Automata and Formal Languages - Homework 2

Due 28.10.2016

Exercise 2.1

Consider the regular expression $r=(a+a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B.
(c) Convert B into an equivalent DFA C.
(d) By inspection of C, give an equivalent minimal DFA D.
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2

Let Σ be an alphabet. Recall that the w-residual of a language $L \subseteq \Sigma^{*}$ is the language $L^{w}=\left\{u \in \Sigma^{*}: w u \in L\right\}$.
(a) Show that $L_{k}=\left\{w \in \Sigma^{*}:|w| \bmod k=0\right\}$ has k residuals, i.e. show that $\left\{L_{k}^{w}: w \in \Sigma^{*}\right\}$ is of size k for every $k \geq 2$.
(b) Give a DFA A_{k} such that $L\left(A_{k}\right)=L_{k}$. How is A_{k} related to the residuals of L_{k} ? (Hint: first minimize your DFA with JFLAP).
(c) Show that $L_{\text {copy }}=\left\{w w: w \in \Sigma^{*}\right\}$ has infinitely many residuals whenever $|\Sigma| \geq 2$.
(d) Is $L_{\text {copy }}$ regular? What if $\Sigma=\{a\}$?

Exercise 2.3

Let $|w|_{\sigma}$ denote the number of occurrences of a letter σ in a word w. For every $k \geq 2$, let

$$
L_{k, \sigma}=\left\{w \in\{a, b\}^{*}:|w|_{\sigma} \bmod k=0\right\} .
$$

(a) Give a DFA with k states that accepts $L_{k, \sigma}$.
(b) Show that any NFA accepting $L_{m, a} \cap L_{n, b}$ has at least $m \cdot n$ states. (Hint: consider using the pigeonhole principle.)

Solution 2.1

(a)
Iter. Automaton obtained
(b)
Iter. Automaton obtained
(c)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma)=\delta(\{q, r\}), \sigma)$ for $\sigma \in\{a, b\}$. We obtain:

(e)
Iter. Automaton obtained

(f) Let us first show that $a(a+b a)^{i}=(a+a b)^{i} a$ for every $i \in \mathbb{N}$. We proceed by induction on i. If $i=0$,
then the claim trivially holds. Let $i>0$. Assume the claims holds at $i-1$. We have

$$
\begin{aligned}
a(a+b a)^{i} & =a(a+b a)^{i-1}(a+b a) & & \\
& =(a+a b)^{i-1} a(a+b a) & & \text { (by induction hypothesis) } \\
& =(a+a b)^{i-1}(a a+a b a) & & \text { (by distribution) } \\
& =(a+a b)^{i-1}(a+a b) a & & \text { (by distribution) } \\
& =(a+a b)^{i} a & &
\end{aligned}
$$

We may now prove the equivalence of the two regular expressions:

$$
\begin{align*}
\varepsilon+a(a+b a)^{*}(\varepsilon+b) & =\varepsilon+(a+a b)^{*} a(\varepsilon+b) \tag{1}\\
& =\varepsilon+(a+a b)^{*}(a+a b) \\
& =\varepsilon+(a+a b)^{+} \\
& =(a+a b)^{*} .
\end{align*}
$$

(by distribution)

Solution 2.2

(a) We claim that the residuals are the following:

$$
\begin{gathered}
\left\{w \in \Sigma^{*}:|w| \bmod k=0\right\} \\
\left\{w \in \Sigma^{*}:|w| \bmod k=1\right\} \\
\vdots \\
\left\{w \in \Sigma^{*}:|w| \bmod k=k-1\right\}
\end{gathered}
$$

We may pick a word from each of these languages as a representative of its residual, e.g. $a^{0}, a^{1}, \ldots, a^{k-1}$.
Let us now prove our claim formally. Let $x_{w}=a^{|w|} \bmod k$. We show that $L^{w}=L^{x_{w}}$ for every $w \in \Sigma^{*}$:

$$
\begin{aligned}
L^{w} & =\left\{u \in \Sigma^{*}: w u \in L_{k}\right\} \\
& =\left\{u \in \Sigma^{*}:|w u| \bmod k=0\right\} \\
& =\left\{u \in \Sigma^{*}:(|w| \bmod k+|u| \bmod k) \bmod k=0\right\} \\
& =\left\{u \in \Sigma^{*}:\left(\left|x_{w}\right|+|u| \bmod k\right) \bmod k=0\right\} \\
& =\left\{u \in \Sigma^{*}:\left(\left|x_{w}\right| \bmod k+|u| \bmod k\right) \bmod k=0\right\} \\
& =\left\{u \in \Sigma^{*}:\left|x_{w} u\right| \bmod k=0\right\} \\
& =\left\{u \in \Sigma^{*}: x_{w} u \in L_{k}\right\} \\
& =L^{x_{w}} .
\end{aligned}
$$

Therefore, L_{k} has at most k residuals, namely $L_{k}^{\varepsilon}, L_{k}^{a}, L_{k}^{a a} \ldots, L_{k}^{a^{k-1}}$. It remains to show that L_{k} has at most residuals. Let $0 \leq i, j<m$ such that $i \neq j$. We claim that $L_{k}^{a^{i}} \neq L_{k}^{a^{j}}$. Indeed,

$$
\begin{align*}
& a^{i} a^{i(k-1)} \in L_{k}, \text { yet } \\
& a^{j} a^{i(k-1)} \notin L_{k}, \tag{2}
\end{align*}
$$

where (2) follows from:

$$
\begin{aligned}
\left|a^{j} a^{i(k-1)}\right| \bmod k & =(j+i(k-1)) \bmod k \\
& =(j+i k-i) \bmod k \\
& =(j-i) \bmod k \\
& \neq 0
\end{aligned}
$$

(b) $A_{k}=\left(\left\{q_{0}, q_{1}, \ldots, q_{k-1}\right\}, \Sigma, \delta, q_{0},\left\{q_{0}\right\}\right)$ where $\delta\left(q_{i}, \sigma\right)=q_{(i+1 \bmod k)}$ for every $\sigma \in \Sigma$. Graphically, A_{k} is as follows:

Each state of A_{k} represents a residual of L_{k}.
(c) Let $a, b \in \Sigma$ be such that $a \neq b$. For every $n \in \mathbb{N}$, we define $u_{i}=a^{i} b$. Let $i, j \in \mathbb{N}$ be such that $i \neq j$, we have

$$
\begin{gather*}
u_{i} u_{i} \in L, \tag{3}\\
u_{j} u_{i} \notin L . \tag{4}
\end{gather*}
$$

By (3) and (4), we deduce that $L^{u_{i}} \neq L^{u_{j}}$. This implies that L has infinitely many residuals.

To see in details why (4) holds, assume that $u_{j} u_{i} \in L$. This implies that $u_{j} u_{i}=w w$ for some $w \in\{a, b\}^{*}$. Since the last letter of u_{i} is b, the last letter of w is also b. Moreover, since $u_{j} u_{i}$ only contains two occurrences of $b, w=a^{k} b$ for some $k \in \mathbb{N}$. Therefore $k+1=j+1$ and $2 k+2=i+j+2$, which implies that $k=j$ and in turn that $j=i$, which is a contradiction.
(d) If $|\Sigma| \geq 2$, then $L_{\text {copy }}$ is not regular. To see this, suppose that $L_{\text {copy }}$ is regular. There exists some DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(A)=L_{\text {copy }}$. By Lemma 3.3 of the lecture notes, for every $w \in \Sigma^{*}$, there exists $q \in Q$ such that $L_{A}(q)=L^{w}$. This is a contradiction since L has infinitely many residuals while Q is finite.

If $|\Sigma|=1$, then $L_{\text {copy }}$ is regular since $L_{\text {copy }}=L_{2}=\left\{w \in\{\sigma\}^{*}:|w|\right.$ is even $\}$.

Solution 2.3

(a) $A=\left(\left\{q_{0}, q_{1}, \ldots, q_{k-1}\right\},\{a, b\}, \delta,\left\{q_{0}\right\},\left\{q_{0}\right\}\right)$ where

$$
\delta\left(q_{i}, x\right)= \begin{cases}q_{(i+1 \bmod k)} & \text { if } x=\sigma \\ q_{i} & \text { if } x \neq \sigma\end{cases}
$$

Graphically, A is as follows:

(b) Let $A=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ be a minimal NFA that accepts $L_{m, a} \cap L_{n, b}$. Assume $|Q|<m \cdot n$. We define $w_{i, j}=a^{i} b^{j}$ for every $i, j \in \mathbb{N}$. Let $i, j \in \mathbb{N}$. Since $w_{i, j} a^{(m-1) i} b^{(n-1) j} \in L(A)$, there must exist some initial state from which reading $w_{i, j}$ is defined, i.e. some $p_{i, j} \in Q_{0}$ and $q_{i, j} \in Q$ such that

$$
p_{i, j} \xrightarrow{w_{i, j}} q_{i, j} .
$$

By the pigeonhole principle, there exist $0 \leq i, i^{\prime}<m$ and $0 \leq j, j^{\prime}<n$ such that $(i, j) \neq\left(i, j^{\prime}\right)$ and $q_{i, j}=q_{i^{\prime}, j^{\prime}}$. Moreover, since A is minimal, $q_{i, j}$ can reach some final state $q_{f} \in F$ through some $v \in \Sigma^{*}$, otherwise $q_{i, j}$ could be removed. Therefore,

$$
p_{i, j} \xrightarrow{w_{i, j} v} q_{f} \text { and } p_{i^{\prime}, j^{\prime}} \xrightarrow{w_{i^{\prime}, j^{\prime}} v} q_{f} .
$$

This implies that $w_{i, j} v \in L(A)$ and $w_{i^{\prime}, j^{\prime}} v \in L(A)$. Thus,

$$
\begin{aligned}
\left(i+|v|_{a}\right) \bmod m & =0=\left(i^{\prime}+|v|_{a}\right) \bmod m \\
\left(j+|v|_{b}\right) \bmod n & =0=\left(j^{\prime}+|v|_{b}\right) \bmod n
\end{aligned}
$$

We obtain $i=i^{\prime}$ and $j=j^{\prime}$, which is a contradiction. Therefore, $|Q| \geq m \cdot n$.

