
Technische Universität München Winter term 2016/17
I7
Prof. J. Esparza / Dr. M. Blondin 07.11.2016

Automata and Formal Languages — Homework 4

Due 11.11.2016

Exercise 4.1

The perfect shuffle of two languages L,L′ ∈ Σ∗ is defined as:

L �̃ L′ = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ s.t. a1 · · · an ∈ L and
b1 · · · bn ∈ L′ and
w = a1b1 · · · anbn } .

Give an algorithm that takes two DFAs A and B in input, and that returns a DFA accepting L(A) �̃ L(B).

Exercise 4.2

Let Σ1 and Σ2 be alphabets. A morphism is a function h : Σ∗1 → Σ∗2 such that h(ε) = ε and h(uv) = h(u) ·h(v)
for every u, v ∈ Σ∗1. In particular, h(a1a2 · · · an) = h(a1)h(a2) · · ·h(an) for every a1, a2, . . . , an ∈ Σ. Hence, a
morphism h is entirely determined by its image over letters.

1. Let A be an NFA over Σ1. Give an NFA B that accepts h(L(A)) = {h(w) : w ∈ L(A)}.

2. Let A be an NFA over Σ2. Give an NFA B that accepts h−1(L(A)) = {w ∈ Σ∗1 : h(w) ∈ L(A)}.

3. Recall that {anbn : n ∈ N} is not regular. Using this fact and the previous results, show that L ⊆
{a, b, c, d, e}∗ where

L = {(ab)mane(cd)mdn : m,n ∈ N}

is also not regular.

Exercise 4.3

Let A = (Q,Σ, δ, q0, F) be a DFA. A word w ∈ Σ∗ is a synchronizing word of A if reading w from any state of

A leads to a common state, i.e. if there exists q ∈ Q such that for every p ∈ Q, p
w−→ q. A DFA is synchronizing

if it has a synchronizing word.

(a) Show that the following DFA is synchronizing:

p q

r s

a

b

a

b
a

b

a
b

(b) Give a DFA that is not synchronizing.

(c) Give an exponential time algorithm to decide whether a DFA is synchronizing. (Hint: use the powerset
construction).

(d) Show that a DFA A = (Q,Σ, δ, q0, F) is synchronizing if, and only if, for every p, q ∈ Q, there exist w ∈ Σ∗

and r ∈ Q such that p
w−→ r and q

w−→ r.

(e) Give a polynomial time algorithm to test whether a DFA is synchronizing. (Hint: use (d)).

(f) Show that (d) implies that every synchronizing DFA with n states has a synchronizing word of length at
most (n2 − 1)(n− 1). (Hint: you might need to reason in terms of the product construction.)

(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word of length (4− 1)2

for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

Solution 4.1

Let A = (Q,Σ, δ, q0, F) and B = (Q′,Σ, δ′, q′0, F
′). Intuitively, we build a DFA C that alternates between

reading a letter in A and reading a letter in B. To do so, we build two copies of the product of A and B.
Reading a letter a in the first copy simulates reading a in A and then goes to the bottom copy, and vice versa.
A word is accepted if it ends up in a state (p, q) of the top copy such that p ∈ F and q ∈ F ′.

Formally, C = (Q′′,Σ, δ′′, q′′0 , F
′′) where

• Q′′ = Q×Q′ × {>,⊥},

• δ(p, a) =

{
(δ(q, a), q′,⊥) if p = (q, q′, r) and r = >,
(q, δ′(q′, a),>) if p = (q, q′, r) and r = ⊥,

• F ′′ = {(q, q′,>) : q ∈ F and q′ ∈ F ′}.

As for most constructions seen in class, some states of C may be non reachable from the initial state. We give
an algorithm that avoids this:

Input: DFAs A = (Q,Σ, δ, q0, F) and B = (Q′,Σ, δ′, q′0, F
′).

Output: A DFA C = (Q′′,Σ, δ′′, q′′0 , F
′′) such that L(C) = L(A) �̃ L(B).

1 Q′′ ← ∅
2 δ′′ ← ∅
3 F ′′ ← ∅
4 W ← {(q0, q′0,>)}
5 while W 6= ∅ do
6 pick p = (q, q′, r) from W
7 add p to Q′′

8 if q ∈ F , q′ ∈ F ′ and r = > then
9 add p to F ′′

10 for a ∈ Σ do
11 if r = > then
12 p′ ← (δ(q, a), q′,⊥)
13 else if r = ⊥ then
14 p′ ← (q, δ(q′, a),>)
15 add (p, a, p′) to δ′′

16 if p′ 6∈ Q′′ then add p′ to W

17 return (Q′′,Σ, δ′′, (q0, q
′
0,>), F ′′)

Solution 4.2

1. Since h is determined by its image over letters, we simply replace each transition (p, a, q) of A by a
sequence of transitions from p to q labeled by h(a). Some ε-transitions may be introduced if h(a) = ε for
some letters a, but we can removed them as seen in class.

2. Let A = (Q,Σ2, δ, Q0, F). We keep the states of A unchanged, but we remove its transitions. For each
p, q ∈ Q and a ∈ Σ1, we add a transition (p, a, q) to B for every q that can be reached from p by reading
h(a) in A. More formally, we let B = (Q,Σ1, δ

′, Q0, F) where

δ′(p, a) = {q ∈ Q : p
h(a)−−−→A q} .

3. Suppose L is regular. There exists an NFA A that accepts L. Let h : {a, b, c, d, e} → {a, b} be the
morphism such that

h(a) = a,

h(b) = ε,

h(c) = ε,

h(d) = b,

h(e) = ε.

We have

h(L) = {(aε)manε(εb)mbn : m,n ∈ N}

= {am+nbm+n : m,n ∈ N}
= {anbn : n ∈ N} .

Therefore, by (1), there exists an NFA that accepts {anbn : n ∈ N}, which is a contradiction.

This contradiction can also be obtained from the following morphism:

h(a) = ε,

h(b) = a,

h(c) = b,

h(d) = ε,

h(e) = ε.

Solution 4.3

(a) ba is a synchronizing word:

p
b−→ p

a−→ r ,

q
b−→ s

a−→ r ,

r
b−→ s

a−→ r ,

s
b−→ s

a−→ r .

(b) The following DFA is not synchronizing:

q0 q1

a

a

(c) Let A = (Q,Σ, δ, q0, F) be a DFA, and let Aq = (Q,Σ, δ, q, F) for every q ∈ Q. A word w is synchronizing
for A if, and only if, reading w from each automaton Aq leads to the same state. Therefore, we build
a DFA B that simulates every automaton Aq simultaneously and tests whether a common state can be
reached.

More formally, let B = (P(Q),Σ, δ′, {Q}, F ′) where

• δ′(P, a) = {δ(q, a) : q ∈ P}, and

• F ′ = {{q} : q ∈ Q}.

A is synchronizing if, and only if, L(B) 6= ∅. It is possible to compute B by adapting the algorithm
NFAtoDFA(A) seen in class:

Input: DFAs A = (Q,Σ, δ, q0, F).
Output: A is synchronizing?

1 if |Q| = 1 then return true
2 Q′ ← ∅
3 W ← {Q}
4 while W 6= ∅ do
5 pick P from W
6 add P to Q′

7 for a ∈ Σ do
8 P ′ ← {δ(q, a) : q ∈ P}
9 if |P ′| = 1 then

10 return true
11 else if P ′ 6∈ Q′ then
12 add P ′ to W

13 return false

(d) ⇒) Immediate.

⇐) Let Q = {q0, q1, . . . , qn}. Let us extend δ to words, i.e. δ(qi, w) = r where qi
w−→ r. For every i, j ∈ [n],

let w(i, j) ∈ Σ∗ be such that δ(qi, w(i, j)) = δ(qj , w(i, j)). Let us define the following sequence of words:

u1 = w(q0, q1)

u` = w(δ(q`, u1u2 · · ·u`−1), δ(q`−1, u1u2 · · ·u`−1)) for every 2 ≤ ` ≤ n.

We claim that u1u2 · · ·un is a synchronizing word. To see that, let us prove by induction on ` that for
every i, j ∈ [`],

δ(qi, u1u2 · · ·u`) = δ(qj , u1u2 · · ·u`) .

For ` = 1, the claims holds by definition of u1. Let 2 ≤ ` ≤ n. Assume the claim holds for ` − 1. Let
i, j ∈ [`]. If i, j < `, then

δ(qi, u1u2 · · ·u`) = δ(δ(qi, u1u2 · · ·u`−1), u`)

= δ(δ(qj , u1u2 · · ·u`−1), u`) (by induction hypothesis)

= δ(qj , u1u2 · · ·u`) .

If i = ` and j < `, then

δ(qi, u1u2 · · ·u`) = δ(δ(qi, u1u2 · · ·u`−1), u`)

= δ(δ(qi−1, u1u2 · · ·u`−1), u`) (by definition of u`)

= δ(δ(qj , u1u2 · · ·u`−1), u`) (by induction hypothesis)

= δ(qj , u1u2 · · ·u`) .

The case were i < ` and i = ` is symmetric, and the case where i = j = ` is trivial.

(e) We use the approach used in (c), but instead of simulating every automaton Aq at once, we simulate all
pairs Ap and Aq. From (d), this is sufficient. The adapted algorithm is as follows:

Input: DFAs A = (Q,Σ, δ, q0, F).
Output: A is synchronizing?

1 for p, q ∈ Q s.t. p 6= q do
2 if ¬ pair-synchronizable(p, q) then
3 return false
4 return true

5

6 pair-synchronizable(p, q):
7 Q′ ← ∅
8 W ← {{p, q}}
9 while W 6= ∅ do

10 pick P from W
11 add P to Q′

12 for a ∈ Σ do
13 P ′ ← {δ(q, a) : q ∈ P}
14 if |P ′| = 1 then
15 return true
16 else if P ′ 6∈ Q′ then
17 add P ′ to W

18 return false

The for loop at line 1 is iterated at most |Q|2 times. The while loop of pair-synchronizable(p, q) is
iterated at most |Q|2, and the for loop within it is iterated at most |Σ| times. Hence, the total running
time of the algorithm is in O(|Q|4 · |Σ|).

F Our proof of (d) is constructive and yields an algorithm working in time O(|Q|4 · |Σ|) to compute a
sychronizing word of length O(|Q|3), if there exists one. See synchronizing.py for an implementation
in Python. It is possible to do better. An algorithm presented in [1] computes a synchronizing word of
length O(|Q|3), if there existe one, in time O(|Q|3 + |Q|2 · |Σ|).

(f) We say that a word w is (p, q)-synchronizing if δ(p, w) = δ(q, w). In the proof of (d), we have built a
synchronizing word w = u1u2 · · ·u|Q|−1 where each ui is a (p, q)-synchronizing word for some p, q ∈ Q.
We claim that if there exists a (p, q)-synchronizing word, then there exists one of length at most |Q|2− 1.
This leads to the overall (|Q| − 1)(|Q|2 − 1) upper bound.

To see that the claim holds, assume for the sake of contradiction that every (p, q)-synchronizing word has
length at least |Q|2. Let w be such a minimal word. Let r = δ(p, w). We have

p
w−→ r ,

q
w−→ r .

This yields the following run in the pair of A and itself:[
p
q

]
w−→
[
r
r

]
.

Since |w(p, q)| ≥ |Q|2, by the pigeonhole principle, there exist s, t ∈ Q, x, z ∈ Σ∗ and y ∈ Σ+ such that
w = xyz and [

p
q

]
x−→
[
s
t

]
y−→
[
s
t

]
z−→
[
r
r

]
.

Hence, xz is a smaller (p, q)-synchronizing word, which is a contradiction.

F As seen in class, it is possible to get a slightly better upper bound. If there exist s, t ∈ Q, x, z ∈ Σ∗

and y ∈ Σ+ such that w = xyz and [
p
q

]
x−→
[
s
t

]
y−→
[
t
s

]
z−→
[
r
r

]
,

then xz is a also a shorter (p, q)-synchronizing word. Moreover, if there exist s ∈ Q, x ∈ Σ∗ and y ∈ Σ+

such that w = xy and [
p
q

]
x−→
[
s
s

]
z−→
[
r
r

]
,

then x is a shorter (p, q)-synchronizing word. Thus, at most
(
n
2

)
states of the form [s t] appear along the

path of a minimal (p, q)-synchronizing word, followed by a state of the form [r r]. Therefore, a minimal
(p, q)-synchronizing word is of size at most

(
n
2

)
= (n2 − n)/2. Overall, this yields a synchronizing word of

length at most (n− 1)((n2 − n)/2) = n3/2− n2 + n/2.

(g) ba3ba3b is such a word. It can be obtained, e.g., from the algorithm designed in (c):

q0, q1,
q2, q3

q0, q1,
q2

q1,
q2, q3

q0,
q2, q3

q0, q1,
q3

q0, q1q1,
q2q2, q3

q0,
q3

q0

b

a a a

b

aaa

b

a

b

b

a

bb

b

b
b

a

The Černý conjecture states that every synchronizing DFA has a synchronizing word of length at most
(|Q| − 1)2. Since 1964, no one has been able to prove or disprove this conjecture. To this day, the best
upper bound on the length of minimal synchronizing words is ((|Q|3 − |Q|)/6)− 1 (see [2]).

References

[1] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500–510,
1990. Available online at http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-90.pdf.

[2] Jean-Éric Pin. On two combinatorial problems arising from automata theory. volume 17 of Annals of Discrete
Mathematics, pages 535–548. North-Holland, 1983. Available online at https://hal.archives-ouvertes.
fr/hal-00143937/document.

