Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

23.10.2016

Automata and Formal Languages — Homework 2

Due 28.10.2016

Exercise 2.1

Consider the regular expression $r = (a + ab)^*$.

- (a) Convert r into an equivalent NFA- ε A.
- (b) Convert A into an equivalent NFA B.
- (c) Convert B into an equivalent DFA C.
- (d) By inspection of C, give an equivalent minimal DFA D.
- (e) Convert D into an equivalent regular expression r'.
- (f) Prove formally that L(r) = L(r').

Exercise 2.2

Let Σ be an alphabet. Recall that the *w*-residual of a language $L \subseteq \Sigma^*$ is the language $L^w = \{u \in \Sigma^* : wu \in L\}$.

- (a) Show that $L_k = \{w \in \Sigma^* : |w| \mod k = 0\}$ has k residuals, i.e. show that $\{L_k^w : w \in \Sigma^*\}$ is of size k for every $k \ge 2$.
- (b) Give a DFA A_k such that $L(A_k) = L_k$. How is A_k related to the residuals of L_k ? (Hint: first minimize your DFA with JFLAP).
- (c) Show that $L_{\text{copy}} = \{ww : w \in \Sigma^*\}$ has infinitely many residuals whenever $|\Sigma| \ge 2$.
- (d) Is L_{copy} regular? What if $\Sigma = \{a\}$?

Exercise 2.3

Let $|w|_{\sigma}$ denote the number of occurrences of a letter σ in a word w. For every $k \geq 2$, let

$$L_{k,\sigma} = \{ w \in \{a, b\}^* : |w|_{\sigma} \mod k = 0 \}.$$

- (a) Give a DFA with k states that accepts $L_{k,\sigma}$.
- (b) Show that any NFA accepting $L_{m,a} \cap L_{n,b}$ has at least $m \cdot n$ states. (Hint: consider using the pigeonhole principle.)

Solution 2.1

(a)

Iter.	Automaton obtained	Rule applied
1	$\rightarrow p$ $(a+ab)^*$	Initial automaton from reg. expr.
2	$\xrightarrow{a + ab} \qquad \qquad$	$(p) \xrightarrow{r^{*}} (q)$ $\downarrow \qquad r$ $(p) \xrightarrow{\varepsilon} (c) \xrightarrow{\varepsilon} (q)$
3	$\rightarrow p \xrightarrow{\varepsilon} q \xrightarrow{a} \varepsilon \xrightarrow{c} r$	$\begin{array}{c} p & r_1 + r_2 \\ & & & \\ & & & \\ & & & \\ p & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$
4	$\rightarrow p \xrightarrow{\varepsilon} q \xrightarrow{a} \varepsilon \xrightarrow{c} r$	$\begin{array}{c} p & \xrightarrow{r_1 r_2} q \\ \downarrow \\ p & \xrightarrow{r_1} & \xrightarrow{r_1} q \end{array}$

(b)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma) = \delta(\{q, r\}), \sigma)$ for $\sigma \in \{a, b\}$. We obtain:

(e)

(f) Let us first show that $a(a + ba)^i = (a + ab)^i a$ for every $i \in \mathbb{N}$. We proceed by induction on i. If i = 0, then the claim trivially holds. Let i > 0. Assume the claims holds at i - 1. We have

$$a(a + ba)^{i} = a(a + ba)^{i-1}(a + ba)$$

= $(a + ab)^{i-1}a(a + ba)$ (by induction hypothesis)
= $(a + ab)^{i-1}(aa + aba)$ (by distribution)
= $(a + ab)^{i-1}(a + ab)a$ (by distribution)
= $(a + ab)^{i}a$

This implies that

$$a(a+ba)^* = (a+ab)^*a$$
. (1)

We may now prove the equivalence of the two regular expressions:

$$\varepsilon + a(a + ba)^* (\varepsilon + b) = \varepsilon + (a + ab)^* a(\varepsilon + b)$$
 (by (1))
$$= \varepsilon + (a + ab)^* (a + ab)$$
 (by distribution)
$$= \varepsilon + (a + ab)^+$$

$$= (a + ab)^* .$$

Solution 2.2

(a) We claim that the residuals are the following:

$$\{w \in \Sigma^* : |w| \mod k = 0\}, \{w \in \Sigma^* : |w| \mod k = 1\}, \\\vdots \\\{w \in \Sigma^* : |w| \mod k = k - 1\}.$$

We may pick a word from each of these languages as a representative of its residual, e.g. $a^0, a^1, \ldots, a^{k-1}$.

Let us now prove our claim formally. Let $x_w = a^{|w| \mod k}$. We show that $L^w = L^{x_w}$ for every $w \in \Sigma^*$:

$$\begin{split} L^w &= \{ u \in \Sigma^* : wu \in L_k \} \\ &= \{ u \in \Sigma^* : |wu| \mod k = 0 \} \\ &= \{ u \in \Sigma^* : (|w| \mod k + |u| \mod k) \mod k = 0 \} \\ &= \{ u \in \Sigma^* : (|x_w| + |u| \mod k) \mod k = 0 \} \\ &= \{ u \in \Sigma^* : (|x_w| \mod k + |u| \mod k) \mod k = 0 \} \\ &= \{ u \in \Sigma^* : |x_wu| \mod k = 0 \} \\ &= \{ u \in \Sigma^* : x_wu \in L_k \} \\ &= L^{x_w} . \end{split}$$

Therefore, L_k has at most k residuals, namely $L_k^{\varepsilon}, L_k^a, L_k^{aa}, \dots, L_k^{a^{k-1}}$. It remains to show that L_k has at most residuals. Let $0 \leq i, j < m$ such that $i \neq j$. We claim that $L_k^{a^i} \neq L_k^{a^j}$. Indeed,

$$a^i a^{i(k-1)} \in L_k$$
, yet
 $a^j a^{i(k-1)} \notin L_k$, (2)

where (2) follows from:

$$|a^{j}a^{i(k-1)}| \mod k = (j+i(k-1)) \mod k$$
$$= (j+ik-i) \mod k$$
$$= (j-i) \mod k$$
$$\neq 0.$$

(b) $A_k = (\{q_0, q_1, \dots, q_{k-1}\}, \Sigma, \delta, q_0, \{q_0\})$ where $\delta(q_i, \sigma) = q_{(i+1 \mod k)}$ for every $\sigma \in \Sigma$. Graphically, A_k is as follows:

Each state of A_k represents a residual of L_k .

(c) Let $a, b \in \Sigma$ be such that $a \neq b$. For every $n \in \mathbb{N}$, we define $u_i = a^i b$. Let $i, j \in \mathbb{N}$ be such that $i \neq j$, we have

$$u_i u_i \in L (3)$$

$$u_j u_i \notin L . \tag{4}$$

By (3) and (4), we deduce that $L^{u_i} \neq L^{u_j}$. This implies that L has infinitely many residuals. \Box

To see in details why (4) holds, assume that $u_j u_i \in L$. This implies that $u_j u_i = ww$ for some $w \in \{a, b\}^*$. Since the last letter of u_i is b, the last letter of w is also b. Moreover, since $u_j u_i$ only contains two occurrences of b, $w = a^k b$ for some $k \in \mathbb{N}$. Therefore k + 1 = j + 1 and 2k + 2 = i + j + 2, which implies that k = j and in turn that j = i, which is a contradiction.

(d) If $|\Sigma| \ge 2$, then L_{copy} is not regular. To see this, suppose that L_{copy} is regular. There exists some DFA $A = (Q, \Sigma, \delta, q_0, F)$ such that $L(A) = L_{\text{copy}}$. By Lemma 3.3 of the lecture notes, for every $w \in \Sigma^*$, there exists $q \in Q$ such that $L_A(q) = L^w$. This is a contradiction since L has infinitely many residuals while Q is finite.

If $|\Sigma| = 1$, then L_{copy} is regular since $L_{copy} = L_2 = \{w \in \{\sigma\}^* : |w| \text{ is even}\}$. \Box

Solution 2.3

(a) $A = (\{q_0, q_1, \dots, q_{k-1}\}, \{a, b\}, \delta, \{q_0\}, \{q_0\})$ where

$$\delta(q_i, x) = \begin{cases} q_{(i+1 \mod k)} & \text{if } x = \sigma \\ q_i & \text{if } x \neq \sigma \end{cases}$$

Graphically, A is as follows:

(b) Let $A = (Q, \{a, b\}, \delta, Q_0, F)$ be a minimal NFA that accepts $L_{m,a} \cap L_{n,b}$. Assume $|Q| < m \cdot n$. We define $w_{i,j} = a^i b^j$ for every $i, j \in \mathbb{N}$. Let $i, j \in \mathbb{N}$. Since $w_{i,j} a^{(m-1)i} b^{(n-1)j} \in L(A)$, there must exist some initial state from which reading $w_{i,j}$ is defined, i.e. some $p_{i,j} \in Q_0$ and $q_{i,j} \in Q$ such that

$$p_{i,j} \xrightarrow{w_{i,j}} q_{i,j}$$
.

By the pigeonhole principle, there exist $0 \leq i, i' < m$ and $0 \leq j, j' < n$ such that $(i, j) \neq (i, j')$ and $q_{i,j} = q_{i',j'}$. Moreover, since A is minimal, $q_{i,j}$ can reach some final state $q_f \in F$ through some $v \in \Sigma^*$, otherwise $q_{i,j}$ could be removed. Therefore,

$$p_{i,j} \xrightarrow{w_{i,j}v} q_f$$
 and $p_{i',j'} \xrightarrow{w_{i',j'}v} q_f$

This implies that $w_{i,j}v \in L(A)$ and $w_{i',j'}v \in L(A)$. Thus,

We obtain i = i' and j = j', which is a contradiction. Therefore, $|Q| \ge m \cdot n$. \Box