Automata and Formal Languages - Homework 4

Due 11.11.2016

Exercise 4.1

The perfect shuffle of two languages $L, L^{\prime} \in \Sigma^{*}$ is defined as:

$$
\begin{aligned}
L \widetilde{\amalg} L^{\prime}=\left\{w \in \Sigma^{*}: \exists a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \Sigma\right. \text { s.t. } & a_{1} \cdots a_{n} \in L \text { and } \\
& b_{1} \cdots b_{n} \in L^{\prime} \text { and } \\
& \left.w=a_{1} b_{1} \cdots a_{n} b_{n}\right\} .
\end{aligned}
$$

Give an algorithm that takes two DFAs A and B in input, and that returns a DFA accepting $L(A) \widetilde{山} L(B)$.

Exercise 4.2

Let Σ_{1} and Σ_{2} be alphabets. A morphism is a function $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that $h(\varepsilon)=\varepsilon$ and $h(u v)=h(u) \cdot h(v)$ for every $u, v \in \Sigma_{1}^{*}$. In particular, $h\left(a_{1} a_{2} \cdots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \cdots h\left(a_{n}\right)$ for every $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$. Hence, a morphism h is entirely determined by its image over letters.

1. Let A be an NFA over Σ_{1}. Give an NFA B that accepts $h(L(A))=\{h(w): w \in L(A)\}$.
2. Let A be an NFA over Σ_{2}. Give an NFA B that accepts $h^{-1}(L(A))=\left\{w \in \Sigma_{1}^{*}: h(w) \in L(A)\right\}$.
3. Recall that $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is not regular. Using this fact and the previous results, show that $L \subseteq$ $\{a, b, c, d, e\}^{*}$ where

$$
L=\left\{(a b)^{m} a^{n} e(c d)^{m} d^{n}: m, n \in \mathbb{N}\right\}
$$

is also not regular.

Exercise 4.3

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. A word $w \in \Sigma^{*}$ is a synchronizing word of A if reading w from any state of A leads to a common state, i.e. if there exists $q \in Q$ such that for every $p \in Q, p \xrightarrow{w} q$. A DFA is synchronizing if it has a synchronizing word.
(a) Show that the following DFA is synchronizing:

(b) Give a DFA that is not synchronizing.
(c) Give an exponential time algorithm to decide whether a DFA is synchronizing. (Hint: use the powerset construction).
(d) Show that a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is synchronizing if, and only if, for every $p, q \in Q$, there exist $w \in \Sigma^{*}$ and $r \in Q$ such that $p \xrightarrow{w} r$ and $q \xrightarrow{w} r$.
(e) Give a polynomial time algorithm to test whether a DFA is synchronizing. (Hint: use (d)).
(f) Show that (d) implies that every synchronizing DFA with n states has a synchronizing word of length at most $\left(n^{2}-1\right)(n-1)$. (Hint: you might need to reason in terms of the product construction.)
(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word of length $(4-1)^{2}$ for the following DFA:

Solution 4.1

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$. Intuitively, we build a DFA C that alternates between reading a letter in A and reading a letter in B. To do so, we build two copies of the product of A and B. Reading a letter a in the first copy simulates reading a in A and then goes to the bottom copy, and vice versa. A word is accepted if it ends up in a state (p, q) of the top copy such that $p \in F$ and $q \in F^{\prime}$.

Formally, $C=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ where

- $Q^{\prime \prime}=Q \times Q^{\prime} \times\{\top, \perp\}$,
- $\delta(p, a)= \begin{cases}\left(\delta(q, a), q^{\prime}, \perp\right) & \text { if } p=\left(q, q^{\prime}, r\right) \text { and } r=\top, \\ \left(q, \delta^{\prime}\left(q^{\prime}, a\right), \top\right) & \text { if } p=\left(q, q^{\prime}, r\right) \text { and } r=\perp,\end{cases}$
- $F^{\prime \prime}=\left\{\left(q, q^{\prime}, \top\right): q \in F\right.$ and $\left.q^{\prime} \in F^{\prime}\right\}$.

As for most constructions seen in class, some states of C may be non reachable from the initial state. We give an algorithm that avoids this:

```
Input: DFAs \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) and \(B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)\).
Output: A DFA \(C=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)\) such that \(L(C)=L(A) \widetilde{\amalg} L(B)\).
\(Q^{\prime \prime} \leftarrow \emptyset\)
\(\delta^{\prime \prime} \leftarrow \emptyset\)
\(F^{\prime \prime} \leftarrow \emptyset\)
\(W \leftarrow\left\{\left(q_{0}, q_{0}^{\prime}, \top\right)\right\}\)
while \(W \neq \emptyset\) do
    pick \(p=\left(q, q^{\prime}, r\right)\) from \(W\)
    add \(p\) to \(Q^{\prime \prime}\)
    if \(q \in F, q^{\prime} \in F^{\prime}\) and \(r=\top\) then
            add \(p\) to \(F^{\prime \prime}\)
        for \(a \in \Sigma\) do
            if \(r=\top\) then
                \(p^{\prime} \leftarrow\left(\delta(q, a), q^{\prime}, \perp\right)\)
            else if \(r=\perp\) then
                \(p^{\prime} \leftarrow\left(q, \delta\left(q^{\prime}, a\right), \top\right)\)
            add \(\left(p, a, p^{\prime}\right)\) to \(\delta^{\prime \prime}\)
            if \(p^{\prime} \notin Q^{\prime \prime}\) then add \(p^{\prime}\) to \(W\)
return \(\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime},\left(q_{0}, q_{0}^{\prime}, \top\right), F^{\prime \prime}\right)\)
```


Solution 4.2

1. Since h is determined by its image over letters, we simply replace each transition (p, a, q) of A by a sequence of transitions from p to q labeled by $h(a)$. Some ε-transitions may be introduced if $h(a)=\varepsilon$ for some letters a, but we can removed them as seen in class.
2. Let $A=\left(Q, \Sigma_{2}, \delta, Q_{0}, F\right)$. We keep the states of A unchanged, but we remove its transitions. For each $p, q \in Q$ and $a \in \Sigma_{1}$, we add a transition (p, a, q) to B for every q that can be reached from p by reading $h(a)$ in A. More formally, we let $B=\left(Q, \Sigma_{1}, \delta^{\prime}, Q_{0}, F\right)$ where

$$
\delta^{\prime}(p, a)=\left\{q \in Q: p \xrightarrow{h(a)}_{A} q\right\} .
$$

3. Suppose L is regular. There exists an NFA A that accepts L. Let $h:\{a, b, c, d, e\} \rightarrow\{a, b\}$ be the morphism such that

$$
\begin{aligned}
h(a) & =a, \\
h(b) & =\varepsilon, \\
h(c) & =\varepsilon, \\
h(d) & =b, \\
h(e) & =\varepsilon .
\end{aligned}
$$

We have

$$
\begin{aligned}
h(L) & =\left\{(a \varepsilon)^{m} a^{n} \varepsilon(\varepsilon b)^{m} b^{n}: m, n \in \mathbb{N}\right\} \\
& =\left\{a^{m+n} b^{m+n}: m, n \in \mathbb{N}\right\} \\
& =\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
\end{aligned}
$$

Therefore, by (1), there exists an NFA that accepts $\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$, which is a contradiction.

This contradiction can also be obtained from the following morphism:

$$
\begin{aligned}
h(a) & =\varepsilon, \\
h(b) & =a, \\
h(c) & =b, \\
h(d) & =\varepsilon, \\
h(e) & =\varepsilon .
\end{aligned}
$$

Solution 4.3

(a) $b a$ is a synchronizing word:

$$
\begin{aligned}
& p \xrightarrow{b} p \xrightarrow{a} r, \\
& q \xrightarrow{b} s \xrightarrow{a} r, \\
& r \xrightarrow{b} s \xrightarrow{a} r, \\
& s \xrightarrow{b} s \xrightarrow{a} r .
\end{aligned}
$$

(b) The following DFA is not synchronizing:

(c) Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA, and let $A_{q}=(Q, \Sigma, \delta, q, F)$ for every $q \in Q$. A word w is synchronizing for A if, and only if, reading w from each automaton A_{q} leads to the same state. Therefore, we build a DFA B that simulates every automaton A_{q} simultaneously and tests whether a common state can be reached.
More formally, let $B=\left(\mathcal{P}(Q), \Sigma, \delta^{\prime},\{Q\}, F^{\prime}\right)$ where

- $\delta^{\prime}(P, a)=\{\delta(q, a): q \in P\}$, and
- $F^{\prime}=\{\{q\}: q \in Q\}$.
A is synchronizing if, and only if, $L(B) \neq \emptyset$. It is possible to compute B by adapting the algorithm $N F A t o D F A(A)$ seen in class:

```
Input: DFAs \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\).
Output: \(A\) is synchronizing?
if \(|Q|=1\) then return true
\(Q^{\prime} \leftarrow \emptyset\)
\(W \leftarrow\{Q\}\)
while \(W \neq \emptyset\) do
        pick \(P\) from \(W\)
        add \(P\) to \(Q^{\prime}\)
        for \(a \in \Sigma\) do
            \(P^{\prime} \leftarrow\{\delta(q, a): q \in P\}\)
            if \(\left|P^{\prime}\right|=1\) then
                return true
            else if \(P^{\prime} \notin Q^{\prime}\) then
                add \(P^{\prime}\) to \(W\)
    return false
```

$(\mathrm{d}) \Rightarrow)$ Immediate.
$\Leftarrow)$ Let $Q=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$. Let us extend δ to words, i.e. $\delta\left(q_{i}, w\right)=r$ where $q_{i} \xrightarrow{w} r$. For every $i, j \in[n]$, let $w(i, j) \in \Sigma^{*}$ be such that $\delta\left(q_{i}, w(i, j)\right)=\delta\left(q_{j}, w(i, j)\right)$. Let us define the following sequence of words:

$$
\begin{aligned}
& u_{1}=w\left(q_{0}, q_{1}\right) \\
& u_{\ell}=w\left(\delta\left(q_{\ell}, u_{1} u_{2} \cdots u_{\ell-1}\right), \delta\left(q_{\ell-1}, u_{1} u_{2} \cdots u_{\ell-1}\right)\right)
\end{aligned} \quad \text { for every } 2 \leq \ell \leq n .
$$

We claim that $u_{1} u_{2} \cdots u_{n}$ is a synchronizing word. To see that, let us prove by induction on ℓ that for every $i, j \in[\ell]$,

$$
\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell}\right)=\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right)
$$

For $\ell=1$, the claims holds by definition of u_{1}. Let $2 \leq \ell \leq n$. Assume the claim holds for $\ell-1$. Let $i, j \in[\ell]$. If $i, j<\ell$, then

$$
\begin{aligned}
\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell}\right) & =\delta\left(\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) \\
& =\delta\left(\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) \quad \text { (by induction hypothesis) } \\
& =\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right)
\end{aligned}
$$

If $i=\ell$ and $j<\ell$, then

$$
\begin{array}{rlrl}
\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell}\right) & =\delta\left(\delta\left(q_{i}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \\
& =\delta\left(\delta\left(q_{i-1}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \text { (by definition of } \left.u_{\ell}\right) \\
& =\delta\left(\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell-1}\right), u_{\ell}\right) & & \text { (by induction hypothesis) } \\
& =\delta\left(q_{j}, u_{1} u_{2} \cdots u_{\ell}\right)
\end{array}
$$

The case were $i<\ell$ and $i=\ell$ is symmetric, and the case where $i=j=\ell$ is trivial.
(e) We use the approach used in (c), but instead of simulating every automaton A_{q} at once, we simulate all pairs A_{p} and A_{q}. From (d), this is sufficient. The adapted algorithm is as follows:

```
Input: DFAs \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\).
Output: \(A\) is synchronizing?
for \(p, q \in Q\) s.t. \(p \neq q\) do
        if \(\neg\) pair-synchronizable \((p, q)\) then
            return false
        return true
pair-synchronizable \((p, q)\) :
    \(Q^{\prime} \leftarrow \emptyset\)
    \(W \leftarrow\{\{p, q\}\}\)
    while \(W \neq \emptyset\) do
        pick \(P\) from \(W\)
        add \(P\) to \(Q^{\prime}\)
        for \(a \in \Sigma\) do
            \(P^{\prime} \leftarrow\{\delta(q, a): q \in P\}\)
                if \(\left|P^{\prime}\right|=1\) then
                    return true
                else if \(P^{\prime} \notin Q^{\prime}\) then
                add \(P^{\prime}\) to \(W\)
                return false
```

The for loop at line 1 is iterated at most $|Q|^{2}$ times. The while loop of pair-synchronizable (p, q) is iterated at most $|Q|^{2}$, and the for loop within it is iterated at most $|\Sigma|$ times. Hence, the total running time of the algorithm is in $O\left(|Q|^{4} \cdot|\Sigma|\right)$.
\star Our proof of (d) is constructive and yields an algorithm working in time $O\left(|Q|^{4} \cdot|\Sigma|\right)$ to compute a sychronizing word of length $O\left(|Q|^{3}\right)$, if there exists one. See synchronizing.py for an implementation in Python. It is possible to do better. An algorithm presented in [1] computes a synchronizing word of length $O\left(|Q|^{3}\right)$, if there existe one, in time $O\left(|Q|^{3}+|Q|^{2} \cdot|\Sigma|\right)$.
(f) We say that a word w is (p, q)-synchronizing if $\delta(p, w)=\delta(q, w)$. In the proof of (d), we have built a synchronizing word $w=u_{1} u_{2} \cdots u_{|Q|-1}$ where each u_{i} is a (p, q)-synchronizing word for some $p, q \in Q$. We claim that if there exists a (p, q)-synchronizing word, then there exists one of length at most $|Q|^{2}-1$. This leads to the overall $(|Q|-1)\left(|Q|^{2}-1\right)$ upper bound.
To see that the claim holds, assume for the sake of contradiction that every (p, q)-synchronizing word has length at least $|Q|^{2}$. Let w be such a minimal word. Let $r=\delta(p, w)$. We have

$$
\begin{aligned}
& p \xrightarrow{w} r, \\
& q \xrightarrow{w} r .
\end{aligned}
$$

This yields the following run in the pair of A and itself:

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{w}\left[\begin{array}{l}
r \\
r
\end{array}\right]
$$

Since $|w(p, q)| \geq|Q|^{2}$, by the pigeonhole principle, there exist $s, t \in Q, x, z \in \Sigma^{*}$ and $y \in \Sigma^{+}$such that $w=x y z$ and

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{x}\left[\begin{array}{l}
s \\
t
\end{array}\right] \xrightarrow{y}\left[\begin{array}{l}
s \\
t
\end{array}\right] \xrightarrow{z}\left[\begin{array}{l}
r \\
r
\end{array}\right]
$$

Hence, $x z$ is a smaller (p, q)-synchronizing word, which is a contradiction.

As seen in class, it is possible to get a slightly better upper bound. If there exist $s, t \in Q, x, z \in \Sigma^{*}$ and $y \in \Sigma^{+}$such that $w=x y z$ and

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{x}\left[\begin{array}{l}
s \\
t
\end{array}\right] \xrightarrow{y}\left[\begin{array}{l}
t \\
s
\end{array}\right] \xrightarrow{z}\left[\begin{array}{l}
r \\
r
\end{array}\right]
$$

then $x z$ is a also a shorter (p, q)-synchronizing word. Moreover, if there exist $s \in Q, x \in \Sigma^{*}$ and $y \in \Sigma^{+}$ such that $w=x y$ and

$$
\left[\begin{array}{l}
p \\
q
\end{array}\right] \xrightarrow{x}\left[\begin{array}{l}
s \\
s
\end{array}\right] \xrightarrow{z}\left[\begin{array}{l}
r \\
r
\end{array}\right],
$$

then x is a shorter (p, q)-synchronizing word. Thus, at most $\binom{n}{2}$ states of the form $[s t]$ appear along the path of a minimal (p, q)-synchronizing word, followed by a state of the form $[r r]$. Therefore, a minimal (p, q)-synchronizing word is of size at most $\binom{n}{2}=\left(n^{2}-n\right) / 2$. Overall, this yields a synchronizing word of length at most $(n-1)\left(\left(n^{2}-n\right) / 2\right)=n^{3} / 2-n^{2}+n / 2$.
(g) $b a^{3} b a^{3} b$ is such a word. It can be obtained, e.g., from the algorithm designed in (c):

The Černý conjecture states that every synchronizing DFA has a synchronizing word of length at most $(|Q|-1)^{2}$. Since 1964, no one has been able to prove or disprove this conjecture. To this day, the best upper bound on the length of minimal synchronizing words is $\left(\left(|Q|^{3}-|Q|\right) / 6\right)-1$ (see [2]).

References

[1] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500-510, 1990. Available online at http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-90.pdf.
[2] Jean-Éric Pin. On two combinatorial problems arising from automata theory. volume 17 of Annals of Discrete Mathematics, pages 535-548. North-Holland, 1983. Available online at https://hal.archives-ouvertes. fr/hal-00143937/document.

