−→ rw′ and rw′ ∈ F .

Solution 5.2

Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q2}, {q1, q3}}

2 {{q0}, {q2}} {{q1, q3}}

3 {{q0}, {q2}, {q1, q3}} ∅

The algorithm returns true, hence the NFA accepts {a, b}∗.

Solution 5.3

(a) Ap :

0 1 2 3 4 5 6 7 8

a, i,m

m a m m a m i a

Bp :

0 0, 1 0, 2 0, 1, 3 0, 1, 4 0, 2, 5 0, 1, 3, 6 0, 7 0, 8

a, i

m a

m

i

m

a, i

m

a

i

a

m

i

m

a, i

i

a

m

a

i

m

a, i

m

Cp :

0 1 2 3 4 5 6 7 8

a, i;R

m;R a;R

i,m;S

m;R

a, i;S

m;R

a, i;S

a;R

i,m;S

m;R

a, i;S

i;R

a,m;S

a;R

i,m;S

a, i,m;S

(b) Four transitions taken in Bp: {0} m−→ {0, 1} a−→ {0, 2} m−→ {0, 1, 3} i−→ {0}.

Six transitions taken in Cp: 0
m−→ 1

a−→ 2
m−→ 3

i−→ 1
i−→ 0

i−→ 0.

(c) t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a

a

b

b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;S b;S a, b;S

a;R

The runs over t on Bp and Cp are respectively:

{0} a−→ {0, 1} a−→ {0, 1, 2} a−→ · · · a−→ {0, 1, . . . , n− 1} b−→ {0} ,

and
0

a−→ 1
a−→ 2

a−→ · · · a−→ (n− 1)
b−→ (n− 2)

b−→ (n− 3)
b−→ · · · b−→ 0 .

Solution 5.4

(a) The following 2DFA accepts (a+ b)
∗
a(a+ b)

n
. Transitions not drawn lead to a trap state without moving

the head.

p q r1 r2 rn s

`;R
a;R
b;R

a;L

a;L
b;L

a;L
b;L a;R

a;R
b;R
a;S

a;L
b;L

(b)

`;S
a;S
a;S

(c) From (b), we know that simply reading an input word is not sufficient since the automaton could loop
forever. Instead, we keep track of all configurations that are encountered when reading the input word w.
A configuration is a pair (q, i) where q is a state and 0 ≤ i ≤ |w|+ 1 is a position of the reading head. If
(qf , |w|+ 1) where qf ∈ F is encountered, then the automaton accepts w. If a configuration is seen twice,
then the automaton loops forever.

We obtain the following algorithm:

Input: 2DFA A = (Q,Σ, δ, q0, F) and w ∈ Σ∗.
Output: w ∈ L(A)?

1 W ← ∅
2 q ← q0
3 i← 0

4 while (q, i) 6∈W do
5 if q ∈ F and i = |w|+ 1 then /* Final configuration? */

6 return true

7 if i = 0 then /* Compute next state */

8 q, d← δ(q,`)
9 else if i = |w|+ 1 then

10 q, d← δ(q,a)
11 else
12 q, d← δ(q, wi)

13 if d = L and i > 0 then /* Compute next position */

14 i← i− 1
15 else if d = R and i ≤ |w| then
16 i← i+ 1

17 return false

(d) We build a 2DFA B that first simulates A1 on w. If a final state of A1 is reached in a, then B rewinds the
tape. B then repeat this process on A2, . . . , An. If every Ai accepts w, then B finally move the reading
head to a in a final state.

The construction looks as follows:

q1,0

q1,f

q′1,f

A1

qn,0

qn,f

q′n,f

An

`;R

a;L

a;L

Σ;L a;L

a;L

Σ;L

`;R

Σ,a;Ra;R

b;R

c;R

d;R

`;R

Let Ai = (Qi,Σ, δi, qi,0, Fi). Formally, B is defined as B = (Q,Σ, δ, {p}, {r}) where

• Q = {p, s} ∪Q1 ∪Q2 ∪ · · · ∪Qn ∪ {ri : 1 ≤ i ≤ n},

• δ(q, a) =



(q1,0, R) if q = p and a = `,
(δi(q, a), R) if q ∈ Qi and a ∈ Σ,

(ri, L) if q ∈ Fi and a = a,
(ri, L) if q = ri and a ∈ Σ,

(qi+1,0, R) if q = ri, a = ` and 1 ≤ i < n,

(s,R) if q = rn, a = `,
(s,R) if q = s, a ∈ Σ ∪ {a}.

F It is known that the intersection problem, which is defined as follows, is PSPACE-complete [3]:

Given: DFAs A1, A2, . . . , An,
Decide: whether L(A1) ∩ L(A2) ∩ · · · ∩ L(An).

We have seen how to build a 2DFA B such that L(B) = L(A1)∩L(A2)∩· · ·∩L(An), in polynomial time. Thus,
testing emptiness for 2DFAs is “at least as hard” as the intersection problem, i.e. it is PSPACE-hard. In fact,
the emptiness problem for 2DFAs is PSPACE-complete [1, 2].

References

[1] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[2] H. B. III Hunt. On the time and tape complexity of languages I. In Proc. 5th Annual ACM Symposium on
Theory of Computing (STOC), pages 10–19, 1973. Available online at https://ecommons.cornell.edu/

handle/1813/6007.

[3] Dexter Kozen. Lower bounds for natural proof systems. In Proc. 18th Annual Symposium on Foundations
of Computer Science (FOCS), pages 254–266, 1977. Available online at http://www.cs.cornell.edu/

~kozen/papers/LowerBounds.pdf.

